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Abstract. It is well known that the ordering of the unknowns can have a signi�cant e�ect on the
convergence of Preconditioned Conjugate Gradient (PCG) methods. There has been considerable
experimental work on the e�ects of ordering for �nite di�erence problems. In many cases, good
results have been obtained with preconditioners based on diagonal, spiral, red/black reduced system
orderings or some others. The reduced system approach generally gives rapid convergence. There has
been comparatively less work on the e�ect of ordering for �nite element problems on unstructured
meshes. In this paper, we develop an ordering technique for unstructured grid problems. At any
stage of the partial elimination, the next pivot node is selected so as to minimize the norm of the
discarded-�ll matrix. Numerical results are given for model problems and for problems arising in
groundwater contamination. Computations are reported for two-dimensional triangular grids, and
for three-dimensional tetrahedral grids. The examples show that ordering is important even if a
reduced system (based on a generalized red/black ordering) method is used.

Key Words. ordering method, preconditioned conjugate gradient method

AMS(MOS) subject classi�cation. 65F10, 76S05

1. Introduction. It is well known that the ordering of the unknowns can a�ect
the convergence behavior of preconditioned conjugate gradient methods. There have
been many studies of the use of various ordering techniques coupled with incomplete
LU (ILU) factorization preconditioners [3, 4, 5, 7, 11, 12, 13, 15, 16, 17, 25, 29, 30,
34, 35, 38, 39].

Most of these studies have been restricted to the analysis of partial di�erential
equation problems arising from �ve or seven-point �nite di�erence discretizations in
two or three dimensions. For the most part, these ordering methods are based on the
graph of the matrix, and do not use actual values of the matrix entries.

In general, the results can be summarized as follows:
1. Random orderings are poor.
2. \Natural" row orderings perform quite well.
3. Fill-reducing orderings, such as minimum degree and nested dissection are

poor.
4. Reduced systems are very e�ective (red/black ordering of a bipartite graph,

and exact elimination of the red nodes).
Incomplete factorizations can be classi�ed by the allowed level of �ll [17, 29, 38,
39]. A rigorous de�nition of the level is given in x 2.2 . It is generally agreed that
level 1 or level 2 ILU factorization are usually the best in terms of total work required
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for convergence [3, 4, 17, 25, 29, 38]. Consequently, at least for �ve or seven-point
molecules, a reduced system level 1 or level 2 ILU is a popular choice.

For �nite element type discretizations on unstructured grids, it is possible to de�ne
a generalized red/black ordering, and use a reduced system preconditioner, even in the
�nite element case. Red nodes are de�ned as being connected only to black nodes,
while black nodes have at least one red neighbor [4, 20]. The red nodes are eliminated
exactly and the remaining matrix constitutes the reduced system. However, if the
average node connectivity is large, then the number of red nodes can be small, and
this approach may not be very advantageous. It is also not clear how to order the
remaining black nodes in the reduced system.

An ordering based solely on the graph of the matrix cannot detect anisotropies.
For example, consider the equation

(KUx)x + Uyy = f(x; y)(1)

with K � 1. If this equation is discretized using the usual �ve-point molecule, then,
as will be shown in the numerical results (see x 4), the e�ect of ordering on the
convergence of PCG is very large.

Note that numerical anisotropy is very common in practical situations. Even if
the equation coe�cients are not anisotropic, it is often the case that the grids are
very anisotropic. This is especially common in geophysical applications (reservoir
simulation, groundwater contamination) where the vertical distance is often one or
two orders of magnitude smaller than the horizontal distances.

The idea of developing an ILU factorization based on a drop tolerance has been
suggested by Munksgaard [28], Zlatev [40], Tu� and Jennings [37]. In this case, the
sparsity pattern of the ILU was determined by a drop tolerance. However, if the
initial ordering is poor then the �ll may not decay very rapidly, leading to a dense
ILU factorization, and hence an ine�cient PCG method.

The objective of this paper is to develop an automatic method for producing an
ordering that reduces the discarded �ll in an ILU factorization. We are particularly
interested in solving time-dependent problems, which are typical of groundwater con-
tamination modeling. In this case, the order of magnitude of the matrix coe�cients is
determined by time-invariant physical parameters. Consequently, an ordering can be
determined at the start of a simulation, and used for many Newton iterations. The
cost of the ordering can then be amortized over many solves [6, 10].

The ordering method used in this work assumes that the level of �ll is given,
and then the ordering is selected so as to minimize discarded �ll. Comprehensively
varying the level of �ll as well as the ordering is also a possibility but this is beyond
the scope of this work.

Note that if a very high level of �ll is allowed in the ILU factorization, then a �ll
reducing ordering such as Reverse Cuthill-McKee (RCM) [8, 27] may become e�cient.
This is because a higher level of �ll can be retained for a given number of nonzeros in
the ILU factorization, compared to orderings that do not try to minimize the number
of nonzeros in the incomplete factors. For a �ve-point molecule on a square grid, RCM
has fewer nonzeros in the factors for level 3 factorizations (and higher) compared to
natural row orderings [3]. Of course, in the extreme case that the allowed level of
�ll becomes in�nite, then �ll reducing orderings are clearly more e�cient than other
orderings (since the method is now a direct technique). Consequently, we shall concern
ourselves with low levels of �ll in the following, since this is usual in practice.

Natural or row orderings applied to structured �nite di�erence grids have the
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property that nodes ordered consecutively are (graph) neighbors of previously or-
dered nodes. An obvious generalization of this idea to unstructured grids is an RCM
ordering.

Test results will be presented for some matrices generated by two and three-
dimensional groundwater contamination simulations (triangular and tetrahedral ele-
ments). These problems have large jump discontinuities in absolute permeability [24],
and therefore constitute a severe test of the ordering algorithm. Some results are also
given for some standard two-dimensional model problems [15, 36].

The results are compared using natural (row) ordering, RCM, and the Minimum
Discarded Fill (MDF) technique developed in this work. Factorization levels are varied
from level 0 to level 3, and both full and reduced system methods are used.

2. Minimum Discarded Fill Ordering.

2.1. Motivation by Matrix Formulation. The Cholesky factorization of an
n�n symmetric positive de�nite matrix A can be described by the following equations:

A = A0 =

�
d1 
1

t


1 B1

�
= L1

�
1 0
0 A1

�
L1

t;(2)

where

L1 =

� p
d1 0


1=
p
d1 In�1

�
; A1 = B1 � 
1
1

t=d1:(3)

At the kth step,

Ak�1 =

�
dk 
k

t


k Bk

�
= Lk

�
1 0
0 Ak

�
Lk

t;(4)

where

Lk =

� p
dk 0


k=
p
dk In�k

�
; Ak = Bk � 
k
k

t=dk:(5)

Here Ik denotes a k � k identity matrix, dk a scalar, 
k is a column vector of length
n� k. The matrix Ak is the (n� k)� (n� k) submatrix that remains to be factored
after the �rst k steps of the factorization.

In the incomplete factorization of matrix A, some of the entries in the factor
are discarded to prevent excessive �ll and computation. Let matrix Fk contain the
discarded values. Then the incomplete factorization proceeds with the perturbed
matrix,

~Ak = Ak � Fk = Bk � 
k
k
t=dk � Fk:(6)

The minimum discarded �ll ordering is motivated by the observation that a small
discarded �ll matrix Fk would produce a more \authentic" factorization for matrix
A. We de�ne the discarded �ll for eliminating the kth node as the Frobenius norm of
the discarded �ll matrix Fk,

kFkkF =

0
@X

i�1

X
j�1

jf (k)ij j2
1
A

1=2

:(7)
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The discarded �ll at the kth step for an arbitrary node is similarly de�ned by per-
forming a symmetric permutation that exchanges this node with the kth node. To
determine the sparsity pattern for matrix Fk that will yield a high quality precon-
ditioner is still a very interesting research subject. A current popular choice is to
discard the �lls that have a \higher �ll level" during the incomplete factorization [23].
The simplest strategy is ILU(0) where all new �ll is discarded and ILU(1) where only
level 1 �lls produced by eliminating original nonzeros are retained but higher level �ll
produced in the elimination of level 1 �ll is discarded. The notion of \�ll level" will
be de�ned more precisely through the graph model presented in x 2.2

The basic idea of the minimum discarded �ll ordering scheme is to eliminate the
node with the minimum discarded �ll at each stage of the incomplete factorization.
This scheme can be considered as the numerical analogue of the minimum de�ciency
ordering strategy [14] for minimizing the amount of �ll. The most computationally
intensive calculations are in the updating of new discard values after each stage of the
factorization process.

2.2. Graph Model. In this section we present a graph model [31, 33] for de-
scribing the factorization process as a series of node eliminations. The graph model
is invaluable in providing an insight into the minimum discarded �ll ordering.

To simplify notation, we present a symmetric case and assume the elimination
sequence is v1; v2; : : : ; vn. Let graph Gk = (Vk; Ek), k = 0; 1; : : : ; n � 1 be the graph

corresponding to matrix Ak =
h
a
(k)
ij

i
of (5). The vertex set and edge set are de�ned

as

Vk = fvk+1; vk+2; : : : ; vng ; Ek =
n
(vi; vj) j a(k)ij 6= 0

o
:(8)

We assume each vertex has a self-loop edge (vi; vi) and each edge (vi; vj) has a value

of a
(k)
ij .
The notion of \�ll level" can be de�ned through reachable sets [22] in the graph

G0. Let S be a subset of the node set, S � V0, and nodes u; v 62 S. Node u is said
to be reachable from a vertex v through S if there exists a path (v; u1; : : : ; um; u) in
graph G0, such that each ui 2 S, 1 � i � m. Note that m can be zero, so that any
adjacent pair of nodes u; v 62 S is reachable through S. The reachable set of v through
S is denoted by

Reach(v;S) = fu j u is reachable from v through S g :(9)

Let S be the set of eliminated nodes so far, fv1; : : : ; vkg, and let vj 2 Reach(vi;S)
with the shortest path (vi; u1; : : : ; um; vj), and nodes u's in S are eliminated nodes.

We de�ne the �ll level for entry a
(k)
ij to be the length of the shortest path from vi to

vj minus one, i.e. Level(a
(k)
ij ) = m. We initially set

Level(a
(0)
ij ) =

�
0 if aij 6= 0,
1 otherwise.

(10)

Since Level(a
(k)
ij ) is de�ned by reachable sets through fv1; : : : ; vkg, as more nodes are

eliminated, there may be a shorter path between vi and vj . Thus as the elimination
proceeds, the �ll levels are modi�ed by

Level(a
(k)
ij ) := min

�
Level(a

(k�1)
ik ) + Level (a

(k�1)
kj ) + 1; Level (a

(k�1)
ij )

�
:(11)



Ordering Methods for PCG Techniques 5

It is possible to de�ne a �ll level independent of k, if the order of the unknowns is
predetermined. In this application, however, the order of the unknowns is dynamically
changing during the incomplete factorization. A predetermined level, therefore, is not
practical.

The elimination of vk to form Ak can be modeled as a graph transformation [33],

a
(k)
ij =

8><
>:

a
(k�1)
ij � a

(k�1)
ik a

(k�1)
kj

a
(k�1)
kk

if (vi; vk) and (vk; vj) 2 Ek�1,

a
(k�1)
ij otherwise.

Note that if a
(k�1)
ij is a zero entry, (vi; vj) 62 Ek�1, then the elimination of their

common neighbor vk would create at position a
(k)
ij , a new �ll of value

0� a
(k�1)
ik a

(k�1)
kj

a
(k�1)
kk

:

With the minimum discarded �ll reordering that corresponds to an ILU(0) factor-
ization, only entries with �ll level zero are kept, i.e. all new �ll-in's must be discarded.
If node vm were eliminated after the kth stage of the incomplete factorization (equa-
tion (6)), the discarded �ll value for node vm would be

discard (vm) =

2
4 X
(vi;vj)2F

 
a
(k�1)
im a

(k�1)
mj

a(k�1)mm

!2
3
5
1=2

;(12)

where

F = f(vi; vj) j (vi; vj) 62 Ek�1; (vi; vm) 2 Ek�1; (vm; vj) 2 Ek�1g ;(13)

and Gk�1 = (Vk�1; Ek�1) is the graph corresponding to matrix Ak�1. The minimum
discarded �ll strategy can be generalized to correspond to ILU(`) factorization by
accounting for only new �ll-in's with �ll level greater than ` in the computing of
discarded �ll value. Then set F in (12) is taken to be

F = f(vi; vj) j (vi; vj) 62 Ek�1; (vi; vm) 2 Ek�1;(14)

(vm; vj) 2 Ek�1 and Level(a
(k)
ij ) > `g:

In the following discussion, we shall denote MDF(`) as the minimum discarded �ll
ordering corresponding to an ILU(`) factorization.
Observation 1:

For the MDF(`) algorithm, discard values for all nodes can be initially pre-
computed. At each elimination step, if vk is chosen to be eliminated, only
discard values of the neighbors of vk need to be updated.

Observation 2:
The MDF(0) algorithm overwrites the original matrix A with the correspond-
ing ILU(0) incomplete factorization.
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2.3. MDF(`) Algorithm. The MDF(`)ordering algorithm can be described as
follows:

Initialization:
A = A0

for each aij 6= 0
Level(aij) := 0

end
for each node vi

Compute the discarded �ll value discard (vi) from (12), and (14).
end

for k = 1 : : : n� 1
Choose a node vm that has the minimum discard (vm) as the next pivot node
(see tie-breaking section).
Update the decomposition,

~Ak = Bk � 
k

t
k=dk � Fk; where PkAk�1P

t
k =

�
dk 
k

tk Bk

�
:

Pk is permutation matrix to exchange vk with vm and Fk is the matrix of dis-
carded �ll-in entries,

F
(k)
ij :=

8<
:

a
(k�1)
im a

(k�1)
mj

a(k�1)mm

if Level(a
(k)
ij ) > ` and a

(k�1)
ij = 0,

0 otherwise.

Update the discarded values of vm's neighbors.
Update the �ll level of entries in ~Ak by (11).

end

2.4. Tie-breaking. There are often cases where many nodes will have the same
(typically zero) discarded �ll. Several possible tie breaking strategies are investigated
in the following.

Ties can be broken by selecting the nodes that have the smallest degree in the
incomplete factorization (smallest number of non-zeros in the row). Another possibil-
ity is to use the node with the smallest de�ciency (smallest number of new non-zero
�ll elements introduced if this node is used as a pivot) [14]. If there are still ties
remaining, then the node that has the smallest discarded �ll from a previous stage of
the incomplete factorization is selected �rst. If further ties exist, the unordered node
with the smallest original number is selected. The minimum de�ciency and minimum
degree strategies attempt to minimize the number of �ll elements in the case of ties.

Tests were run using minimum de�ciency, minimum degree, and random tie break-
ing for all our test problems. On average, the minimum degree strategy required 2%
more solution time than minimum de�ciency, while random tie breaking required 13%
more solution time than minimum de�ciency. Consequently, all test results will be
reported using minimum de�ciency tie-breaking. Our tests also show that these tie
breaking algorithms have little e�ect on the cost of the MDF ordering. Therefore, no
timing comparison is given.

2.5. An Example of MDF(0) Ordering. In this section we consider an exam-
ple of an MDF(0) ordering on the model Laplace's problem. The Laplace's problem
with Dirichlet boundary conditions is discretized by the 5-point molecule on a regular
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Fig. 1. Natural row ordering and �nal MDF(0) ordering.

4� 4 grid. Figure 1 displays the grid with initial natural row ordering.
The initial discard values for the four corner nodes fv1; v4; v13; v16g are equal to

discard (v1) =
p
0:125 � 0:354. The discard values for the boundary nodes fv2, v3,

v5, v8, v9, v12, v14, v15g are equal to discard (v2) =
p
0:375 � 0:612. Similarly, discard

values of interior nodes fv6; v7; v10; v11g are equal to discard (v6) =
p
0:75 � 0:866.

The corner nodes have the smallest discard values and should be eliminated �rst. Note
that these corner nodes are not connected and their discard values are una�ected by
the elimination of other corner nodes. After the corner node v1 is eliminated, its
boundary neighbor node v2 has new discard value given as discard (v2) =

p
32=15 �

0:377. After the four corner nodes are eliminated, the discard values for the interior
nodes are unchanged. For example, discard (v2) =

p
32=15 � 0:377, and discard values

for interior nodes are unchanged at discard (v6) =
p
0:75 � 0:866. The boundary nodes

have the smallest discard values. Boundary node v2 is chosen by the tie-breaking
strategy, and its neighbor v3 with discard (v3) = 0, could be eliminated next with no
�ll. Similarly, nodes v5 and v9, v8 and v12, v14 and v15 will be eliminated in sequence.
Node v15 will be eliminated next since discard (v15) = 0. Further computation would
show than an MDF(0) ordering for this example is given by Figure 1.

2.6. MDF(1) Ordering. In x 2.5, we looked at an example of minimum dis-
carded �ll ordering that corresponds to an ILU(0) incomplete factorization. This
ordering is abbreviated as the MDF(0) ordering. The MDF(1) ordering is the exten-
sion of this basic strategy to correspond to an ILU(1) incomplete factorization.

Although an MDF(0) ordering overwrites the original matrix A with its ILU(0)
factorization, MDF(1) does not exactly reproduce the ILU(1) factorization. There are
some subtleties in the computing of level 2 contributions that happen to fall upon non-
zero entries. Consider the scenario in Figure 2, where v1 and v2 have been eliminated
causing �ll contribution to edges (v3; v4) and (v3; v5). Suppose we wish to eliminate v3
next. This would cause a level 2 �ll contribution to edge (v4; v5). The subtle problem
is in deciding whether this (v4; v5) level 2 �ll should be discarded. Note if we knew
in advance that v6 would be eliminated before v4 and v5, then this elimination of v6
would cause a level 1 �ll contribution to edge (v4; v5). Thus this level 2 contribution of
(v4; v5) would fall on a non-zero entry and may be accepted. The MDF(1) algorithm
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Fig. 2. Level-2 �ll at (v4; v5).

always discards (pessimistically) the level 2 �ll contribution (v4; v5).
Axelsson and Gustafsson [1] have observed that reduced system preconditioners

are very e�ective (red/black partitioning of nodes and exact elimination of the red
nodes). It is interesting to note that a generalized red/black partitioning of the nodes
is an MDF(1) ordering of the red nodes. A generalized red/black partitioning of a
graph has the property that each red node has only black neighbors and each black
node has at least one red neighbor. In the special case where each black node has
only red neighbors, the graph is bipartite, or the corresponding matrix is two-cyclic.
Note in this special case, the red nodes form an independent set so that the discard
value for each red node is una�ected by elimination of other red nodes; therefore, the
elimination order of the red nodes is immaterial.

Remark 2.1. A generalized red/black partitioning of the nodes is an MDF(1)
ordering of the red nodes.

In an ILU(1) incomplete factorization, all level 1 �ll is accepted. Hence if a vertex
has no eliminated neighbors, its discard value is zero and would be a candidate for
selection by the MDF(1) criterion. A generalized red/black partition of the nodes
orders red nodes �rst, and these red nodes have (by de�nition) zero discarded �ll.

Remark 2.2. If a matrix is symmetric and two-cyclic (its graph is bipartite),
then an MDF(0) ordering on the reduced matrix formed with the bipartite red/black
partition is an MDF(1) reordering on the original matrix.

The reduced matrix is obtained by exact elimination of the red nodes. Since
the graph is bipartite, there are no black to black connections in the original graph.
Therefore all black to black connections in the reduced matrix are level 1 �ll. Level 3
�ll from the original graph is exactly the new level 1 �ll generated from the reduced
matrix. Thus an MDF(0) ordering on the reduced matrix is an MDF(1) reordering
on the original matrix.

While a generalized red/black partition is an MDF(1) ordering of the red nodes,
an MDF(1) ordering may or may not produce a generalized red/black partitioning.
Consider a tridiagonal matrix. All nodes initially have no level 1 discarded �ll. Con-
sequently, the ordering depends crucially on the tie-breaking strategy. For example,
either a red/black partition or the perfect elimination order (no �ll) would be consis-
tent with the MDF strategy, in this case.

Although the description of MDF(0) and MDF(1) orderings has been given for
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Fig. 3. Natural row ordering and �nal MDF(1) ordering.

symmetric matrices, it is clearly trivial to generalize to the case of a non-symmetric
matrix having a symmetric incidence matrix. This is how we have in fact, implemented
the MDF(`) ordering algorithms. Of course, the minimum discarded �ll algorithm can
also be applied to matrices with non-symmetric non-zero structure, and our �ndings
will be reported in a forthcoming paper [9]

2.7. An Example of MDF(1) Ordering. We consider an example of an
MDF(1) ordering on the model Laplace's problem used in x 2.5. The minimum de�-
ciency criterion is used for tie breaking.

Since level one �ll entries are accepted, initially all nodes have zero discard values.
The four corner nodes fv1; v4; v13; v16g are chosen based on de�ciency. Nodes v6
and v11 are chosen next since these have zero discard values. Nodes fv3; v8; v9; v14g
have the same discard value discard (v3) � 0:094, nodes fv2; v5; v12; v15g have discard
value, discard (v2) � 0:226, nodes fv7; v10g have discard value, discard (v7) � 0:381.
By the tie-breaking criterion, v3 will the next eliminated node. Then v2 followed by
v8 and v12 are eliminated with no new �ll. Among the uneliminated nodes, v7 has
the smallest discard value of discard (v7) � 0:056. After v7 is eliminated, there is a
perfect elimination sequence of v5, v9, v10, v14 and v15. The �nal ordering is shown
in Figure 3.

3. Test Problems. The minimum discarded �ll orderings were tested on a va-
riety of problems. For Problems 1,2,4 below, the matrices are only positive semi-
de�nite. The solution is determined only to within a constant. These matrices can be
made de�nite by �xing the solution at a single node. However, the conjugate gradient
method still converges even if this is not done. In fact, if the solution is �xed at a
node, the algorithm actually converges more slowly [2, 21] . For Problems 1,2,4, the
matrices are left as semi-de�nite.

3.1. Problem 1 (STRONGX). The �rst problem solves the equation

@

@x

�
Kx

@P

@x

�
+

@

@y

�
Ky

@P

@y

�
= �q(15)

on the region x 2 [0,1], y 2 [0,2], using a �ve-point cell centered �nite di�erence
discretization [32] with Neuman boundary conditions, where Kx = 1000 and Ky = 1
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. Let h = 1=30 be the cell spacing; nx = 30, ny = 60 be the number of cells in the x
and y direction respectively. The source term is:

q(x; y) =

8<
:

�1=h2 if (x; y) = (h=2; h=2),
1=h2 if (x; y) = (1� h=2; 2� h=2),
0 elsewhere.

3.2. Problem 2 (STRONGY). This problem is identical to Problem 1, except
that the anisotropic property is reversed, Kx = 1; Ky = 1000.

3.3. Problem 3 (LAPD5). This is Laplace's equation on the unit square with
Dirichlet boundary conditions, as used in [15]. The usual �ve-point �nite di�erence
discretization was used on a regular 30� 30 grid.

3.4. Problem 4 (STONE). This problem is Stone's third problem [36]. The
equation

@

@x

�
Kx

@P

@x

�
+

@

@y

�
Ky

@P

@y

�
= �q;(16)

was discretized on the unit square using a vertex centered �nite di�erence tech-
nique [32], with Neuman boundary conditions. If the node spacing is h = 1=30,
then

xi = ih; yj = jh; 0 � i; j � 30:

We will refer to the location of the source and sink terms by

q(xi; yj) = q(i; j)

in the following and in Figure 4 which shows the problem domain.
The values of Kx, Ky and q were:

(Kx;Ky) =

8>><
>>:

(1; 100) if (xi; yj) 2 B; 14 � i � 30; 0 � j � 16,
(100; 1) if (xi; yj) 2 C; 5 � i � 12; 5 � j � 12,
(0; 0) if (xi; yj) 2 D; 12 � i � 19; 21 � j � 28,
(1; 1) if (xi; yj) 2 A;

(17)

q1(3; 3) = 1:0; q2(3; 27) = 0:5; q3(23; 4) = 0:6;(18)

q4(14; 15) = �1:83; q5(27; 27) = �0:27 :

A 31 � 31 grid was used, and an harmonic average was used for to de�ne Kx and
Ky [3] at cell boundaries.

Test problems (5{7) are derived from two and three-dimensional pressure equa-
tions arising in groundwater contamination simulations [18, 24]. The pressure equa-
tion is essentially equation (16). Since the actual values ofKx,Ky, q and the boundary
conditions are quite complicated, only a brief description of these problems will be
given. The choice of boundary conditions (�xed pressure) resulted in a sparse right
hand side vector.
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A

C B

D

� q1 (3,3)

� q2 (3,27)

� q3 (23,4)

�
q4 (14,15)

�(27,27) q5

Fig. 4. Stone's third problem.

3.5. Problem 5 (REFINE2D). A �nite element method using linear trian-
gular basis functions was used to discretize this problem. In this example, Kx and
Ky were constant. The triangulation is such that the resulting equation is an M -
matrix [18]. The grid was constructed by �rst de�ning a very coarse triangulation,
and then repeatedly de�ning �ner grids by subdividing a triangle into four smaller
triangles with new nodes determined by the nodes of the original triangle, and the mid-
points of the original triangle edges. This problem had 1161 nodes, and is described
in more detail in [18]. The nodes are originally ordered using an RCM ordering.

3.6. Problem 6 (FE2D). A �nite element method using linear triangular basis
functions was also used on this problem. However, in this example, Kx and Ky

(equation (16)) varied by four orders of magnitude. The grid, which had 1521 nodes,
was de�ned by constructing a distorted quadrilateral grid, and then triangulating in
the obvious manner. A Delaunay-type edge swap was used to produce an M -matrix.
The original ordering for this problem used a natural or lexicographic ordering based
on the distorted quadrilaterals. This problem is described in more detail in [18].

3.7. Problem 7 (FE3D). This problem is a three-dimensional version of equa-
tion (16). A �nite element discretization was used, with linear basis functions de�ned
on tetrahedra. The absolute permeabilities (Kx,Ky,Kz) varied by eight orders of
magnitude (this model was derived from actual �eld data). The nodes were de�ned
on a 25� 13� 10 grid (3250 nodes) of distorted hexahedra, which were then divided
into tetrahedra. The resulting matrix was not an M -matrix, and the average node
connectivity was �fteen. In general, it is not possible for a given node placement to
obtain an M -matrix in three dimensions if linear tetrahedral elements are used [26].
The original ordering for this problem used a natural ordering based on distorted
hexahedra. This problem is described in more detail in [19].

4. Results. The computations to solve the test problems (1-5) were done on a
Sun SPARC SLC workstation in double precision and using

krkk2 � "kr0k2; " = 10�6(19)
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Table 1

Summary for test problem STRONGX

Ordering Nonzeros Ordering Fact. Solution time
& level ` in L time time & Iterations

Full system

ORG(0) 3510 n/a 0.25 4.49(33)
ORG(1) 5221 n/a 0.27 4.64(32)
ORG(2) 6903 n/a 0.31 4.65(31)
ORG(3) 10238 n/a 0.42 5.05(30)

RCM(0) 3510 0.06 0.22 4.46(33)
RCM(1) 5221 0.07 0.27 4.65(32)
RCM(2) 6903 0.06 0.30 1.98(13)
RCM(3) 8527 0.06 0.36 2.11(13)

MDF(0) 3510 1.65 0.23 4.46(33)
MDF(1) 6867 3.38 0.31 2.01(13)
MDF(2) 7074 3.50 0.32 1.72(11)
MDF(3) 10210 7.83 0.46 1.56(9)

Reduced system (black nodes= 900, red nodes= 900)

ORG(1) 3421 n/a 0.31 3.97(40)
ORG(3) 5060 n/a 0.36 4.10(38)

RCM(1) 3421 0.07 0.31 3.97(40)
RCM(3) 5060 0.07 0.36 1.99(18)

MDF(1) 3421 2.14 0.31 1.17(11)
MDF(3) 6584 6.54 0.44 1.00(8)

Table 2

Summary for test problem STRONGY

Ordering Nonzeros Ordering Fact. Solution time
& level ` in L time time & Iterations

Full system

ORG(0) 3510 n/a 0.22 8.06(60)
ORG(1) 5221 n/a 0.26 2.92(20)
ORG(2) 6903 n/a 0.30 3.02(20)
ORG(3) 10238 n/a 0.41 1.72(10)

RCM(0) 3510 0.06 0.22 8.05(60)
RCM(1) 5221 0.06 0.27 2.93(20)
RCM(2) 6903 0.07 0.30 2.87(19)
RCM(3) 8527 0.06 0.35 1.63(10)

MDF(0) 3510 1.63 0.24 8.25(60)
MDF(1) 6873 3.35 0.31 2.16(14)
MDF(2) 7064 3.48 0.31 2.32(15)
MDF(3) 10150 7.69 0.45 1.24(7)

Reduced system (black nodes = 900, red nodes = 900)

ORG(1) 3421 n/a 0.31 1.93(19)
ORG(3) 5060 n/a 0.36 1.36(12)

RCM(1) 3421 0.06 0.31 1.94(19)
RCM(3) 5060 0.07 0.37 1.14(10)

MDF(1) 3421 2.11 0.32 1.45(14)
MDF(3) 6572 6.53 0.45 0.77(6)
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Table 3

Summary for test problem LAPD5

Ordering Nonzeros Ordering Fact. Solution time
& level ` in L time time & Iterations

Full system

ORG(0) 1740 n/a 0.11 1.73(26)
ORG(1) 2581 n/a 0.13 1.24(17)
ORG(2) 3393 n/a 0.15 1.05(14)
ORG(3) 4988 n/a 0.20 0.92(11)

RCM(0) 1740 0.04 0.11 1.74(26)
RCM(1) 2581 0.03 0.13 1.24(17)
RCM(2) 3393 0.04 0.15 0.83(11)
RCM(3) 4177 0.03 0.17 0.80(10)

MDF(0) 1740 0.84 0.11 1.67(25)
MDF(1) 3391 1.67 0.16 0.90(12)
MDF(2) 3571 1.79 0.16 0.92(12)
MDF(3) 5041 3.80 0.22 0.60(7)

Reduced system (black nodes = 450, red nodes = 450)

ORG(1) 1681 n/a 0.15 0.70(14)
ORG(3) 2465 n/a 0.18 0.56(10)

RCM(1) 1681 0.04 0.16 0.70(14)
RCM(3) 2465 0.03 0.18 0.50(9)

MDF(1) 1681 1.09 0.16 0.65(13)
MDF(3) 3261 3.29 0.22 0.48(8)

Table 4

Summary for test problem STONE

Ordering Nonzeros Ordering Fact. Solution time
& level ` in L time time & Iterations

Full system

ORG(0) 1860 n/a 0.12 3.31(47)
ORG(1) 2760 n/a 0.14 2.08(27)
ORG(2) 3630 n/a 0.16 1.82(23)
ORG(3) 5340 n/a 0.22 1.43(16)

RCM(0) 1860 0.04 0.12 3.32(47)
RCM(1) 2760 0.03 0.14 2.07(27)
RCM(2) 3630 0.03 0.16 1.35(17)
RCM(3) 4471 0.04 0.19 1.18(14)

MDF(0) 1860 0.92 0.12 3.25(46)
MDF(1) 3658 1.81 0.17 1.36(17)
MDF(2) 3819 1.90 0.18 1.38(17)
MDF(3) 5361 3.98 0.24 0.99(11)

Reduced system (black nodes = 480, red nodes = 481)

ORG(1) 1798 n/a 0.17 1.16(22)
ORG(3) 2638 n/a 0.20 0.87(15)

RCM(1) 1798 0.03 0.17 1.16(22)
RCM(3) 2638 0.03 0.20 0.76(13)

MDF(1) 1798 1.16 0.17 0.91(17)
MDF(3) 3487 3.42 0.24 0.69(11)
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Table 5

Summary for test problem REFINE2D

Ordering Nonzeros Ordering Fact. Solution time
& level ` in L time time & Iterations

Full system

RCM(0) 2480 0.05 0.15 4.38(49)
RCM(1) 3571 0.05 0.17 2.86(30)
RCM(2) 4758 0.05 0.21 2.59(26)

MDF(0) 2480 1.19 0.15 4.29(48)
MDF(1) 4645 2.35 0.21 2.10(21)
MDF(2) 5292 3.04 0.24 2.16(21)

Reduced system (black nodes= 648, red nodes= 513)

RCM(1) 2629 0.04 0.21 1.96(28)
RCM(2) 2952 0.05 0.23 1.80(25)

MDF(1) 2753 1.72 0.23 1.51(21)
MDF(2) 3390 2.52 0.25 1.59(21)

Table 6

Summary for test problem FE2D

Ordering Nonzeros Ordering Fact. Solution time
& level ` in L time time & Iterations

Full system

RCM(0) 4373 0.06 0.25 6.40(49)
RCM(1) 5846 0.07 0.29 4.12(30)
RCM(2) 8325 0.07 0.37 3.31(22)

MDF(0) 4373 2.09 0.25 3.99(30)
MDF(1) 7942 4.66 0.36 3.43(23)
MDF(2) 10620 8.39 0.49 2.64(16)

Reduced system (black nodes = 1091, red nodes = 430)

RCM(1) 5286 0.08 0.38 4.00(34)
RCM(2) 6888 0.08 0.43 2.93(23)

MDF(1) 5782 3.86 0.41 2.84(23)
MDF(2) 8565 7.90 0.54 2.33(17)

Table 7

Summary for test problem FE3D

Ordering Nonzeros Ordering Fact. Solution time
& level ` in L time time & Iterations

Full system

RCM(0) 19725 0.23 1.02 16.13(41)
RCM(1) 39066 0.24 2.01 11.70(24)
RCM(2) 72038 0.23 5.27 10.29(16)

MDF(0) 19725 16.49 1.11 10.08(25)
MDF(1) 49599 150.2 3.45 9.88(18)
MDF(2) 92181 1002 10.6 10.69(14)

Reduced system (black nodes = 2593, red nodes = 657)

RCM(1) 38822 0.23 3.00 10.66(23)
RCM(2) 66933 0.23 6.32 10.32(17)

MDF(1) 43141 143 3.36 8.96(18)
MDF(2) 87472 1067 9.34 9.97(14)
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as the stopping criterion, where rk is the residual vector after the kth iteration in the
conjugate gradient acceleration and the zero vector is the initial guess.

Some tests were carried out using a random initial guess (random numbers be-
tween (-1,+1) ), and the results were qualitatively similar. The tests were also re-
peated using a stopping criteria of " = 10�12, and the trends were similar to the
results obtained with " = 10�6, and hence will not be shown.

The reduced system factorizations were constructed by �rst using a generalized
red/black partitioning of the nodes. The initial red node was selected as the initial
node in the given ordering. The initial ordering (ORG) was x{y natural for Problems
1{4, and RCM ordering for Problems 5{7.

The levels of �ll will be de�ned so that all original entries in the full system have
level 0. This means that the lowest level reduced system factorization will be level 1.
If the original matrix has a bipartite graph, then the next level of �ll in the reduced
system is level 3. Note that in the �nite element case, the next level of �ll in the
reduced system is level 2. For this reason, our de�nition of levels for reduced systems
di�ers from that used previously [38]. For all reduced system methods, the ordering
was determined using the reduced system. For example, RCM on the reduced system
refers to the following sequence of steps: the full system is red/black ordered, the
red nodes are eliminated exactly, and the reduced system is reordered using an RCM
algorithm.

Table 1 shows the results for Problem STRONGX. This problem has a strong
coupling in the x-direction. As discussed in [9] , ORG ordering (x{y natural) is very
poor for this example, since the entries in LU factorization decay very slowly with
this ordering. This is re
ected in the results for ORG ordering, full system, all levels
of �ll. The full system computations for RCM are poor for levels 0 and 1, but become
competitive with MDF as the level of the ILU increases. MDF(0) is poor (level 0
factorizations cannot detect anisotropies [9]), but is much improved for level 1. Note
that the ordering time for RCM varies slightly for di�erent runs. This is due to the
inaccuracy in the system timing calls.

For the reduced system, MDF(1) is much faster than either RCM(1) or ORG(1).
In all cases, the amount of �ll in the ILU(1) factorization is identical. This demon-
strates that the orderings for reduced system factorizations can be very important.
As the level of factorization on the reduced system is increased, the ORG ordering ac-
tually becomes slower, while RCM(3) shows a large improvement. However, MDF(1)
is still superior to RCM(3) with less �lls. If the levels are increased to very high levels,
we would expect RCM to eventually become more e�cient than MDF, due to the �ll
reducing property of RCM as discussed in the introduction.

Note also that the cost of the MDF ordering is quite high. However, as discussed
previously, we expect to carry out the ordering only once for many matrix solves, for
time-dependent, non-linear problems [6, 10].

Table 2 lists the results for Problem STRONGY. In this case, the ORG orderings
result in rapid decay in the size of the �ll entries, and hence the ORG orderings (for
level > 0) are quite e�cient. The reduced system factorizations are generally more
e�cient than the full system factorizations.

For the reduced system, MDF(1) is superior to RCM(1), and ORG(1). All meth-
ods have the same �ll. MDF(3) is also faster than either ORG(3) or RCM(3), but at
the cost of greater �ll.

Problem LAPD5 (Table 3) has constant coe�cients for all interior nodes, and as
expected, all the orderings behave very similarly.
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Table 4 shows the results for Problem STONE. The reduced system factorizations
are the most e�cient for this problem. Again, the reduced system MDF(1) is faster
than RCM(1) or ORG(1). However, reduced system MDF(3) and RCM(3) are quite
close, especially if the factorization time is included.

The �rst �nite element problem REFINE2D tests are listed in Table 5. The
reduced system factorization is e�ective for this problem since almost half the nodes
are exactly eliminated. The reduced system MDF(1) has the smallest solution cost.

Table 6 shows the results for Problem FE2D. Even though the generalized red/black
partitioning has only 430 (out of 1521) red nodes, the reduced system factorizations
are superior to the full system factorizations. For a given level of �ll, reduced system
MDF has a smaller solution cost than reduced system RCM.

For the the three-dimensional problem FE3D, high levels of �ll are not very e�ec-
tive because of the large amount of �ll in the ILU factorization. If factorization cost
is included, the best method is MDF(0) (Table 7).

To summarize, for Problems STRONGX, STRONGY, and STONE, the reduced
system MDF(1) ordering outperforms RCM(1) and ORG(1). All orderings have the
identical amount of �ll for level 1 reduced systems. Reduced system MDF(3) is either
the best or tied with RCM(3), although at the expense of greater �ll. Note that for
STRONGX, reduced system RCM(1) is almost four times slower than reduced system
MDF(1).

For Problems REFINE2D and FE2D, reduced system MDF(1) again outperforms
RCM(1). Reduced system RCM becomes more competitive with reduced systemMDF
as the level increases. It is interesting to note that for the three-dimensional problem
FE3D, MDF(0) is superior to RCM(0).

5. Conclusions. In agreement with previous work, we have found that the or-
dering of the unknowns has a large e�ect on the convergence of the ILU preconditioned
PCG iterative methods.

In some cases, it is possible to select an a priori ordering that results in rapid
convergence. However, for partial di�erential equation problems that have rapidly
varying coe�cients, and are discretized on unstructured grids, a good ordering is far
from obvious.

As demonstrated in the anisotropic examples, RCM orderings can be quite poor
for level 1 �ll, for both full system and reduced systems, compared to MDF or-
derings. Reduced system methods were superior to full system iteration for all the
two-dimensional problems. Reduced system MDF orderings with lower �ll level out-
performed reduced system natural and RCM orderings.

Because of the large factorization cost, and the relatively small number of red
nodes exactly eliminated, the reduced system approach was not very e�ective for the
three-dimensional problem. MDF(0) was the best choice.

In all our tests, the MDF ordering method always resulted in good convergence be-
havior, even for anisotropic and inhomogeneous (rapidly varying equation coe�cient)
problems. Of course, the ability of MDF ordering to perform well for anisotropic,
inhomogenous problems comes at a price. The time taken for determining the MDF
ordering is much larger than the ordering cost for RCM. Consequently, we believe
that the major application of MDF ordering will be in the solution of time-dependent
or non-linear problems. In these situations, a sequence of matrix problems must be
solved, where the matrix elements are only slightly changed from one time-step to the
next. An ordering determined from one of these matrices can be used for the sequence.
The ordering cost can then be amortized over the cost of many solves. Applications of
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this idea to reservoir simulation and Navier-Stokes equations are discussed in [6, 10]
If a single solution is required for a two-dimensional problem which is isotropic,

then a reduced system RCM method would be a good choice. On the other hand,
if several similar anisotropic problems are being solved, then it is worthwhile to use
a reduced system MDF ordering. For three-dimensional problems, MDF(0) would
appear to be a good choice.

We are currently developing approximate MDF ordering methods that are less
expensive to compute, and hence can be applied to problems with a large node con-
nectivity, which is typical of discretized systems of partial di�erential equations.
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