
“lpack˙main”
2004/5/26
page 1

i

i

i

i

i

i

i

i

Packed Storage

Extension for

ScaLAPACK

Ed D’Azevedo∗, Jack Dongarra†

1 Introduction

We describe an extension to ScaLAPACK for computing with symmetric (and her-
mitian) matrices stored in a packed form. This is similar to the compact storage
for symmetric (and hermitian) matrices available in LAPACK [2]. This enables
more efficient use of memory by storing only the lower or upper triangular part
of a symmetric matrix. The capabilities include Choleksy factorization (PxSPTRF)
and solution (PxSPTRS) of symmetric (Hermitian) linear systems, the computa-
tion of eigenvalues and eigenvectors (PxSPEV), expert drivers (PxSPEVX) for gen-
eralized eigenvalue problem (PxSPGVX) for symmetric (Hermitian) matrices in
packed storage. This work differs from an earlier work [5] on packed storage by
considering wider block column panels of width NB * NPCOL instead of single
block column of width NB in performance sensitive routines. The goal is to re-
duce the overhead in index calculation by increasing the granularity and operating
on wider column panels.

The packed storage scheme (described in §2) resembles the ScaLAPACK data
distribution but physically stores only the lower (or upper) blocks. Each block col-
umn panel of width NB * NPCOL can be considered as a trapezoidal submatirx in
a fully dense ScaLAPACK matrix. Section 3 contains two concrete examples on
how such an arrangement can be used with conventional ScaLAPACK routines for
dense storage. For some performance critical PBLAS like routines such as PxTPSM
(triangular solve) and PxTPMM (multiplication by triangular matrix), block diago-
nal submatrices are copied into fully dense ScaLAPACK matrices to reuse standard
high perform parallel BLAS routines. The right-looking Cholesky factorization re-

∗Computer Science and Mathematics Division, Oak Ridge National Laboratory, Bldg 6012, MS6367,
Oak Ridge, TN37831
†Computer Science Department, University of Tennessee, Knoxville,TN 37996–3450

1

“lpack˙main”
2004/5/26
page 2

i

i

i

i

i

i

i

i

2

lies on efficient symmetric rank-k updates (PxSPRK) to the right unfactored sub-
matrix. The algorithm uses two replicated row and column vectors to minimize
the communication volume. The details for the BLAS like routines are in §4 Fi-
nally, results of numerical experiments on a Beowulf Linux cluster is presented
and discussed in §5.

2 Data layout for packed storage

ScaLAPACK principally uses a two-dimensional block-cyclic data distribution (see
Figure 1) for full dense in-core matrices [3, Chapter 4]. This distribution has the
desirable properties of good load balancing where the computation is spread rea-
sonably evenly among the processes, and can make use of highly efficient level 3
BLAS (Basic Linear Algebra Subroutines) at the process level. Each colored rect-
angle represents an mb × nb submatrix. Matrix entry (i, j) is mapped to matrix
block (ib, jb) = (1 + b(i− 1)/mbc, 1 + b(j− 1)/nbc) and is assigned to process
(p, q) = (mod(ib− 1, Pr), mod(jb− 1, Pc)) on a Pr × Pc process grid. Thus the first
entry (1, 1) is mapped to process (0, 0) and entry (1 + mb, 1 + nb) is mapped to
process (1, 1).

The packed storage scheme resembles the ScaLAPACK two-dimensional block-
cyclic data distribution but physically stores only the lower (or upper) blocks. For
example, on a 2× 3 process grid as shown in Figure 1, if only the lower blocks are
stored, then process (0, 0) holds blocks A11, A31, A51, A71, A54, A74, A77. Process
(0, 2) holds blocks A33, A53, A73 and A76. Similarly process (1, 1) holds blocks A22,
A42, A62, A82 and A65, A85 plus A88. We note that each block in the packed storage
scheme is assigned to the same process as in the fully two-dimensional block-cyclic
data distribution. Note that each block column in the packed storage scheme may
be considered a full ScaLAPACK matrix distributed across only one process col-
umn. Moreover, each column panel of width nb ∗ Pc may be considered (with some
adjustment to starting address) a trapezoidal ScaLAPACK matrix. This treatment
of a block column or column panel as a particular ScaLAPACK submatrix is a key
characteristic to the reuse of ScaLAPACK and PBLAS library components.

If we consider the ‘local’ view in process (0, 0), the first block column panel
consists of A11, A31, A51 and A71. This panel is stored in memory as a (4 ∗mb)× nb
Fortran column-major matrix. The second block column panel consists of blocks
A54 and A74. It is stored in local memory as a (2 ∗mb)× nb Fortran column-major
matrix. The first entry of the second panel follows the last entry of the first panel
in memory, i.e. the first entry in block A54 follows the last entry in block A71. Note
that the entire diagonal block A11 is stored, even though only the lower triangular
part is accessed. This incurs a small price in extra storage but greatly simplifies
reuse of ScaLAPACK components.

3 Examples in the use of packed storage matrix

Here we illustrate by two examples the reuse of ScaLAPACK library components
for matrices stored in packed form. The key idea is the treatment of each block

“lpack˙main”
2004/5/26
page 3

i

i

i

i

i

i

i

i

3

Figure 1. Two-dimensional block-cyclic distribution.

column or panel as a regular ScaLAPACK matrix distributed across the process
grid. The routine DESCINITT (DESCINITTW) is provided to simplify the manipula-
tion of indices by initializing a new matrix descriptor for a block column (panel).
The routine interface can be described using Fortran 90 syntax as

SUBROUTINE DESCINITT(UPLO, IA, JA, DESCA, &

IAP, JAP, LOFFSET, DESCAP)

CHARACTER,INTENT(IN) :: UPLO

INTEGER, INTENT(IN) :: IA, JA, DESCA(*)

INTEGER, INTENT(OUT) :: IAP, JAP, LOFFSET, DESCAP(*)

END SUBROUTINE DESCINITT

For example, access to the global entry A(IA, JA) in full storage is obtained by the
ScaLAPACK routine

CALL PDELGET(SCOPE, TOP, ALPHA, A, IA, JA, DESCA)

The corresponding code to access the lower triangular entry in packed storage
would be

CALL DESCINITT(’Lower’, IA, JA, DESCA, &

IAP, JAP, LOFFSET, DESCAP)

CALL PDELGET(SCOPE, TOP, ALPHA, A(LOFFSET), IAP, JAP, DESCAP)

The routine DESCINITT generates a new matrix descriptor DESCAP that corresponds
to the block column panel with new indices (IAP, JAP) relative to the new de-

“lpack˙main”
2004/5/26
page 4

i

i

i

i

i

i

i

i

4

1 ! Process grid is NPROW by NPCOL

2 CALL BLACS_GRIDINFO(DESCA(ICTXT_),NPROW,NPCOL,MYPROW,MYPCOL)

3 ANRM = ZERO

4 N = DESCA(N_) ! Number of columns in matrix A

5 NB = DESCA(NB_) ! Width of each block column

6 NNB = NB * NPCOL ! Width of column panel

7 DO JA=1,N,NB*NPCOL

8 JB = MIN(NNB, N-JA+1)

9 IA = JA

10 !

11 ! Generate new descriptor for wide column panel

12 !

13 CALL DESCINITTW(’Lower’,IA,JA,DESCA,IAP,JAP,LOFFSET,DESCAP)

14 !

15 ! Handle diagonal block

16 !

17 ANRM2 = PDLANSY(’M’,’Lower’,JB,A(LOFFSET),IAP,JAP,DESCAP,WORK)

18 ANRM = MAX(ANRM, ANRM2)

19 !

20 ! Handle off-diagonal rectangular block

21 ! Use Lower triangular part

22 !

23 IA = IA + JB

24 IF (IA .LE. N) THEN

25 ANRM2 = PDLANGE(’M’,N-IA+1,JB,A(LOFFSET),IAP+JB,JAP,DESCAP,WORK)

26 ANRM = MAX(ANRM, ANRM2)

27 ENDIF

28 ENDDO

Figure 2. Example code to illustrate the use of DESCINITTW and reuse of ScaLA-
PACK components for matrices stored in packed storage.

scriptor. It will also produce the correct value for LOFFSET to adjust for the begin-
ning of the column panel.

Another more complicated example (see Figure 2) is computing the largest
absolute value (max(|A(I, J)|)) in a packed matrix. This is similar to computing
with the NORM=’M’ option in PDLANSY for the full storage,

ANRM = PDLANSY(’M’, UPLO, N, A, 1, 1, DESCA, WORK)

This code uses the block column panel of width NB * NPCOL and reuses ScaLA-
PACK PDLANSY and PDLANGE for computing the maximum entry in each block col-
umn panel. Better performance may be obtained by using a wider NB * NPCOL

panel over a single block column of width NB.
The code traverses each block column panel (line 7) and calls DESCINITTW

to establish the appropriate matrix descriptor for a wide column panel. It calls

“lpack˙main”
2004/5/26
page 5

i

i

i

i

i

i

i

i

5

PDLANSY (line 17) to find the largest value in the diagonal block. Routine PDLANGE

(line 25) computes the largest value in the remaining off-diagonal rectangular block.
Although essentially the same computation is performed, the packed version has
higher overhead in making several separate calls to PDLANSY and PDLANGE. The per-
formance of packed storage relies on using the dense storage PDLANSY and PDLANGE

that may introduce extra implicit synchronizations; moreover, the granularity of
the algorithm is limited by the width of the column panel (NB * NPCOL).

4 Algorithms for packed storage

Many high level ScaLAPACK routines, such as Cholesky factorization, can be eas-
ily adapted to using the packed storage by using DESCINITT and DESCINITTW that
provide a simple interface. Most of the subroutines for dense storage perform com-
putations by looping over a a block column at a time and rely on efficient imple-
mentation of PBLAS for optimal performance. Thus, special attention was given to
providing several performance critical PBLAS like routines such as PxTPSM (tri-
angular solve), PxTPMM (triangular matrix multiply), PxSPRK (symmetric rank-K
update), PxSPR2K (symmetric rank-2K update) for packed storage.

Both PxTPSM and PxTPMM rely on operating on a wider block column panel
(NB * NPCOL) for increased performance. One technique copies the block diagonal
triangular part into full dense ScaLAPACK storage to utilize PBLAS PxTRSM or
PxTRMM. Note that no communication is required since the packed and dense
storage format uses the same mapping of entries to to processors. On a square
process grid, the additional storage is only one block per processor. Another tech-
nique considers the rectangular submatrix of the column panel as a regular dense
ScaLAPACK matrix and uses the more efficient PxGEMM to perform updates to
the right-hand matrix. This should yield good performance for a large number
of righ-hand vectors. However, for a narrow right-hand matrix (NRHS ≤ NB), the
underlying PBLAS implementation might broadcast the right-hand matrix across
the column panel to perform the update. This broadcast would increase the com-
munication volume by moving the right-hand matrix multiple times and might
introduce unnecessary synchronization barriers.

PxSPRK (C ← βC +αAAT) is used in the right-looking Cholesky factor-
ization and PxSPR2K (C ← βC +αABT +αBAt) is used in the generalized eigen
solvers. Here matrix C is in packed storage and matrices A (and B) are usually
NB columns wide. The straightforward implementation of updating matrix C us-
ing block columns or column panels by PBLAS incurs a high communication cost.
Essentially for each block column (or panel), the submatrices of matrix A are com-
municated across the process grid. We can reduce this communication cost by
maintaining a replicated column copy Ac and a row copy Ar of matrix A. PBLAS
version 2 supports a new capability for handling replicated matrices. The value
of DESC(RSRC) = -1 signals a copy of the matrix is replicated across the the pro-
cessor rows. Similarly, DESC(CSRC) = -1 replicates across the processor columns.
PBLAS PxGEADD and PxTRAN can then perform the copy and transpose copy oper-
ations from A to Ar and Ac. This may be similar to a row or column broadcast

“lpack˙main”
2004/5/26
page 6

i

i

i

i

i

i

i

i

6

across the process grid. After this communication, no further communication is
then required in updating the matrix C in compact storage. However, the broad-
cast across the process grid may be an additional implicit synchronization barrier.

5 Numerical experiments

We have developed the following prototype codes: PxPPTRF/PxPPTRS for Cholesky
factorization and solution, simple driver PxSPEV (PxHPEV) routines for finding eigen-
values and eigenvectors of symmetric (Hermitian) matrices stored in packed form,
expert drivers for symmetric (Hermitian) matrices PxSPEVX/PxHPEVX and general-
ized eigenvalue problems PxSPGVX/PxHPGVX.

We have compared the performance of the new routines in packed storage
with ScaLAPACK routines in full storage. The goal is to determine the overhead
cost of computation with packed storage over the existing routines for full storage.
The new routines have higher overhead in index calculations and have algorithm
granularity limited by the width of the block column panel. However, the packed
storage may have better data locality and cache reuse.

The tests were performed on the TORC II∗ Beowulf Linux cluster. Each node
consisted of a dual Pentium-II at 450Mhz with 512MBytes of memory running red-
hat linux 6.2 with smp kernel. MPIBLACS was used with LAM/MPI† version
6.3 with Gigabit ethernet. Job submission to the cluster was through the Portable
Batch System (PBS)‡. Since the cluster was a shared resource, there was some vari-
ation in runtimes. Each case was run several times and the minimum time was
taken. Two MPI tasks were spawned on each node to utilize both cpus. A single
cpu can achieve about 300Mflops/s in DGEMM operations with optimized BLAS li-
braries produced by Automatically Tuned Linear Algebra Software (ATLAS)§ The
experiments were performed with MB=NB=50 using PBLAS [4, 7] version 2¶. Re-
sults for upper case (UPLO=’U’) and lower case (UPLO=’L’) were very similar so
results for only the upper case are presented.

Table 1 summarizes the times for the Cholesky factorization PDPOTRF for full
storage and PDPPTRF for packed storage. Routines PDPPTRS and PDPOTRS were used
to solve the factored system with 50 and 1000 (NRHS) right-hand vectors. For the
small problem size (N=5000) considered, the times for factorization by PDPPTRF

with packed storage were similar to to times taken by PDPOTRF with full storage.
For the larger problem size (N=10000), the times for packed storage were 30-50%
higher. Solution times for a narrow right-hand matrix (NRHS=50) show PDPPTRS

for packed storage to be slower than PDPOTRSfor full storage for large problems
(N=10000) and similar to full storage on the smaller problem (N=5000). Solution
times for a wide right-hand matrix (NRHS=1000) show PDPPTRS for packed storage
to be competitive with PDPPTRS, especially for the smaller problem size.
∗Visit http://www.epm.ornl.gov/torc/ for details. Special thanks to Stephen Scott for arranging

use of the cluster.
†Visit http://www.mpi.nd.edu/lam for details.
‡Visit http://www.openpbs.com/ for details.
§Visit http://www.netlib.org/atlas/ for details.
¶Visit http://www.netlib.org/scalapack/html/pblas qref.html for details.

“lpack˙main”
2004/5/26
page 7

i

i

i

i

i

i

i

i

7

Table 2 summarizes the execution times for the symmetric eigensolvers PDSYEV
with full storage and PDSPEV with packed storage. The computations were per-
formed with JOBZ=’N’ to find all eigenvalues or with JOBZ=’V’ to find all eigen-
vectors and eigenvalues. Routine PDSPEV for packed storage incurred at most a
20% increase over PDSYEV for full storage in finding eigenvalues only. In some
cases (N=2000) PDSPEV even performed slightly better than PDSYEVwith full storage.
On closer examination and profiling, we find part of the extra time is incurred in
a routine to perform a matrix vector multiply operation where the matrix is stored
in packed storage. Performance of DSYMV and DGEMV for the packed version may
be limited by the width of the block column panel and extra overhead in subrou-
tine calls to dense routines. When both eigenvectors and eigenvalues are required,
PDSPEV compared favorably with PDSYEV for full storage.

Table 3 summarizes the execution times for the expert drivers for the sym-
metric eigensolvers. Although the expert driver is capable of finding specific clus-
ters of eigenvalues, all eigenvalues (RANGE=’ALL’) were requested. The routine
PDSPEVX performs reorthogonalization of eigenvectors when there is sufficient tem-
porary workspace. This reorthogonalization can cause the higher run times for
finding all eigenvectors over the simple driver PDSYEV. In these runs, reorthogo-
nalization is turned off by setting ORFAC=0 and ABSTOL=0 Performance analysis of
PDSYEVX is described in [3, Chapter 5] and [6]. For both shorter runs with JOBZ=’N’

where only eigenvalues are sought, and longer running computation where both
eigenvectors and eigenvalues were requested (JOBZ=’V’), PDSPEVX for packed stor-
age was comparable to PDSYEVX for full storage.

Table 4 and Table 5 summarize the times for the generalized symmetric eigen-
solvers PDSPGVX with packed storage and PDSYGVX with full storage for finding all
eigenvalues with RANGE=’All’. The input parameter IBTYPE describes the type of
problem to be solved:

IBTYPE =











1 solve Ax = λBx,
2 solve ABx = λx,
3 solve BAx = λx.

(1)

The problem is reduced to canonical form by first performing a Cholesky factor-
ization on B (B = LLH or UHU) and then overwriting A with

IBTYPE =

{

1 A←− U-H AU-1 or L-1 AL-H ,
2 or 3 A←− UAUH or LH AL.

(2)

For the cases IBTYPE=2 and IBTYPE=3, the packed version incurs a significant ex-
tra overhead of about 25% compared to the version for full storage. The in-place
conversion of matrix A to canonical form (2) may require access to block rows in
matrix A or B. Since the packed storage is stored in a column panel oriented man-
ner, traversal across block rows will be less efficient than traversal down columns.

The results suggest packed storage for Cholesky factorization with large ma-
trices and few right-hand vectors still need improvement. Recently, a new recur-
sive implementation of Cholesky factorization in LAPACK compact storage [1]

“lpack˙main”
2004/5/26
page 8

i

i

i

i

i

i

i

i

8

NRHS=50 NRHS=1000
Pr × Pc N PDPOTRF PDPPTRF PDPOTRS PDPPTRS PDPOTRS PDPPTRS

2× 2 5000 47.1s 49.9s 4.0s 8.3s 56.5s 56.5s
4× 4 5000 18.3s 20.4s 2.2s 4.3s 22.2s 22.8s
6× 6 5000 27.9s 36.1s 5.3s 5.3s 39.6s 43.7s
8× 8 5000 13.8s 13.8s 3.3s 3.3s 18.2s 18.2s
4× 4 10000 109.4s 166.7s 6.0s 15.2s 81.7s 83.5s
6× 6 10000 111.5s 145.8s 10.0s 21.7s 122.0s 132.7s
8× 8 10000 47.8s 67.3s 7.7s 11.4s 49.8s 62.7s

Table 1. Performance (in seconds) of Cholesky factorizations and solves.

shows performance approaching the fully dense case. It would be interesting to
consider a similar recursive packed format for parallel computing.

6 Acknowledgement

This work was supported in part by the National Science Foundation Grant No.
ASC-9005933; by the Defense Advanced Research Projects Agency under contract
DAAL03-91-C-0047, administered by the Army Research Office; by the Office of
Scientific Computing, U.S. Department of Energy, under Contract DE-AC05-00OR22725;
and by the National Science Foundation Science and Technology Center Coopera-
tive Agreement No. CCR-8809615, and Center for Computational Sciences at Oak
Ridge National Laboratory for the use of the computing facilities.

“lpack˙main”
2004/5/26
page 9

i

i

i

i

i

i

i

i

9

Pr × Pc N JOBZ PDSYEV PDSPEV

2× 2 1000 N 7.5s 8.1s
4× 4 1000 N 7.7s 8.1s
6× 6 1000 N 17.4s 18.3s
8× 8 1000 N 23.6s 27.9s
2× 2 2000 N 37.0s 38.6s
4× 4 2000 N 24.1s 25.6s
6× 6 2000 N 65.9s 59.5s
8× 8 2000 N 94.8s 82.5s
2× 2 4000 N 244.6s 249.9s
4× 4 4000 N 101.9s 109.9s
6× 6 4000 N 185.9s 190.1s
8× 8 4000 N 300.9s 323.7s
2× 2 1000 V 30.2s 30.8s
4× 4 1000 V 14.7s 15.0s
6× 6 1000 V 12.2s 12.5s
8× 8 1000 V 13.0s 13.0s
2× 2 2000 V 220.5s 220.1s
4× 4 2000 V 76.2s 78.5s
6× 6 2000 V 54.7s 56.9s
8× 8 2000 V 40.2s 42.1s
2× 2 4000 V 1784.4s 1793.2s
4× 4 4000 V 486.4s 489.2s
6× 6 4000 V 295.1s 297.6s
8× 8 4000 V 213.3s 215.5s

Table 2. Performance (in seconds) of simple drivers for symmetric eigensolvers.

“lpack˙main”
2004/5/26
page 10

i

i

i

i

i

i

i

i

10

Pr × Pc N JOBZ PDSYEVX PDSPEVX

2× 2 1000 N 7.6s 8.0s
4× 4 1000 N 6.1s 6.4s
6× 6 1000 N 9.2s 9.8s
8× 8 1000 N 20.4s 16.1s
2× 2 2000 N 39.3s 39.7s
4× 4 2000 N 19.8s 21.1s
6× 6 2000 N 34.0s 33.4s
8× 8 2000 N 51.4s 50.2s
2× 2 4000 N 256.0s 256.8s
4× 4 4000 N 91.6s 94.8s
6× 6 4000 N 128.1s 131.4s
8× 8 4000 N 178.0s 179.8s
2× 2 1000 V 72.4s 72.5s
4× 4 1000 V 71.3s 71.1s
6× 6 1000 V 88.7s 91.2s
8× 8 1000 V 74.2s 74.2s
2× 2 2000 V 723.4s 718.6s
4× 4 2000 V 706.6s 690.5s
6× 6 2000 V 775.3s 758.8s
8× 8 2000 V 722.4s 722.6s
4× 4 4000 V 5655.5s 5688.0s
6× 6 4000 V 5715.9s 5704.8s
8× 8 4000 V 5587.2s 5538.8s

Table 3. Performance (in seconds) of expert drivers for symmetric eigensolvers.

“lpack˙main”
2004/5/26
page 11

i

i

i

i

i

i

i

i

11

Pr × Pc N IBTYPE JOBZ PDSYGVX PDSPGVX

2× 2 400 1 N 1.7s 1.9s
2× 2 400 2 N 1.6s 1.8s
2× 2 400 3 N 1.6s 1.8s
2× 2 1000 1 N 10.7s 12.5s
2× 2 1000 2 N 10.2s 11.9s
2× 2 1000 3 N 10.2s 11.9s
2× 2 2000 1 N 57.0s 69.6s
2× 2 2000 2 N 55.3s 64.8s
2× 2 2000 3 N 55.5s 64.7s
4× 4 1000 1 N 8.4s 9.7s
4× 4 1000 2 N 7.8s 8.8s
4× 4 1000 3 N 7.8s 8.8s
4× 4 2000 1 N 31.5s 39.1s
4× 4 2000 2 N 28.4s 34.0s
4× 4 2000 3 N 28.1s 33.7s
4× 4 4000 1 N 152.1s 212.0s
4× 4 4000 2 N 139.0s 173.4s
4× 4 4000 3 N 139.0s 174.3s
6× 6 1000 1 N 40.1s 48.0s
6× 6 1000 2 N 40.8s 43.4s
6× 6 1000 3 N 26.1s 36.4s
6× 6 2000 1 N 127.5s 138.4s
6× 6 2000 2 N 113.2s 107.9s
6× 6 2000 3 N 99.3s 108.6s
6× 6 4000 1 N 347.9s 366.9s
6× 6 4000 2 N 352.1s 369.5s
6× 6 4000 3 N 292.4s 353.5s
8× 8 1000 1 N 39.3s 55.0s
8× 8 1000 2 N 42.5s 51.3s
8× 8 1000 3 N 43.6s 53.9s
8× 8 2000 1 N 132.3s 139.7s
8× 8 2000 2 N 144.7s 151.4s
8× 8 2000 3 N 148.3s 152.0s

Table 4. Performance (in seconds) of expert drivers for generalized eigensolvers
with option JOBZ=’N’.

“lpack˙main”
2004/5/26
page 12

i

i

i

i

i

i

i

i

12

Pr × Pc N IBTYPE JOBZ PDSYGVX PDSPGVX

2× 2 1000 1 V 15.4s 16.6s
2× 2 1000 2 V 14.8s 16.4s
2× 2 1000 3 V 14.9s 16.5s
2× 2 2000 1 V 85.7s 93.9s
2× 2 2000 2 V 84.0s 93.5s
2× 2 2000 3 V 84.7s 94.2s
2× 2 4000 1 V 583.4s 634.5s
2× 2 4000 2 V 580.4s 684.6s
2× 2 4000 3 V 578.4s 684.5s
4× 4 1000 1 V 10.6s 12.1s
4× 4 1000 2 V 9.8s 11.1s
4× 4 1000 3 V 9.9s 11.1s
4× 4 2000 1 V 42.6s 50.0s
4× 4 2000 2 V 39.5s 45.1s
4× 4 2000 3 V 39.1s 45.5s
4× 4 4000 1 V 216.8s 277.3s
4× 4 4000 2 V 203.2s 239.3s
4× 4 4000 3 V 203.0s 241.0s
6× 6 1000 1 V 10.9s 12.2s
6× 6 1000 2 V 10.9s 11.2s
6× 6 1000 3 V 10.0s 11.3s
6× 6 2000 1 V 36.5s 41.5s
6× 6 2000 2 V 32.1s 39.2s
6× 6 2000 3 V 33.2s 38.2s
6× 6 4000 1 V 147.6s 178.4s
6× 6 4000 2 V 136.2s 180.2s
6× 6 4000 3 V 136.4s 183.2s
8× 8 1000 1 V 18.4s 22.6s
8× 8 1000 2 V 20.3s 24.6s
8× 8 1000 3 V 18.6s 23.1s
8× 8 2000 1 V 59.7s 68.7s
8× 8 2000 2 V 54.8s 62.7s
8× 8 2000 3 V 56.1s 61.5s

Table 5. Performance (in seconds) of expert drivers for generalized eigensolvers
with option JOBZ=’V’.

“lpack˙main”
2004/5/26
page 13

i

i

i

i

i

i

i

i

Bibliography

[1] B. ANDERSEN, F. GUSTAVSON, AND J. WASNIEWSKI, A recursive formulation of
cholesky factorization of a matrix in packed storage, Tech. Report CS-00-441, De-
partment of Computer Science, University of Tennessee, Knoxville, Tennessee,
2000.

[2] E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA, J. D. CROZ,
A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, S. OSTROUCHOV, AND
D. SORENSEN, LAPACK Users’ Guide, SIAM, second ed., 1995. Online version
at http://www.netlib.org/lapack/lug/lapack lug.html.

[3] L. S. BLACKFORD, J. CHOI, A. CLEARY, E. D’AZEVEDO, J. DEM-
MEL, I. DHILON, J. DONGARRA, S. HAMMARLING, G. HENRY,
A. PETITET, K. STANLEY, D. WALKER, AND R. C. WHA-
LEY, ScaLAPACK Users’ Guide, SIAM, 1997. Online version at
http://www.netlib.org/scalapack/slug/scalapack slug.html.

[4] J. CHOI, J. DONGARRA, S. OSTROUCHOV, A. PETITET, D. WALKER, AND R. C.
WHALEY, A proposal for a set of parallel basic linear algebra subprograms, Tech.
Report CS-95-292, Department of Computer Science, University of Tennessee,
Knoxville, Tennessee, 1995. Also appears as LAPACK working note 100. On-
line version at http://www.netlib.org/lapack/lawns/lawn100.ps.

[5] E. D’AZEVEDO AND J. DONGARRA, Packed storage extensions for scalapack, Tech.
Report CS-98-385, Computer Science Department, University of Tennessee,
Knoxville, Tennessee, 1998.

[6] J. DEMMEL AND K. STANLEY, The performance of finding eigenvalues and eigenvec-
tors of dense symmetric matrices on distributed memory computers, Tech. Report CS-
94-254, Department of Computer Science, University of Tennessee, Knoxville,
Tennessee, 1994. Also appears as LAPACK working note 86. Online version at
http://www.netlib.org/lapack/lawns/lawn86.ps.

[7] A. PETITET, Algorithmic redistribution methods for block cyclic decompositions, PhD
thesis, University of Tennessee, Knoxville, Tennessee, 1996.

13

