B OAK RIDGE NATIONAL LABORATORY

Packed Storage Extension for ScaLAPACK

Eduardo D’Azevedo
Computer Science and Mathematics Division
Oak Ridge National Laboratory

Jack Dongarra
Computer Science Department
University of Tennessee

Computer Science and Mathematics Division ORNL

4 N
‘ Packed Storage I

e LAPACK has support for compact storage for symmetric

matrices where only lower or upper triangular part is stored.

e Extension of ScaLAPACK to support compact storage:
— Cholesky factorization: PxPPTREPxPPTRS
— Figen solver: PxSPEV, PxSPEVX
— Generalized Eigen solver: PxSPGVX
— PBLAS: PxXTPMM, PxTPSM, PxSPRK, PxSPR2K

_ /

Computer Science and Mathematics Division ORNL

4 N
Data Layout I

e ScaLAPACK uses 2D block cyclic matrix distribution

e Data is organized as (MB x NB) blocks on (P, x P.) processor
grid.

e Matrix entry (¢, j) is mapped to matrix block
(ib, j0) = (1 + [(2 = 1)/MBJ, 1 + [(7 — 1)/NBJ).

e (ib,jb) block is assigned to processors (0..P, —1,0..P. — 1),
(P, q) = (mod(ib — 1,), mod(jb — 1, F;))

o Compact storage has blocks in triangular part on same
processors to reuse PBLAS and ScaLAPACK routines.

_ /

Computer Science and Mathematics Division

ORNL

-

2-DIMENSIONAL BLOCK CYCLIC
DISTRIBUTION

N

A JA S A1
08 A [A A=A - Il A AR
A [

J>
>
>

5.
s e
oo e @ o e
~ J T llll
- R A

\ Global (left) and distributed (right) views of matrix

)>
>

~

/

Computer Science and Mathematics Division ORNL

4 N
Approach I

e Treat NB wide block column as regular ScaLAPACK matrix.

e Create new descriptor with appropriate adjustment of array
offset.

e Treat NB x P. wide block column (trapezoidal shaped) as
regular ScaLAPACK matrix.

e Wider panel for larger granularity and higher efficiency.

Computer Science and Mathematics Division

ORNL

/ ‘ Example I

o Get (I A JA) entry in full storage:

CALL PDELGET(SCOPE, TOP, ALPHA, &
A, 1A JA DESCA|)

e (1 AP, JAP) are new index into “fake” ScaLAPACK matrix
with descriptor DESCAP,

CALL DESCI NI TT(’ Lower’, | A, JA, DESCA &

| AP, JAP, LOFFSET, DESCAP)
CALL PDELGET(SCOPE, TOP, ALPHA, &
A(LOFFSET), | AP, JAP, DESCAP)

e Each processor may get a different value for LOFFSET.

_

/

Computer Science and Mathematics Division ORNL

(N = DESCA(N)) ' Nunber of colums in matrix A \

2 NB = DESCA(NB) | Wdth of each bl ock col um
3 NNB = NB * NPCOL I Wdth of columm panel
4 DO JA=1, N, NNB
5 JB = MN(NNB, N-JA+1):; A = JA
6 !
7 I CGenerate new descriptor for w de columm panel
8 !
9 CALL DESCI NI TTW' Lower’ , | A JA DESCA, | AP, JAP, LOFFSET, DESCAP)
10 !
11 | Handl e di agonal bl ock
12 !
13 ANRMR = PDLANSY(' M ,’ Lower’ , JB, A(LOFFSET), | AP, JAP, DESCAP, \WORK)
14 ANRM = MAX(ANRM ANRM2)
15 !
16 | Handl e of f-diagonal rectangul ar bl ock
17 | Use Lower triangular part
18 !
19 IA=1A + JB
20 IF (1A .LE. N THEN
21 ANRM2 = PDLANGE(’ M, N-1 A+1, JB, A(LOFFSET) , | AP+JB, JAP, DESCAP, WORK)
22 ANRM = MAX(ANRM ANRM)
23 ENDI F

NG /

Computer Science and Mathematics Division ORNL

‘ Performance critical PBLAS I

e Cholesky factorization performs updates to right-looking part,

need efficient rank update for compact storage.
e PxSPRK performs C' «— 5C + aAA"
e PxSPR2K performs C' «— C + aAB* + aBA"
e A,B are NB columns wide, C' in packed storage.

e Very high communication cost if performed by looping over
NB columns in C with PBLAS.

_ /

Computer Science and Mathematics Division ORNL

4 N
‘ PXSPRK, PxSPR2K I

e Copy data into row (column) replicated vectors A, (A.)

aligned to submatrix to be updated.

e New feature in PBLAS V2 that support replicated vectors
using DESCA(CSRC) -1 orDESCA(RSRC) = -1.

e PBLAS PxGEADD (copy with add) , PXTRAN (transpose copy)
handles the row (column) broadcast and no further
communication is needed.

_ /

Computer Science and Mathematics Division ORNL

4 N
[PxTPMVM_PxTPSM

e Multiply with compact triangular matrix PXx TPMM

B «— aop(A)B, B« Bop(A)

e Solve with compact triangular matrix PXxTPSM

B« aop(A™YB, B+« aBop(A™?)

e Consider copying NB * P, triangular matrix to dense storage to
use regular PXTRSMor PxTRVM

_ /

10

Computer Science and Mathematics Division ORNL

/ DOT vs AXPY I \

e Solve (1) by (1) w3 = Lk by, (2) wo = L, (b — Lyars), (3)

1 = LY (by —| (LY xe + L x3) |) uses “dot product” with no

COpy necessary.

Ly Ly Ly L1 b1
Ly, Ly 2 | = | bo (1)
L§3 X3 b3

e “axpy” operation require copying (Ls1, L32) block row into
temporary storage. Step (2) is

11

Computer Science and Mathematics Division ORNL

4 N
Beowulf cluster I

e High TORC (Tennessee Oak Ridge Cluster Project) Linux
cluster at ORNL (ww. epm or nl . gov/torc)

e 64 nodes, each node is a dual 450Mhz Pentium-II with 512MB,
8GB IDE disk, with switched gigabit ethernet connection.

e Node allocation controlled by PBS (Portable Batch System).
o LAM/MPI 6.3.2 with 2 MPI tasks per node

o ATLAS BLAS library capable of about 300Mflops on a single
cpu.

e MB = NB = 50

_ /

12

Computer Science and Mathematics Division ORNL

/ | PXSPGVX' \

e Parameter | BTYPE determines the type of problem

y

1 solve Ax = \Bz,
| BTYPE = < 2 solve ABzx = Az, (2)
3 solve BAx = \z.

\

e Both A and B are in compact storage.

e Cholesky factorization of B and in-place modification of A to
canonical form:
A—UHAU Y or LTALH,

1
| BTYPE = 3)
2or3 A« UAUH or LHAL.

_ /

13

Computer Science and Mathematics Division ORNL

/ ‘ Cholesky factorization I \

e Factorization slower by about 40% on large problem.

e Triangular solves are slower for NRHS=50 and about the same
for NRHS=1000.

NRHS=50 NRHS=1000
P, x P, N PDPOTRF | PDPPTRF PDPOTRS | PDPPTRS PDPOTRS | PDPPTRS
2 X 2 5000 47.1s 49.9s 4.0s 8.3s 56.5s 5¢.5s
4 x4 5000 18.3s 20.4s 2.2s 4.3s 22.2s 2P.8s
6 X 6 5000 27.9s 36.1s 5.3s 5.3s 39.6s 48.7s
8 X 8 5000 13.8s 13.8s 3.3s 3.3s 18.2s 18.2s
4 x4 10000 109.4s 166.7s 6.0s 15.2s 81.7s 8B.5s
6 X 6 10000 111.5s 145.8s 10.0s 21.7s 122.0s 13R.7s
8 X 8 10000 47 .8s 67.3s 7.7s 11.4s 49.8s 6p.7s

Table 1: Performance (in seconds) of Cholesky factorizations and

\solves. /

14

Computer Science and Mathematics Division

ORNL

/

Eigen solver I

e Similar performance between PDSYEV and PDSPEV.

P, x P. N JOBZ || PDSYEV | PDSPEV
2 X 2 4000 N 244.6s 249.9s
4 x4 4000 N 101.9s 109.9s
6 X6 4000 N 185.9s 190.1s
8 X 8 4000 N 300.9s 323.7s
2 X 2 4000 \Y 1784.4s 1793.2s
4 x4 4000 \Y 486.4s 489.2s
6 X6 4000 \Y 295.1s 297.6s
8 X 8 4000 \Y 213.3s 215.5s

\eigensolvers.

Table 2: Performance (in seconds) of simple drivers for symmetric

/

15

Computer Science and Mathematics Division

ORNL

/ Generalized Eigen Solver'

e Compact version slower by 20-30%.

P, x P, N | BTYPE | JOBZ PDSYGVX | PDSPGVX
2 X2 4000 1 \Y 583.4s 634.5s
4 x4 4000 1 \Y 216.8s 277.3s
6 X6 4000 1 \Y 147 .6s 178.4s
2 X2 4000 2 \Y 580.4s 684.6s
4 x4 4000 2 \Y 203.2s 239.3s
6 X6 4000 2 \Y 136.2s 180.2s
2 X2 4000 3 \Y 578.4s 684.5s
4 x4 4000 3 \Y 203.0s 241.0s
6 X6 4000 3 \Y 136.4s 183.2s

_

eigensolvers with option JOBZ="V’.

Table 3: Performance (in seconds) of expert drivers for generalized

~

/

16

Computer Science and Mathematics Division

ORNL

/

\eigensolvers with option JOBZ="N".

‘ Generalize Eigen Solver'
P.xP. | N | IBTYPE | JOBZ || PDSYGVX | PDSPGVX
2x2 | 2000 1 N 57.0s 69.65
4x4 | 2000 1 N 31.55 39.1s
6x6 | 2000 1 N 127.5s 138.4s
8x 8 | 2000 1 N 132.3s 139.7s
2x2 | 2000 2 N 55.35 64.8
4x4 | 2000 2 N 28.4s 34.0s
6x6 | 2000 2 N 113.2s 107.9s
8x 8 | 2000 2 N 144.7s 151.4s
2x2 | 2000 3 N 5.5 64.75
4x4 | 2000 3 N 28.1s 33.7s
6x6 | 2000 3 N 99.3s 108.65
8x 8 | 2000 3 N 148.3s 152.0s
Table 4: Performance (in seconds) of expert drivers for generalized

~

/

17

