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ARE BILINEAR QUADRILATERALS BETTER
THAN LINEAR TRIANGLES?

E. F. D’Azevedo

Abstract

This paper compares the theoretical effectiveness of bilinear approximation over quadri-
laterals with linear approximation over triangles. Anisotropic mesh transformation is used
to generate asymptotically optimally efficient meshes for piecewise linear interpolation over
triangles and bilinear interpolation over quadrilaterals. For approximating a convex func-
tion, although bilinear quadrilaterals are more efficient, linear triangles are more accurate
and may be preferred in finite element computations; whereas for saddle-shaped functions,
guadrilaterals may offer a higher order approximation on a well-designed mesh. A surpris-
ing finding is different grid orientations may yield an order of magnitude improvement in

approximation accuracy.
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1. Introduction

This paper compares the theoretical effectiveness of bilinear approximation over quadrilater-
als with linear approximation over triangles. The novelty is in the use of anisotropic mesh
transformation to generate asymptotically optimally efficient meshes in the comparison. Ele-
mentary analysis based on a simple quadratic data model is used. Although both linear and
bilinear interpolants are O(h?) accurate, the results suggest linear triangles are always more
accurate than general convex bilinear quadrilaterals in approximating a convex function but
bilinear approximation may offer a higher order approximation for saddle-shaped functions
on a well-designed mesh. A surprising finding is different grid orientations may yield an or-
der of magnitude “super-convergence” improvement in approximation accuracy. This work
is a basic study on optimal meshes with the intention of gaining insight into the more complex
meshing problems in finite element analysis.

We consider the problem of interpolating a given smooth data function with continuous
piecewise linear triangles or bilinear quadrilaterals over a domain to satisfy a given error tol-
erance. A mesh that achieves this error tolerance with the fewest elements is defined to be op-
timally efficient. Intuitively, one would expect smaller and denser elements in regions where
the function has sharp peaks or large variations. Since each convex quadrilateral can be split
across either one of the diagonals into two triangles, one can imagine embedding a refined
triangular mesh within the quadrilateral mesh. A practical question arises as to whether the
bilinear approximation over quadrilaterals or linear approximation over triangles is more ef-
fective.

To make a fair comparison, we need to compare bilinear approximation over an “optimal”
guadrilateral mesh versus linear approximation over an “optimal” triangular mesh. Provably
optimal triangular meshes [2, 4] have been produced by anisotropic mesh transformation.

Anisotropic mesh transformation is emerging as an effective technique for unstructured
grid generation where the vertex distribution is highly non-uniform. The central idea is to
control the element shapes and sizes by specifying a symmetric metric tensor that measures
the approximation error. The metric tensor determines the corresponding anisotropic transfor-
mation. The anisotropic mesh is then the image of a uniform mesh of optimal shape elements
under the anisotropic transformation. Simpson [9] gives a survey on anisotropic meshes.

Nadler [7], D’Azevedo and Simpson [3, 4], and D’ Azevedo [2] have studied local anisotropic
transformation for the generating of optimally efficient triangular meshes. Peraire et al. [8] ap-
plied anisotropic transformation in mesh generation for dynamic remeshing in solving com-
pressible flow problems. In these works, piecewise linear approximation of a quadratic func-
tion is used as the model for local analysis. In this paper we extend a similar analysis to

bilinear approximation on quadrilateral patches.
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An outline of the paper follows. In §2, we review the key ideas in [2] for generating op-
timally efficient triangular meshes. In §3, we consider error properties of bilinear interpo-
lation. We consider the optimal geometry for quadrilateral patches in §4. We compare the
effectiveness of quadrilaterals versus triangular meshes using the local quadratic model in §5.

Numerical experiments and the results are described in §7. Finally §8 gives a brief summary.

2. Triangular Patch

This section is a brief review of the basic ideas in [2] for determining optimal triangle geom-
etry. We show a linear transformation of a regular mesh of optimal-shape triangles yields an

optimally efficient mesh for interpolating a quadratic function.

2.1. Quadratic Model

We shall consider a local analysis where we assume the data function f(x, y) in the neighbor-

hood of (xc, y.) is well approximated by its quadratic Taylor expansion,

f(x,y) f(Xc + dX, ye + dy)

f(Xe, yo) + VF(xc, yo)ldx, dy] + %[dX, dy]H[dx, dy]". @

Q

Let the error formula be Et(Xx,y) = ps(X,y) — f(X,y), where py(x,y) is the linear interpolant.
By our assumption, Et(X,y) is a quadratic function and level curves for Et(x,y) = ¢ form a
family of conics with a common center at (x¢, yc). They form a family of ellipses if det(H) > 0,
and hyperbolas if det(H) < 0. Note by the interpolation condition, the curve Et(x,y) =0
passes through all vertices of the triangle. If det(H) > 0 (conic is an ellipse) then Et(X,y)
attains the local maximum at the center (X, y.); otherwise, det(H) < 0 (conic is a hyperbola)
the maximum error is attained at the midpoint of an edge. The error at a displacement from
the center is given by

1
Er(xc+dx, yo+dy) = Er — S[dx, dy]H[dx,dy]',  Er = Er(x;, o) - O]

The key insight in [2] is in interpreting the Hessian matrix H in (2) as a symmetric metric

tensor. Let the symmetric Hessian matrix be diagonalizable as

y Q' At 0 Q=s 1o S, where e = sign(det(H))
= = ? 6 - ’
0 A\ 0 € °

|A1] 0 .
= Q, and Qisorthogonal, QIQ=1. ©))
[ (Vv ]
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Note that transformation S is essentially a rotation to align eigenvectors along the coordi-
nate axes then followed by a simple scaling. Under this transformation S, the expression
[dx, dy]H[dx, dy]! reduces to (dX)? + €(d§)?, where [, §]' = S[x, y]'. The error function can be
rewritten as

1
Er(c+dx,yo+dy) = Er—3[dx,dy]H[dx, dy]'

- B % (AR + €(d9)?) @)
= Er(R +dX, ¥, +d9),

where Er(X, ¥) denotes the corresponding error function under transformation S in (X, ¥)-
space. The error expression E1(X, §) has no preferred direction (except for the sign), hence

we shall call the (X, ¥)-space the “isotropic” space.

2.2. Optimal shape

In the following, we shall determined the best triangle shape that minimizes the interpolation
error. We can determine the “efficiency” of the elements by computing their ratio of Error
to Area. A small ratio indicates a more efficient element, i.e. one can achieve a lower error
tolerance and tile the domain with about the same number of elements.

We consider first the case f(x,y) is convex (det(H) > 0, ¢ = 1) and level curves or contours

of E1(X, §) are concentric circles given by
. L . 1. .
Er(%+ 0%, §, +d9) = Er — 5 (@07 + (@9)") - (5)

Let T be the transformed image of triangle T over the isotropic space, with vertices at (%, V1),
(X2, ¥,) and (X3, ¥5). The circum-circle of T corresponds to the level curve of value zero. Hence
the radius of this circum-circle is sqrt(2|Er|) and relates directly to the maximum error attain-
able (at the center). If this center is exterior to triangle T, the maximum error is attained at the
mid-point of the longest edge (of length L) with value L?/8. We can easily see that an equilat-
eral triangle covers the most area for a fixed circum-circle; therefore an equilateral triangle for
T is of optimal-shape.
If f(X,y) is not convex but has a saddle-shaped graph (det(H) < 0, e = —1), then

Er(%,9) = Er(% +d% ¥, +dy)
= ET—%((di)z—(dy)z) (6)

= Er S (B %P9
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We note that the error function E1(X, §) is a harmonic function and thus attains its extrema on
the boundary of T. By calculus, we can show that the local extrema along edge (X;, ¥i), (%;, yj)

is attained at the midpoint with value

) (Xi -;Xj, Yi‘|2‘yj> _ % ‘(ii — 52—, - 9 -

The details for finding the optimal-shape triangle in this case are found in [2]. The optimal-
shape triangle geometry that minimizes the efficiency ratio (Error/Area) is not unique, but the
same maximum error is attained at the mid-point of each edge.

From the above two results on optimal-shape triangles, we see that a regular mesh of
optimal-shape triangles over the isotropic (X, ¥)-space corresponds to an optimally efficient
mesh over the original (X, y)-space. Every triangle attains the same maximum error; more-
over, these triangles cover the most area for the error attained and so are optimally efficient.
Since the linear transformation S is basically a rotation followed by a rescaling of coordinate
axes, we find the areas of triangles are scaled accordingly. Hence the inverse transformation

S—1, maps this regular mesh to produce an optimally efficient mesh in the original (x, y)-space.

2.3. Differential Geometry

The constant Hessian Matrix H in (1) determines the coordinate transformation S that maps
[X, §1t = S[x, y]* so that

[dx, dy]H[dx, dy]t = (d%? + ed§?) .

For more general functions, we may view the Hessian matrix H(x, y) as a metric tensor for
measuring the interpolation error [dx, dy]H[dx, dy]t. Thus we need to determine (X(X, y), (X, y)),
a continuous transformation that satisfies [dx, dy]H[dx, dy]t = d%? + ed§?. The conditions for
finding the anisotropic coordinate transformation (X(x, y), ¥(x, y)) are given by a classical re-
sult in differential geometry for characterizing a “flat” space [11]: that the Riemann-Christoffel
tensor formed from the metric tensor H is identically zero. In this case, a sufficient condition
is for H = {h;;} to satisfy

Kihy1 + Kohyo + Kshy, =0

for some constants K;, K, K3. The coordinate transformation (X(x, y), (X, y)) may be found
by solving an initial value ordinary differential equation. Again, the inverse transformation
(X(X, 9), y(X, ¥)) maps a regular mesh of optimal shaped triangles to yield an optimally efficient
mesh.



3. Quadrilateral Patch

In this section, we derive the error term for bilinear approximation of a quadratic data func-
tion.

We shall use the isoparametric formulation (commonly used in finite element analysis) by
considering basis functions over the normalized (p, g)-space over the unit square, 0 < p,q < 1.

Basis functions are

H1(p, ) =L —-p)(1—0a),  ¢2p,q) =p(l—0),

()
¢3(p,q) = pa, ¢4(p,0) = (1 —p)a,
that satisfy ¢i(xj, y;) = dij, and sumto one, 1 = z}i‘l‘ i(p, Q).
Mapping from (p, g) to the original (x, y)-space is by
X(p,q) = X1¢1(P, ) + X2¢2(P, 6) + X3¢3(P, ) + Xaa(p, 0) 8)
y(,0) = Y101(p,0) + Y2¢2(p, a) + Y303(p, 4) + Yaga(p, q)

that maps vertex (0, 0) to (Xy, Y1), vertex (1,0) to (X2, ¥»), (1,1) to (X3, y3) and (0,1) to (X4, Ya).
The bilinear interpolant (over (p, q)-space) is given by

i=4
Po(x(p, ), y(p,®)) = > f(xi,y)ei(p,0). ©)
i=1

4. Optimal Shape

In the following, we shall determine the best quadrilateral shape that minimizes the interpo-
lation error. The error function for quadratic interpolation over a parallelogram can be shown

by direct algebraic expansion (see Appendix A) to be

Eq(p,a) = pu(x(p,a),y(p,q)— F(x(p,a), y(p,q))
= Eq— g (m(p— p?+ pala— ) (10)

with centroid at [p¢,qc] =[1/2,1/2],
[ux, uy] = [X2 — X1, Y2 = y1l,  [Vx, Vy] = [Xa — X1, Y2 — Y1,

1
Eo = Eo(pc,q) = 8 (1 + p2)

0 0
0 = 8_pEQ(pC’qC) = a—qEQ(pCaQC) ) (11)
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B = [Ux,uy]H[UhUy]t; HZZ[VX>VV]H[VXaVy]t-

For a convex function (det(H) > 0), x1 and p, are positive, hence the maximum error is at-
tained at the centroid [pc, qc].

For this convex case, we can show a square over the isotropic space is of optimal shape
by minimizing the efficiency ratio (Error/Area). Since the isoparametric bilinear interpolant
(9) exactly fits linear functions [5], the error attained at the centroid (X, y¢) (which is a lower

bound on the maximum error) can be written as

1 .
_ 1
-8

[Xe,Ye| = [(X14X2+Xs+Xa)/4,(Yy1+ Y2+ Ys+ ya)/4] . (13)

4

%[Xa,yi]H[xi,ya]‘> — 1[Xc, YeIHIXc, Yol (12)

(]
A R

([xi, YilHIxi, Yil* — [Xe, YeHIXc, yc]‘)>

This expression can be further simplified over the isotropic space where H is the identity,

i=4
Ew = %(z((ifwb—(iiwz)))

i=1
R ST S o R N ~
= (BB +B+5) -4+ T+ T+ T+ 70— 4%)

1 . s o N e
= U+ LE+LE+LD, with L = (% — %)’ +(F, - )",

where [%i, #;]' = S[x;, yi]' and [X, ¥.]' = S[Xc, yc]' are the corresponding coordinates over the

isotropic space. The area of this transformed convex quadrilateral is (see Figure 1)
Area = I(LiL,sin(f1) + LoLssin(8,) + LsLasin(ds) — LsLysin(0y + 6, + 63)).

Since the isotropic transformation S in (3) is a rotation followed by a rescaling of coordinate
axis, the area of quadrilateral over the isotropic space is scaled by sqrt(|A;1Az|) = sqrt(det(H))
(intrinsic to H). By Calculus, we can show this ratio of Ey\,/Area is minimized and attained
by a square with Ly = L, = L3 = L4 and #; = 0, = 63 = /4. Hence the most efficient shape
among all general convex bilinear quadrilaterals is a square over the isotropic space with an
efficiency ratio of 1/4.

If f(x,y) is saddle-shaped (det(H) < 0), the error expression for a parallelogram is still

Eq(p,0) = gl +p2) = (P~ PP + i@~ 609).



(Xa, ¥a)

(X2, ¥2)

Figure 1: Convex quadrilateral over isotropic space.

Under the anisotropic transformation S,

0] Uy V
M1 = lj>2< Gf/: H2 = v>2( - Vf, ) ~X g =S * *
y Vy Uy Vy
Now both p; and p, vanish for
[GX, Uy] = [L7 L]7 [\7X7 \7)’] = [_L7 L] ) (14)

which correspond to a square rotated by 7 /4. The above indicates an “exact fit” (Eq(p, q) = 0)
if 41 = pp = 0. This suggests bilinear approximation is a better interpolant than linear inter-
polation and the simple quadratic model is inadequate to fully capture the error properties in
this case.

To summarize, a square over the isotropic space in any orientation is optimal for the elliptic
case, and a square rotated by 7 /4 is optimal for the hyperbolic case.
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5. Comparison of quadrilaterals versus triangles

In this section, we shall show a refined triangulation produced by the Delauney Triangulation
(DT) will always produce better accuracy for approximating a convex quadratic function. We
shall apply the geometric interpretation of the maximum interpolation error over the trans-

formed isotropic space.

Theorem 1. Any convex quadrilateral over the isotropic space can be decomposed into two

triangles with no increase in maximum interpolation error for approximating a convex quadratic.

Proof. We shall use the Delauney Triangulation (DT) [3] in selecting the diagonal for de-
composing the general convex quadrilateral into two triangles. The DT has an interesting
properties that three vertices form a triangle in DT iff no other vertex is interior to the circum-

circle formed by these vertices. This is also commonly known as the “empty circle” property.

D(X4, Ya)
(X3, Y3)

- A(Xlayl)

.:B(X27 y2)

Figure 2: Maximum triangulation error attained on boundary edge.

Case 1. The maximum error of the DT is attained at the mid-point (E) of a boundary edge
(see Figure 2). In this case the error attained is due to linear interpolation along the edge
AB, with value |ABJ|?/8. Since the isoparametric bilinear interpolant over the quadrilateral
also reduces to linear interpolation along the boundary edge, the maximum error for bilinear
guadrilateral cannot be less than this value. Therefore the theorem holds.



(X3, ¥3)

B(X2, Y2)

A(Xq, yl)'._

Figure 3: Maximum triangulation error attained at center of circum-circle.

Case 2. The maximum error of the DT is attained at the center of circum-circle, (X, y¢) (see
Figure 3). For simplicity and without loss of generality, we perform a translation such that the
isotropic quadratic data function is %((x —Xe)? + (Y — Yo)?). The maximum error is R? /2, where
R is the radius of the circum-circle. The interpolation error given by the quadrilateral is (9),

i=a
Eo(Xe, Ye) = (Z fi¢i(P,Q)> — f(Xe,ye), fi = f(xi,yi)
=1

= ((1— ¢3(p,A))R?/2+ ¢3(p,0)fs) — 0 (15)

since f; = f, = f = R?/2 and f(xc, yc) = 0. We have

f(Xs, ¥a) = (X3 — Xo)* + (Y3 — Yo)?) /2 > R?/2, (16)

and therefore the error attained by quadrilateral at (X, y.) is higher than R? /2, thus the theo-
rem holds.

Cases 1 and 2 are exhaustive since the maximum error of the DT cannot be attained at the
the mid point of a diagonal, unless it also satisfies Case 1 or Case 2 as in a square (see Figure 4).
We have /BCD < 7/2 to satisfy the “empty circle” property. If /CDB > 7/2 (similar argument
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Figure 4: Maximum triangulation error cannot be on diagonal.

for /CBD > 7/2), then by Cosine rule for triangles,
|BC|> = |CD|?*+ |BD|? — 2|CD||BD|cos(/CDB) > |BD|?, (17)

thus the maximum error is attained in ABCD on edge BC (Case 1). The remaining alternative
is where ABCD forms an acute triangle. Then ABCD will have a larger maximum error given
in terms of radius of circum-circle, which is covered in Case 2.

Therefore over the isotropic space, the DT refined linear triangulation is more accurate than
the isoparametric bilinear quadrilateral.

This theorem suggests if the data function is not saddle-shaped, the refine DT triangulation
(over the isotropic space) produced above will yield better approximation accuracy, even on
arbitrary meshes of general convex quadrilaterals.

5.1. Comparison of efficiency ratio

For the optimal shape equilateral triangle, the area, A, is \/§L2/4, from (4) we obtain an
efficiency ratio of

E; L?/6

=1 =2V/3/9~0.385.

At V3L?/4 /
Area of the optimal square configuration is L?, thus the ratio is 1/4 = 0.25. Hence for an el-
ement by element comparison, the quadrilateral is more efficient. In other words, if we were
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to approximate a function with either N quadrilaterals or N triangles, quadrilaterals are pre-
ferred.

On the other hand, triangles may have advantages over quadrilaterals for finite element
computations. Matrix assembly and the solution of the sparse linear equations are commonly
the most intensive calculations. If we decompose a quadrilateral mesh into triangles as done
above, no extra nodes are introduced. There will be twice as many triangular elements but the
resulting assembled matrix has a similar sparsity pattern and the same number of unknowns.
Matrix assembly with a general convex quadrilateral usually requires costly evaluations of the
Jacobian distortion in numerical quadrature over the isoparametric space, whereas assembly
of linear triangle elements is simpler. Therefore if computation with N quadrilaterals is as
costly as using 2N triangles, then triangles are preferred due to their better accuracy and sim-
plicity. The actual computation costs may depend on the implementation of the finite element
code.

Consider the approximation of a saddle-shaped function by a square (unrotated) over the
isotropic space. The error formula gives

Eo(p.0) = glus+1m2) — 3(ua(p— o — ), (Pe, ) = (3.3

1
= —5(p— Pe)’L? — (4 — dc)’L?), where iy =L* = —pp . (18)

The maximum error is attained at the mid-point of each edge. Let (p,q) = (1,1/2), then Eq =
L2/8. This gives an efficiency ratio of 1/8 = 0.125. One optimal triangle shape for saddle-
shaped function is the triangle with vertices at (0,0), (L,0), (1/2L, \/5/2L) over the isotropic
space [2], which has area \/§L2/4. The maximum error is L?/8 and attained at the mid-point
of each edge. This gives an efficiency ratio of 1/(2\/E_>) ~ 0.224. Thus over the isotropic space,
a mesh with N (unrotated) squares should yield roughly the same accuracy as 2N triangles.

This is verified in the numerical experiments.

6. Extensions to three dimensions

The previous results for linear triangles and bilinear quadrilaterals extend to tetrahedrons and
hexahedral bricks in three dimensions.
6.1. Error for tetrahedron

To determine the maximum error attained over the tetrahedron in the transformed isotropic

space, we have to consider three cases.



-12 -

Case 1. The center of the circum-sphere (X, ¥, Z;) is interior to the tetrahedron and the
maximum error, R?/2, is attained at the circum-center where R is the radius of the circum-
sphere.

Case 2. The center is exterior and the closest point from the center to the tetrahedron is
interior to a face. Let this closest point on this face be (X, §;, Z;), then (X;, ¥;, Z;) is the center

of the circum-circle of that face and the maximum error attained is
2 1, 2

where r is the radius of circum-circle (see Figure 5).

Case 3. The center (X, ¥, Z;) is exterior and the closest point to the tetrahedron (X, ¥,,, Zm)
is the mid point of an edge. If we consider the great circle on the circum-sphere through the
ends of this edge, we have R? = d? + (L/2)?, where L is the length of this edge. We see the
maximum error is attained at this closest point (X, ¥,,, Zm) that is the midpoint of the longest
edge (see Figure 6). The maximum error attained is

R?/2 — %dz =1%/8.

Note that in all three cases, the maximum error is bounded by L2/8 where L is length of
the longest edge. A regular tetrahedron occupies the most volume for a fixed circum-sphere
and is the most efficient shape with an efficiency ratio

Error  R?/2
Volume ~ 8./3R3/27

~0.9743/R. (19)

Unfortunately, unlike the equilateral triangle in two dimensions, the regular tetrahedron
cannot fill three-dimensional space. The BCC tetrahedron (with vertices at (0,0, 0), (2,0, 0),
(1,1,1),(—1,1,1)) is conjectured [6, 10, 12] is to be the best shaped tetrahedron that fills space.
Moore [6] shows among a one-parameter family of space filling tetrahedrons, the BCC tetra-
hedron has the best aspect ratio. Its efficiency ratio is

Error  R?/2

= ~ 1.048/R. 20
Volume 16\/§R3/75 / (20)
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O

Figure 5: Closest point interior to a face.

(©)

Figure 6: Closest point at midpoint of edge.
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6.2. Error for hexahedral brick
Again we consider the isoparametric formulation over the unit cube, 0< p,q,r <1,

i=8 i=8

X(paqar) = inqj)i(paqar): p[(paqar): z fi¢i(p7q7r)7 where
i=1 i=1

pr=(1-p)A-0)1-r), ¢ = pl—-0q)l-r),

p3=pqll—r), ¢4 = (1—-p)l—r),
ps=(1-p)A—-0r, ¢ = pl—ar,
pr=par, ¢ = (L—p)ar.

(21)

(22)

Note that a deformed brick may not have planar faces since the first three points of a face

determine a plane and the fourth corner vertex may not in general lie on this plane. Isopara-

metric coordinate mapping (x(p, q,r), ¥(p,q,r),z(p,q,r)) in (21) is affine if the hexahedral brick

has parallel sides (and hence planar faces). Let the affine transformation be

x(p,q,r) Ux  Vx Wy p X1
y(p,a,r) | = | uy vy wy q |+t |y
z(p,q,r) u vz W; r Al
where
Uy X2 — X1 Vy X4 — X1 Wy X5 — X1
Uy = Ya—VY1 |> Vy | = | Ya—VY1 |> Wy | = | ¥Ys—Y1
u; Zy — 71 Vz Zy — 11 W, s — 771

The error term has the familiar form

EQ(pJqu) = EQ(pC+dp7qC+dq7rC+dr)

ps(p,q,r)— f(x(p,q,r),y(p,q,r),z(p,q,r)
1

= Eq- 5 (uad p? + p2dg® + padr?)

where

1
[pCJqCJrC] = [1/271/271/2]7 EQ - EQ(pC7q07rC): g(ﬂl+ﬂ2+,u/3)7

(23)
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0 0 0
0 = 8_pEQ(pc; Qc, Ie) = 8_qEQ(pc; Qc, Ie) = aEQ(pc:QC; re) . (24)
B = [UX7UY7UZ]H[UX7UY7UZ]t7 M2 = [VXanVZ]H[VXaVyaVz]ta
H3 = [WX7WYJWZ]H[WX7WY7WZ]t .

For a convex data function (det(H) > 0), maximum error is attained at the center [pe, gc, I'c]

and the optimal shape is a cube with an efficiency ratio of

Error  3L%/8 3/8 3/8

= =1 = ~ 0.7955/R 25
Volume L3 L V2R/3 /R, (25)
where R = 3L/\/§ is the circum-radius.
For a saddle-shaped function (det(H) < 0),
pr o= O+ 05— 03, pp =5+ 05—
M3 = VV)2(+VV§,—VTI§,

over the isotropic space. The rotated brick with coordinates

[, 0y, 0] = [LOL], [, %] = [-L/2,-VBL/2, L],

[Wy, Wy, ;] = [—L/z,\st/z,L] (26)
has y11 = p2 = pa = 0 with maximal volume of 3v/3/2L3 ~ 2.598L3, hence is of optimal shape.

6.3. Comparison of bricks versus tetrahedrons
A similar result to Theorem 1 is available.

Theorem 2. Any hexahedral parallelepiped over the isotropic space can be decomposed into
six tetrahedrons with smaller maximum interpolation error for approximating a convex quadratic.

A brick may be decomposed into six tetrahedrons by first splitting along a diagonal plane
into two triangular prisms and then further partitioning the prism into three tetrahedrons.
The proof involves careful consideration of 6 cases corresponding to different valid decompo-
sitions of a prism into 3 tetrahedrons and showing in each case tetrahedrons are more accurate
than the brick. The details are contained in the Appendix.
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7. Numerical Experiments

In this section, we demonstrate that a well designed mesh for bilinear interpolation of a saddle-
shaped function may give substantial improvements over a triangular mesh. The examples are
taken from [2]. The procedure in [2] for generating optimal triangular meshes is modified to
generate optimal quadrilateral meshes. Only elements entirely interior to the unit square are
generated to simplify the presentation.

Example 1. Exponential increase along x-axis,

f(x,y) = exp(5x) sin(5y) .
Example 2. A near singularity at (Xo, Yo) = (0.5, —0.2),

(X — X0)* — (Y — Yo)?
(X —X0)* + (Y — Yo)*)*

f(x,y) =

Example 3. A more severe near singularity,

((x = x0)* + (¥ — Y0)*)* — 8(x — x0) *(y — Yo)* _

f -
l (X— X0 + (y — yo)D)*

Example 4. Example 4 is Example 2 modified by a rescaling of y-axis,

(X — X0)? — (V/10y — yo)? '
((x — X0)? + (V10y — yp)?)?

fx,y) =

The results of the experiments are summarized in Figures 7-10 and Tables 1-4. Mesh | is
generated by optimal squares over the isotropic space. Mesh 11 is generated by optimal squares
with a 7 /4 rotation over the isotropic space to capture the “super-convergence” behavior.
Both meshes have similar element size, element shape and density and differ mainly in their
orientation. The meshes are displayed in Figures 11-18. Results for optimal triangular meshes
produced in [2] are included for comparison. Mesh | produces an almost level error profile.
This indicates an equilibration of interpolation error evenly over all elements. Error profile
for Mesh | is roughly comparable to an optimal triangular mesh with about twice as many
triangles and in agreement with discussions in §5. Mesh Il displays the “super-convergence”
behavior by consistently achieving an error 5-10 times smaller than Mesh I.

Table 5 shows the effect of generating finer meshes over the isotropic space. If we con-
sider the median error, Mesh | shows the expected O(h?) convergence. From the efficiency
ratio (Error/Area), we can also predict the decrease of error is proportional to the number of

elements. Results for Mesh Il clearly display the higher than O(h?) “super-convergence” be-
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Error Profile
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Figure 7: Error profiles for Example 1.

Table 1: Summary of results for Example 1.

Minimum | Median 90 Maximum | Number of
error error percentile error elements
Triangle 5.27E-2 5.39E-2 5.50E-2 5.74E-2 2923
Mesh | 5.75E-2 5.76E-2 5.78E-2 5.79E-2 1488
Mesh 11 2.29E-4 4.62E-4 8.30E-4 3.04E-3 1480

havior. From another perspective, about 5-10 times more elements are needed for Mesh | to
match the accuracy of Mesh II.

It can be shown [1] that the coordinate lines in the isotropic space are mapped to eigen-
trajectories of the Hessian matrix. Thus as the curved element boundaries are poorly approxi-
mated by straight edges, the resulting quadrilateral will no longer have parallel sides (Fig. 15,
16). The simple analysis for super-convergence in §3 for parallelograms may not be adequate
and this leads to an anomalous increase in the error displayed in Example 3 of a severe singu-
larity.
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Figure 8: Error profiles for Example 2.

Error

120

Error Profile

500.00

/

110

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

0.00 100.00

Figure 9: Error profiles for Example 2.

200.00

300.00

Element No.

Element No.



-19 -

Error Profile
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Figure 10: Error profiles for Example 3.

Table 2: Summary of results for Example 2.

Minimum | Median 90 Maximum | Number of
error error percentile error elements
Triangle 1.87E-2 2.01E-2 2.16E-2 2.57E-2 1072
Mesh | 2.13E-2 2.15E-2 2.17E-2 2.21E-2 550
Mesh 11 2.82E-4 4.69E-4 7.33E-4 1.38E-3 546
Table 3: Summary of results for Example 3.
Minimum | Median 90 Maximum | Number of
error error percentile error elements
Triangle 1.02 1.16 1.32 1.70 650
Mesh | 1.11 1.14 1.16 1.23 349
Mesh 11 1.80E-2 3.94E-2 6.75E-2 3.16E-1 352
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Table 4: Summary of results for Example 4.

Minimum | Median 90 Maximum | Number of
error error percentile error elements
Triangle 2.91E-2 3.68E-2 4.61E-2 6.46E-2 608
Mesh | 3.81E-2 4.00E-2 4.24E-2 4.61E-2 284
Mesh 11 9.36E-4 1.76E-3 3.04E-3 6.13E-3 286
Table 5: Convergence test on Example 3.
Minimum | Median 90 Maximum | Number of
error error percentile error elements
Mesh | 11.1E-1 11.4E-1 11.6E-1 12.3E-1 349
Mesh | 3.22E-1 3.23E-1 3.24E-1 3.26E-1 1223
Mesh | 8.03E-2 8.07E-2 8.12E-2 8.23E-2 5063
Mesh | 1.99E-2 2.02E-2 2.04E-2 2.08E-2 20603
Mesh 11 1.80E-2 3.94E-2 6.75E-2 3.16E-1 352
Mesh 11 2.35E-3 4.22E-3 9.16E-3 6.35E-2 1260
Mesh 11 3.10E-4 7.20E-4 1.29E-3 9.41E-3 5244
Mesh 11 5.19E-5 1.79E-4 3.78E-4 1.24E-3 21389

Figure 11: Mesh | for Example 1.
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Figure 12: Mesh Il for Example 1.

Figure 13: Mesh | for Example 2.
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Figure 15: Mesh | for Example 3.
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Figure 16: Mesh Il for Example 3.

Figure 17: Mesh | for Example 4.
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Figure 18: Mesh Il for Example 4.

8. Summary

We have used a simple locally quadratic model to develop a geometric interpretation of the
interpolation error. We determine the optimal element shapes and their efficiency ratio (Er-
ror/Area) over the isotropic space. The analysis shows for approximating convex data func-
tions, although bilinear quadrilaterals are more efficient, linear triangles are more accurate
and may be preferred in finite element computations. For approximating saddle-shaped data
functions, a well designed quadrilateral mesh may show “super-convergence” improvements
in approximation accuracy. Numerical experiments show good agreement with the analysis,
and a surprising finding is different grid orientations may have an order of magnitude im-
provement in accuracy.
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Appendix A

In this section, we show the error function for quadratic interpolation over a parallelogram is

given by (10) by simple algebraic expansion. Let the data function be

f00y) = 506 YIHIX, VI + [g1, GalDx, I+ ©

and the affine isoparametric transformation be

X(p,q) - T p n X1 T— Ux Vx _ Xo — X1 X4 — Xg
y(p, q) q yi |’ uy vy Ya—Y1 Ya—Y1

Then the interpolation error can be shown to be

Eo(p,q) = pu(x(p,q), y(p,q)— f(x(p,q), y(p,q))
1
= Eq- 5 (pa(p = po)® + pa(d — )%
with centroid at [pc, qc] = [, 3],
1
EQ = Eo(pc, ) = 3 (p1 + p2)

[ux, uy]H[uy, Uy]t; 2 = [Vx, Vy]H[Vx, Vy]t

231

Let the data function over (p, q)-space be written as

fp,a) = f(x(p,®),¥(p.0)
= 2o, alFp, ' + [3,, Gl a1t + €

. hi h
where H=THT=| % _* and
hiz  hy

(91, 92] + [X1, yalH) T,

1
¢+ [91, 921X, y21' + E[Xla yalH[x1, y1]* .

.—.
=)
<
o)
N
S
I

O
Il

The function values at the four interpolating corners are

~ ~ 1.~ ~ ~ Y
fi = f(0,0)=¢, f3:f(lal):E(h11+h22+2h12)+91+92+ca

(27)

(28)

(29)

(30)

(31)

(32)
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~ 1~ o - 1~ .
fa = f(l,O):§h11+gl~|—C, f4:f(0,1):§h22~|—gz+c.
By (9) and (29) (note the vanishing of linear and constant terms),

i=4 .
Eq(p, ) > fi¢i(p,q)> — f(p, )
i=1

Il
NP

(P — gy + pa(has + oo + 2012)
+(1 - p)ghz, — (p?hu1 + 42Nz + 2pghyz))

1 - - - - - -
= 3 (phus + ahg2 + 2pghy, — p*hy — qPh, — 2pghy,)

1 - -
= 3 (P(l —phy +q(1 - Q)hzz)

1~ ~ 1~ 1 ~ 1
= g(hn + hyy) — E(hn(p - 5)2 +hao(q — 5)2) . (33)

From (28) and (30), we have 511 = pp and ﬁzz = py; hence the error function has the form given
in (29).

Appendix B

In this section, we show that any hexahedral parallelepiped over the isotropic space can be
decomposed into six tetrahedrons with smaller maximum interpolation error approximating
a convex quadratic. The two-dimensional analogue is to decompose a parallelogram into two
triangles using the diagonal sustained at an acute angle. This criterion also corresponds to a
Delauney triangulation that maximizes the smaller angle in the triangulation.

The decomposition we propose for the brick is based on examining each face, which is a
parallelogram, and selecting the cut diagonal based on the above Delauney criterion in two-
dimensions. We recall from §6.1 the maximum error for a tetrahedron is bounded above by
L2/8 where L is length of longest edge, and the error for the brick is (L + L3 + L3)/8. Through
a detailed case by case analysis we shall show the longest edge L in any valid decomposition
into tetrahedrons is less than sqrt(L? + L3 + L3).

Proof. By symmetry considerations, and without loss in generality, we shall examine only
the triangular prism oriented with the longest side along the x-axis (see Figure 19) with /CAB

an acute angle, where

L, = |AB|=|DE| > |AC|=|DF|=Vs+t=L,
> |AD|=|BE|=|CF|= /2 +y2+22=L3. (34)

We examine the three parallelogram faces to determine the appropriate diagonal cuts, and
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in each case we can show the diagonal edge chosen has length less than sqrt(L? + L3 + L3).

Since edge |CB| = |FE| has length and # < 7/2 is acute by choice,
ICBJ? = L + L} — 2LyLpcos(f) < LZ+ L3 +L3.

Condition 1. Consider the face ABED, /DAB is acute if the dot product of AD and AB is
positive. Thus,

/DAB< /2 ifxL; >0. (35)
Note edge lengths are
|AEP = (X+L)?+y?>+22=L2+L3+2(xLy)
IDB]? = (x—Li)®>+y?+2%=L%+L%—2(xLy) (36)

If /DAB is acute (xL; > 0), diagonal edge DB is selected and |DB|? < L? + L2; otherwise
(xL; < 0), diagonal edge AE is selected and |AE|? < L2 + L2.

Condition 2. Consider the face CBEF, /FCB is acute if the dot product of CF and CB is
positive. Thus,

[FCB < m/2 ifx(Ly—s)+ y(—t)+2z(0) >0, 0r xL; > xs+ yt. (37)
Note edge lengths are

ICE]> = ((x+Li)—9P?+(y—t?>+2
= L2413+ L34 2((xLy — xs — yt) —sLy)
(38)
IFBP = ((x+5)— L)’ +(y+1t)°+7°
= LI+ L5+L3—2((xLy — xs— yt) +sLy)

If /FCBis acute (xL; > xs + yt), diagonal edge FB is chosen and |FB|? < L? + L2 + L2; otherwise
(XLy < xs + yt), diagonal edge CE is chosen and |CE|? < L2 + L% + L2.
Condition 3. Consider the face ACFD, /DAC is acute if the dot product of AD and AC is
positive. Thus,
/DAC < w/2 ifxs+yt>0. (39)

Note edge lengths are

IAFP? = (x+82+(y+t)2+22 =L+ L3+ L] +2(xs + yt)
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IDCP? = (x—s)?+(y—1)?+2z2=L3+L5+L5—2(xs+yt) (40)

If /DAC is acute (xs + yt > 0), diagonal edge DC is chosen and |[DC|? < L2 + L3 + LZ; otherwise
(xs + yt < 0), diagonal edge AF is chosen and |AF|? < L2 + L3 + L3,

We shall consider different configurations for Conditions 1-3. For convenience, let the
notation [T, F, T] denote the case Conditions 1 and 3 are true, and Condition 2 is false, i.e.
/DAB < w/2, /FCB > /2, /DAC < /2. We observe Conditions 2 and 3 imply Condition 1,

xL; > xs+ ytand xs + yt > 0 imply xL; > 0. (41)
Thus [F, T, T] is impossible. By similar arguments, [T, F, F] is impossible,
XLy < xs+ ytand xs + yt < 0 imply xL; < 0. (42)

Figures 20-27 display all eight possible cases for Conditions 1-3. Impossible cases [T, F, T]
and [F, T, T] are shown to be associated with invalid decompositions. In all the six valid cases,
the longest edge is less than sqrt(L2 + L2 + L3), hence the maximum error attained for tetrahe-

drons is smaller than the error for the hexahedral brick.
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F(x+s,y+t,2)

E(x+L,y,2)

Figure 19: Prism.
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F(x+s,y+t,2)

E(x+L,y,2)

Figure 20: [T,T,T]. Valid decomposition.
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F(x+s,y+t,2)

E(x+L,y,2)

Figure 21: [T,T,F]. Valid decomposition.
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F(x+s,y+t,2)

E(x+L,y,2)

Figure 22: [T,FT]. Valid decomposition.
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F(x+s,y+t,2)

E(x+L,y,2)

Figure 23: [T,FF]. Invalid decomposition.
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F(x+s,y+t,2)

E(x+L,y,2)

Figure 24: [F T, T]. Invalid decomposition.
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F(x+s,y+t,2)

E(x+L,y,2)

Figure 25: [F,T,F]. Valid decomposition.
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F(x+s,y+t,2)

E(x+L,y,2)

Figure 26: [F,F,T]. Valid decomposition.
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F(x+s,y+t,2)

E(x+L,y,2)

Figure 27: [F,FF]. Valid decomposition.
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