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EDONIO: EXTENDED DISTRIBUTED OBJECT NETWORK I/O

LIBRARY

E.F. D'Azevedo

C.H. Romine

Abstract

This report describes EDONIO (Extended Distributed Object Network I/O), an

enhanced version of DONIO (Distributed Object Network I/O Library) optimized

for the Intel Paragon Systems using the new M ASYNC access mode. DONIO provided

fast �le I/O capabilities in the Intel iPSC/860 and Paragon distributed memory

parallel environments by caching a copy of the entire �le in memory distributed

across all processors. EDONIO is more memory e�cient by caching only a subset of

the disk �le at a time. DONIO was restricted by the high memory requirements and

use of 32-bit integer indexing to handle �les no larger than 2Gigabytes. EDONIO

overcomes this barrier by using the extended integer library routines provided by

Intel's NX operating system.

For certain applications, EDONIO may show a ten-fold improvement in perfor-

mance over the native NX I/O routines.
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1. Introduction

Multi-megabyte disk input/output operations are commonly a major bottleneck in large

application codes on distributed-memory parallel supercomputers. Our �rst attempt

to remove this bottleneck produced DONIO [2], a library of routines to provide fast

parallel �le I/O capabilities on Intel iPSC/860 and Intel Paragon supercomputers.

DONIO caches the entire disk �le across the aggregate memory of the multiprocessor

in shared memory emulated by DOLIB (Distributed Object Library). This approach

imposed a high memory overhead, and the use of 32-bit integer indexing restricted

access to �les of at most 2Gigabytes. The new EDONIO library reduces memory overhead

and provides fast I/O on �les of arbitrary size. EDONIO is implemented independently

of the Distributed Object Library DOLIB [1] but uses similar IPX remote procedure calls

to implement a large disk cache in the aggregate memory of the multiprocessor.

In contrast to DONIO where the entire �le is cache in memory and actual disk I/O

was done only in three routines (do open, do flush and do close), EDONIO caches

only a portion of the disk �le. At runtime, as the limited disk cache is �lled, data

are immediately written back to the disk in contiguous large blocks of optimal size

(default is 64Kbytes to match the RAID striping parameter) for high I/O throughput.

Similarly, data not found in the disk cache is dynamically read in large blocks.

The amount of memory dedicated to EDONIO is controlled by the user. A larger disk

cache usually results in better performance; especially if su�cient memory is available

to cache the entire �le into memory. In this case EDONIO reverts back to the behavior

of DONIO.

2. Extended Distributed Object Network I/O Library

EDONIO, like DONIO, is designed to speed up the I/O for distributed-memory parallel

applications where all processors open a common multi-megabyte shared �le for simul-

taneous access. To access a shared �le, each processor positions its own private copy

of the �le pointer with lseek()'s to speci�c places in the �le and then performs in-

put/output operations. (Simultaneous output to overlapping regions in a shared �le is

nondeterministic; therefore, we assume that output operations do not overlap among

processors). Such �le access patterns are common in �nite element codes that are
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based on subdomain decomposition. For example, the data for material properties

or boundary conditions are commonly stored in shared �les. This arrangement pro-

vides 
exibility in solving the same problem with varying numbers or con�gurations of

processors without rearranging the data �les.

A disadvantage of large shared �les is that the overhead induced by many processors

attempting to access the disk �le concurrently can be quite large. Machines like the

Intel iPSC/860 and Paragon attempt to support simultaneous access through a special

�le system (CFS for the iPSC/860, PFS for the Paragon). Even with this support, the

cost for concurrent access to the same �le can signi�cantly degrade the performance of

a parallel program. It is common for �le I/O to be one of the most costly operations

in a parallel application. On the Intel Paragon machines, the default M UNIX mode

corresponds to standard UNIX �le sharing semantics that enforce atomic updates by

serializing all requests. The new M ASYNC �le I/O mode allows multiple simultaneous

read/write requests with no restrictions and dramatically reduces the cost of I/O oper-

ations over the previous M UNIX mode. EDONIO is designed to fully exploit the parallel

M ASYNC I/O mode by allowing all processors to perform non-overlapping I/O requests.

Moreover, EDONIO uses the aggregate memory of the multiprocessor to implement a

very large high-speed disk cache.

EDONIO is compatible with DONIO and o�ers a UNIX-like interface consisting of the

`C' callable primitives do open(), do read(), do write(), do lseek(), do lsize(),

do flush() and do close(), which are similar to the open(), cread(), cwrite(),

lseek(), lsize(), flush() and close() routines provided by the Intel NX operating

system. A Fortran callable interface, (e.g., DOREAD() for do read()), is also provided.

Section 3 describes the use of these EDONIO primitives in more detail. Changing the

names of the I/O subroutines called in an application program from the NX version

to the EDONIO version (leaving the parameters untouched) and then linking in the

EDONIO library is generally all that is required to use the package. An important note:

EDONIO operates only on UNIX binary �les, which may be incompatible with Fortran

unformatted �xed-size record �les.

Many large-scale applications involving the simulation of time-evolving events are

designed to output a \snapshot" or \checkpoint" of the current state of the simulation

at regular intervals. A lengthy simulation may output tens (or even hundreds) of
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Gigabytes of data for later analysis. The original DONIO was incapable of handling �les

larger than 2Gigabytes. EDONIO overcomes this restriction, thereby providing rapid I/O

capabilities on �les of practically unlimited size (up to 16Terabytes).

3. User Interface

The following pages provide details on the syntax and behavior of each of the EDONIO

primitives. These pages can be considered the manual for EDONIO.
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do check()

do check() checks the message queues for EDONIO or IPX requests from other

processors, servicing any that are found.

Synopsis

int docheck( )

subroutine docheck( )

Discussion

do check() checks the calling processor's message queues for IPX requests from

other processors. If none are found, do check() returns immediately. Any queued

requests are serviced before do check() terminates. do check() is provided to

allow the user to avoid deadlock or slow servicing (starvation) of I/O requests if

a non-interrupt (polling) version of IPX is used. All EDONIO calls automatically

perform a do check() operation. However, do check() should be called period-

ically by processors that are not involved in �le I/O operations for long periods

of time.
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do close()

do close() closes the �le associated with the �le descriptor and deallocates global

shared resources. do close() must be called to ensure that all bu�ered writes are

saved to disk. In C, do close() returns 0 on success and -1 on failure. An

implicit global synchronization is performed.

Synopsis

int do close( int fd )

subroutine doclose( fd )

integer fd

Input parameters

fd { fd is the �le descriptor obtained from do open().

Discussion

do close() deallocates the global shared resources used for caching the �le

data associated with the �le descriptor fd. For write-only and read-write �les,

do close() �rst calls do flush() to write out any cached data to the disk �le

before resources are deallocated. (If none of the cached pages are dirty, or if the

�le is read-only, no disk I/O is performed).

Important note: Unlike the UNIX routines, no implicit do close() calls are per-

formed when the program terminates. Hence, if the user fails to call do close()

for a given �le, any changes made to cached blocks that have not yet been 
ushed

will be lost upon program termination! All processors must participate in the

do close() call. An implicit global synchronization is performed.
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do csize()

do csize() sets the sizes of the EDONIO read-only data cache and disk cache. An

implicit global synchronization is performed.

Synopsis

int do csize( int data size, int disk size )

subroutine docsize( datasize, disksize )

integer datasize, disksize

Input parameters

data size { data size is the maximum amount of memory in KBytes

to be allocated to the read-only data cache. A value of 0 is

valid, and can be used to disable the read-only cache if no

user �les are opened with permission 
ag O RDONLY.

disk size { disk size is the maximum amount of memory in KBytes

to be allocated to the disk cache. A value of 0 results in an

error.

Discussion

do csize() determines the maximum memory usage allowed by EDONIO's read-

only data cache and disk cache. Actual allocation of memory for the caches is

done only as needed. Tip: The user might call vm statistics() at runtime or

use vm stat on the service nodes to determine the amount of free memory (or free

pages) available. To avoid excessive paging, parameters for do csize()should not

exceed the amount of free memory.

All processors must participate in the do csize(). An implicit global synchro-

nization is performed.
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do flush()

do flush() forces EDONIO to write any \dirty" or \modi�ed" blocks associated

with the speci�ed �le to the disk. After do flush(), the disk �le and cached

blocks are guaranteed to be consistent. In C, do flush() returns 0 on success and

-1 on failure. An implicit global synchronization is performed.

Synopsis

int do flush( int fd )

subroutine doflush( fd )

integer fd

Input parameters

fd { fd is the �le descriptor obtained from do open().

Discussion

do flush() forces an immediate write of any dirty blocks corresponding to the

speci�ed �le to disk. If no changes have been made to the cached �le since the

last call to do flush(), no disk I/O will take place. do flush() is provided

to support checkpointing, since in the event of a machine malfunction, all data

written to the cached �le will be lost. EDONIO automatically keeps track of the

largest byte addressed with do write(), so the disk �le will have the correct size.

However, unwritten bytes (i.e., gaps) in the �le will contain garbage.

do flush() may also enhance performance of write operations. If a cache miss

causes EDONIO to 
ush a dirty cache block, only that block is written to disk.

Better I/O performance may be obtained by writing many blocks concurrently

with do flush().

All processors must participate in the do flush() call. An implicit global syn-

chronization is performed.
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do lsize(), do esize()

do lsize() estimates the size of the write-only or read-write output �le associated

with �le descriptor fd. In C, do lsize() returns nbytes on success. An implicit

global synchronization is performed.

Synopsis

int do lsize( int fd, int nbytes )

esize t do esize( int fd, esize t nbytes )

subroutine dolsize( fd, nbytes )

integer fd, nbytes

subroutine doesize( fd, lnbytes )

integer fd, lnbytes(2)

Input parameters

fd { fd is the �le descriptor obtained from do open().

nbytes { nbytes is the estimated �le size in bytes.

Discussion

do lsize() tries to increase I/O throughput by attempting to preallocate the

requested disk blocks before starting write operations. Unlike DONIO it is no

longer mandatory to call do lsize(). Overestimation of the �le size may cause

overallocation and suboptimal performance, but the actual �le generated on disk

will be of correct (minimal) size. Calling do lsize() for �les opened for read-only

access results in an error.

All processors must participate in the do lsize(). An implicit global synchro-

nization is performed.
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do lseek(), do eseek()

do lseek() (do eseek()) sets the (local) seek pointer of the open �le associated

with the �le descriptor and returns the new seek position.

Synopsis

#include <unistd.h>

#include <nx.h>

int do lseek( int fd, int offset, int whence )

esize t do eseek( int fd, esize t offset, int whence )

include 'fnx.h'

integer function dolseek( fd, offset, whence )

integer fd, offset, whence

subroutine doeseek( fd, loffset, whence, lpos )

integer fd, whence

integer loffset(2), lpos(2)

Input parameters

fd { fd is the �le descriptor obtained from do open().

offset { offset is the o�set in bytes. Note that EDONIO supports

extended �les larger than 2Gigabytes. For these extended

�les, the o�set and returned value must be an extended

integer (esize t) in C, or an integer array of length 2 in

FORTRAN.

whence { whence determines the computation with o�set. whence is

one of SEEK SET=0, SEEK CUR=1 or SEEK END=2.
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Discussion

do lseek() (do eseek()) sets the seek pointer associated with the open �le spec-

i�ed by the descriptor fd according to the value supplied for whence. whence

must be one of SEEK SET=0, SEEK CUR=1, SEEK END=2 de�ned in <unistd.h> (see

lseek(2)).

If whence is SEEK SET, the seek pointer is set to offset bytes. If whence is

SEEK CUR, the seek pointer is set to its current location plus offset. If whence is

SEEK END, the seek pointer is set to the size of the �le plus offset. IMPORTANT

NOTE: Calling do lseek() using whence=SEEK END is guaranteed correct only in

two cases: the �le must have been opened with O RDONLY, or a call to do flush()

must immediately precede the do lseek() call. The reason is that the current �le

size has no meaning until all bu�ered writes have been 
ushed.

dolseek( fd, 0, SEEK END) (after do flush(), as described above) returns the

size (in bytes) of the opened �le associated with fd.
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do nio()

do nio() initializes the EDONIO system. do nio() must be called prior to opening

any �les with do open(). In C, do nio() returns 0 on success, -1 on failure.

Synopsis

int do nio( int myid, int nproc )

subroutine donio( myid, nproc )

integer myid, nproc

Input parameters

myid { myid is the id number of the calling processor.

nproc { nproc is the total number of processors executing.

Discussion

All nodes must call do nio() to initialize the EDONIO network I/O library. do nio()

sets up internal data structures and initializes the IPX subsystem. Calling do nio()

is required before any other calls to EDONIO routines. Failure to do so will result

in an error.
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do open()

do open() returns a non-negative descriptor on success. On failure, it returns

-1. An implicit global synchronization is performed.

Synopsis

#include <sys/fcntl.h>

int do open( char *path, int flags, int mode )

include 'fnx.h'

integer function doopen( path, flags, mode )

character*(*) path

integer flags, mode

Input parameters

path { path is a null-terminated string that contains the pathname

of the �le.

flags { flags contains the access 
ags.

mode { mode is the �le permission (see chmod(2)) used in creating

the output �le. mode is ignored if the �le already exists.

Discussion

The routine emulates the UNIX open (see open(2) in the UNIX manual), which

opens the named �le speci�ed by path for read-only, write-only or read-write

access, as speci�ed by the flags argument, and returns a descriptor for that �le.

For write-only or read-write access, if the �le does not exist, it is created with

permission mode mode (see chmod(2)). Note that do open() di�ers from UNIX

open if the write-only �le already exists. In that case, the �le is �rst truncated

(see truncate(2)) to an empty �le and then rewritten.

All processors must participate in the do open() call. An implicit global syn-

chronization is performed.

A Fortran example of the use of do open() is given below:
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c ---

c --- mode is set to octal 666,

c --- full read-write permission on file

c ---

mode = 8*8*6 + 8*6 + 6

c ---

c --- UNIX flags

c --- O_RDONLY = 0, O_WRONLY = 1, O_RDWR = 2

c ---

rflags = 0

wflags = 1

rwflags = 2

c ---

c --- be sure path is null terminated

c ---

path = '/pfs/infile' // char(0)

c ---

c --- open the file for read-write access

c ---

fd = doopen( path, rwflags, mode )
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do preload()

do preload() �lls any empty slots in the cache with blocks from the disk �le,

starting with the �rst block referenced by the minimum value of all the local seek

pointers.

An implicit global synchronization is performed.

Synopsis

void do preload( int fd )

subroutine dopreload( fd )

integer fd

Input parameters

fd { fd is the EDONIO �le descriptor for the �le opened with

do open().

Discussion

do preload() �lls any empty slots in the disk cache with data from the disk.

Preloading the cache is desirable when �le access patterns may cause disk I/O to

be ine�cient. For example, if a number of processors attempt to read common

data from the same processor, then there may be signi�cant idle time while

they all wait for the data to be brought in from disk. Preloading the cache

ensures that the initial disk I/O is fully parallel and subsequent read accesses can

proceed at full speed from the disk cache. Preloading starts from the point of the

minimum seek location among all processors. The user can perform a do lseek()

(do eseek()) immediately prior to the do preload() call to ensure that the data

in the cache are relevant to subsequent operations. By default, preloading starts

from the beginning of �le.

Note that preloading will not displace data already in the disk cache. In partic-

ular, if the cache is already full, then do preload() has no e�ect. However, the

user can force the creation of empty slots either by calling do csize() to increase

the memory allocated for the cache, or alternatively, the user can force a partial
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purge of the cache by using two consecutive do csize() calls to contract and

then reset the disk cache size.

All processors must participate in the do preload() call. An implicit global

synchronization is performed.
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do read()

do read() performs a read operation into the speci�ed bu�er. In C, do read()

returns the number of bytes read.

Synopsis

int do read( int fd, void *buf, int nbytes )

subroutine doread( fd, buf, nbytes )

integer fd, buf(*), nbytes

Input parameters

fd { fd is the �le descriptor obtained from do open().

buf { buf is the bu�er.

nbytes { nbytes is the number of bytes to be read.

Description

do read() attempts to read nbytes bytes of data from the �le referenced by the

descriptor fd into the bu�er buf (see read(2)).

The calling process waits (blocks) until the request is completed. Important:

Note that reading past the end of �le causes an error instead of partially �lling

the bu�er. Calling do read() to read from a write-only �le causes an error. The

seek pointer is updated to point to the next byte in the �le.

Note that the execution times for the do read() may vary substantially, depend-

ing on the access pattern and e�ectiveness of the disk cache.
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do write()

do write() performs a write operation from the speci�ed bu�er. In C, do write()

returns the number of bytes written.

Synopsis

int do write( int fd, void *buf, int nbytes )

subroutine dowrite( fd, buf, nbytes )

integer fd, buf(*), nbytes

Input parameters

fd { fd is the �le descriptor obtained from do open().

buf { buf is the bu�er.

nbytes { nbytes is the number of bytes to be written.

Description

do write() attempts to write nbytes bytes of data to the �le referenced by the

descriptor fd from the bu�er buf (see write(2)).

The calling process waits (blocks) until the request is completed. Using do write()

to write to a read-only �le causes an error. The seek pointer is updated to point

to the next byte in the �le.

Note that the execution times for do write() may vary signi�cantly, depending

on the access pattern and e�ectiveness of the disk cache.
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4. Implementation Details

EDONIO provides a large high-speed disk cache in the aggregate memory of the Intel

multiprocessor. The most important di�erence between EDONIO and DONIO is that

the entire disk �le is no longer kept in memory as in DONIO. Instead, EDONIO acts

more as a true disk cache, reading and writing blocks of the �le as needed. Hence

EDONIO no longer requires the user to call do lsize() before do write(). do lsize()

(do esize()) is now merely a hint to the operating system concerning the eventual

�le size. EDONIO automatically keeps track of the highest address actually used. If the

user overestimates the �le size in do lsize() (do esize()), then the correct (exact)

size �le will still be written to disk.

The conceptual view of a disk �le in EDONIO is a sequence of blocks, each containing

a �xed number (default 8 pages) of �xed size (default 8KBytes) pages.1 Responsibility

for actual disk I/O on the blocks is assigned to the processors in a wrap-mapped fashion.

Thus, in an N -processor con�guration, processor p is responsible for satisfying any I/O

requests involving blocks p; p+N; p+ 2N; : : : etc.

EDONIO supplies two separate caches: the disk cache and the read-only data cache.

A processor's disk cache contains blocks of the disk �le that have been most recently

accessed. Note that blocks are only cached in the disk cache by the processor responsible

for the given block, thus eliminating concerns for cache coherency. EDONIO also provides

a read-only data cache for read-only �les to reduce message tra�c on repeated re-reads

of the same data. Read-only �les cannot be updated and is completely free from cache-

coherency restrictions, therefore, the read-only data cache may hold any data that has

been accessed, regardless of assignment (though the actual disk read is still performed

by the assigned processor).

EDONIO uses the least recently used (LRU) strategy for cache management. That

is, if the cache is full when a cache miss occurs, the least recently accessed block in the

disk cache is deleted to make room for the incoming cache block. For the read-only

data cache, merely freeing the memory is su�cient. However, for the disk cache, the

chosen block is �rst checked to see if it is \dirty" (i.e., has been altered). If so, it

is written out to disk before it is deleted from the cache. This di�ers markedly from

1The xps35 Intel Paragon uses hardware pagesize of 8Kbytes, and RAID disk stripe size is con�gured

to be 64Kbytes.
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DONIO, where the cache was set large enough to contain the entire �le, thus eliminating

the need for disk I/O until the �le was closed.

In EDONIO, all processors must participate concurrently in do open(), do lsize()

(do esize()), do flush() and do close(). The processors are synchronized when

opening a shared �le with do open() so that EDONIO can set up common data struc-

tures. They are synchronized in do flush() and in do close() to ensure that there

are no outstanding read or write requests.

EDONIO must deviate from the UNIX �le system with respect to �le permissions.

The UNIX �le systems allow a user to open an existing �le with 
ag O WRONLY (assuming

the �le mode allows write access) in a directory in which the user does not have read

access. EDONIO cannot allow this, since it is impossible for EDONIO to act as a disk

cache on a �le without read permission. For simplicity, we assume that the user has

read permission on any �les that will be accessed with do open(). Moreover, although

EDONIO supports a write-only �le mode (as a safety check to prevent read operations

on the �le), the actual �le permissions must allow both reading and writing.

The original DONIO did not support an APPEND mode for �le I/O. Instead, the user

was advised to open separate �les for each logically separate set of data, largely because

of the inherent limitation on �le size in DONIO. With EDONIO, the UNIX O APPEND is

still not directly supported but �le size is no longer a concern, as we now fully support

�les of practically unlimited size (up to 16Terabytes). The user can append to a �le

by �rst seeking to end of �le (see description on do lseek()and do flush()) before

writing.

With EDONIO, the execution times for do read() and do write() may vary signif-

icantly depending on the ratio of cache hits/misses. The user can reduce these times

in several ways. The size of the cache can be increased (see do csize()) to improve

the probability of cache hits, or preloading of the cache (see do preload()) can also

improve I/O performance.

Consider the sequence of events initiated by a do read() request. First, the disk

blocks involved are identi�ed. If the disk block is assigned to the same calling processor,

the local disk cache is searched. A cache miss causes EDONIO to load these blocks into

the local disk cache, displacing other blocks if necessary. For any blocks assigned to
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other processors, the IPX2 system [3] is used to request the data from the processors that

\own" those blocks. The read request is satis�ed after the remote data are received. If

the �le was opened as a read-only �le, the incoming data are also placed in the local

read-only cache, to reduce message passing tra�c should the same data be referenced

in subsequent read operations. Note the read-only data cache holds only remote (non-

local) data.

A do write() operation is similar. Again, the disk blocks to be written are iden-

ti�ed. Blocks assigned to the same processor are loaded into the cache if they are not

already there. EDONIO uses the IPX ``on'' routine (a type of \remote procedure call")

to cause other processors to update blocks assigned to them. On the iPSC/860, IPX uses

the NX hrecv() interrupt mechanism to preempt a processor to service IPX requests.

However, on the Intel Paragon, hrecv() is not a true interrupt handler but spawns a

separate thread that executes concurrently with the main computation. The extensive

use of masktrap() for exclusive access to critical sections incurs a very high overhead

on the Paragon. We have chosen to use a more e�cient non-interrupt (polling) version

of IPX for use on the Paragon. Because IPX requests are serviced only when the mes-

sage queue is polled, and processors must supply data or update blocks at the request

of other processors, the user must be careful to prevent deadlock or starvation. EDONIO

provides the do check() routine to examine the message queue for IPX requests. For

example, code that uses a subset of the processors to handle all the disk I/O will fail

unless the remaining processors periodically call do check(), since IPX requests to

these processors will not be serviced. See the manual page for do check() for further

discussion.

We have included a subprogram for preloading the disk-cache to enhance perfor-

mance of the disk I/O. Preloading of the disk-cache is particularly desirable immediately

after opening an existing �le, where disk I/O during preloading proceeds in parallel.

Preloading is not guaranteed to improve I/O performance since it depends on the ac-

cess pattern and size of disk cache. See the manual page for do preload() for further

details.

2IPX is available by anonymous FTP from msg.das.bnl.gov under the directory /pub/ipx.
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5. Experimental Results

In this section we present a rough comparison of disk performance by EDONIO versus

native NX routines. The Fortran source code is included in the Appendix. The code

is a contrived example that simulates the disk I/O common in �nite element codes by

performing multiple direct access lseek()'s, cread()'s and cwrite()'s. This example

generates the element-to-vertex list for a three dimensional nex � ney � nez grid.

The elements are assumed to be ordered with z-index varying fastest, then x then y.

Elements along the vertical direction are grouped in bu�er mibuf before writing to

obtain better disk performance. Note that the element-to-vertex list �le is independent

of the number of processors. The same �le is later read again.

Since operating system patches and compiler upgrades are regularly applied to the

512-processor xps35 Intel Paragon system at the Oak Ridge National Laboratory, and

EDONIO is currently undergoing performance tuning, the performance numbers listed

should be taken only as approximate and re
ect only the current state of a�airs (Feb

1995, OS version R1.2.5). Moreover, background disk activity by other concurrently

running applications may also a�ect the timings. Three problems were used for testing:

a small 100 � 100 � 100 (1,000,000 elements) problem, a medium 200 � 200 � 200

(8,000,000 elements), and a large 300� 300� 300 (27,000,000 elements) problem.

Table 5.1 show the e�ect of varying the amount of memory allocated to the disk

cache in EDONIO on 22 nodes on a 200 � 200 � 200 grid (�le size is 256 � 106 bytes).

We see from Table 5.1 that optimal performance is obtained when the aggregate disk

cache can hold the entire �le. Table 5.2 shows preloading the disk cache can reduce

I/O time in read for 16 nodes on 121 � 121 � 91 grid (�le size is 42; 634; 592 bytes).

Runtimes are obtained from dclock().

Tables 5.3{5.5 list the runtimes (in seconds) for the three problems. All runs have

EDONIO con�gured to use 512Kbytes for read-only data cache, 4096Kbytes for disk

cache and with cache preloading. Note that with the default 4096Kbytes allocated for

the disk cache, 8, 62 and 206 processors are needed to hold the small, medium and

large problems (respectively) in memory. The label wopen (wclose) denotes the time

for opening (closing) a �le for write-only access; similarly, ropen and rclose apply

to read-only access. Note that read and write times in EDONIO decrease with the

addition of more processors. As more processors are used, fewer messages per processor
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Table 5.1: E�ect on disk cache size on EDONIO, all times in seconds.

Cache (KBytes) wopen write wclose ropen preload read rclose

1024 3.0 20.6 0.7 1.6 0.7 55.6 0.2
2048 1.7 21.2 1.5 1.2 1.3 52.7 0.3
4096 1.6 17.3 3.2 2.2 2.6 46.2 0.3
8192 1.5 13.4 6.2 1.2 5.5 29.4 0.3
12288 1.6 9.6 6.6 2.2 10.3 20.3 1.5

Table 5.2: E�ect of do preload()on EDONIO, all times in seconds.

wopen write wclose ropen preload read rclose

With preload 2.2 3.1 2.4 1.3 1.3 4.7 0.2
No preload 1.2 3.1 1.8 0.8 0.0 25.3 0.2

NX 1.4 38.5 0.2 0.7 0.0 25.4 0.2

are generated. Moreover, more total aggregate memory (4Mbytes per processor) is

available for the disk cache. wclose and preload involve physical disk activity to

write out or read in data into the aggregate disk cache; hence as the disk cache size

increases with more processors, more data are transfered and more time for disk I/O

may be required.

We see that with a large enough disk cache, EDONIO may o�er nearly a ten-fold

improvement over native NX routines. However, if the disk cache is too small to be

e�ective, performance of EDONIOmay be similar to native NX. EDONIO fully exploits the

new M ASYNC mode in achieving over 20Megabytes per second overall disk throughput

to the /pfs. By comparison, DONIO with the default M UNIX mode obtained only about

5Megabytes per second disk throughput.

6. Summary

We have described EDONIO, a fast �le I/O emulation library for the Intel iPSC and

Paragon distributed memory multiprocessors. EDONIO provides an easy to use interface,

and with minimal change to the source of an iPSC/860 or Paragon parallel program

may improve �le I/O by a ten-fold speedup. Similar to the shared-memory library

DOLIB, EDONIO uses the IPX message system to provide a very large high-speed disk
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Table 5.3: Runtimes (in seconds) of EDONIO (NX) routines on 100� 100� 100 grid, �le
size is 32� 106 bytes.

processor wopen write wclose ropen preload read rclose

1 1.9 (1.0) 29.1 (293.7) 0.7 (0.1) 0.7 (0.4) 2.5 44.9 (213.7) 0.1 (0.1)
2 1.5 (1.0) 20.9 (187.8) 0.6 (0.1) 0.6 (0.5) 2.8 39.5 (83.8) 0.1 (0.1)
4 2.0 (0.9) 13.2 (84.2) 0.7 (0.1) 0.6 (0.6) 2.8 22.6 (48.9) 0.1 (0.1)
8 1.4 (0.9) 6.4 (50.5) 1.2 (0.1) 0.7 (0.6) 1.9 8.2 (34.2) 0.2 (0.1)
16 1.2 (1.5) 3.5 (26.8) 1.1 (0.2) 1.0 (0.7) 1.8 4.3 (17.0) 0.3 (0.2)
32 2.0 (1.6) 2.0 (20.5) 1.8 (0.4) 1.3 (1.4) 1.0 2.3 (10.0) 0.4 (0.4)
64 3.1 (2.8) 1.3 (22.6) 2.4 (0.7) 2.5 (3.0) 0.9 1.3 (9.5) 0.8 (0.9)

Table 5.4: Runtimes (in seconds) of EDONIO (NX) routines on 200� 200� 200 grid, �le
size is 256� 106 bytes.

processor wopen write wclose ropen preload read rclose

16 3.1(1.3) 31.3(141.2) 1.9(0.2) 1.4(0.8) 2.2 84.5(89.5) 0.3(0.2)
32 3.1(2.1) 15.5(122.4) 3.2(0.4) 1.5(1.3) 3.6 30.1(49.3) 0.4(0.4)
64 3.0(3.5) 5.3(118.6) 7.6(0.7) 2.5(2.1) 7.9 7.2(48.0) 0.8(0.7)
128 4.7(4.7) 3.0(89.2) 10.7(1.5) 4.3(3.7) 7.7 4.0(47.5) 1.6(1.4)

Table 5.5: Runtimes (in seconds) of EDONIO (NX) routines on 300� 300� 300 grid, �le
size is 864� 106 bytes.

processor wopen write wclose ropen preload read rclose

32 2.1(1.5) 45.9(262.0) 5.2(0.4) 2.6(2.3) 3.4 119.5(111.4) 0.4(0.3)
64 2.9(2.8) 24.1(218.1) 7.3(0.7) 2.8(2.2) 6.5 56.7(108.8) 0.8(0.7)
128 4.9(4.5) 14.1(360.3) 23.1(1.5) 4.6(4.8) 15.8 21.4(105.2) 1.5(1.5)



- 24 -

cache in the aggregate memory of the multiprocessor. Disk I/O operations are in large

blocks to fully exploit the new M ASYNC I/O mode. EDONIO is more memory e�cient

than DONIO and can access �les of practically unlimited size.

7. Obtaining the Software

To obtain the source code for EDONIO the reader should send email to the authors:

e6d@ornl.gov or rominech@ornl.gov.
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8. Appendix

In this appendix, we list the Fortran source code used in comparing the performance of

EDONIO and NX disk operations. Note that either EDONIO or NX routines can be selected

by a 
ag at compile time.

program example

c---

c--- a simple example to illustrate the use of DONIO

c---

include 'fnx.h'

#ifdef USE_NX

c---

c--- note: fd is defined as a constant unit number

c---

integer fd

parameter(fd=16)

#define M_MODE M_ASYNC

#define IOINIT(myid,nproc)

#define LSEEK lseek

#define ROPEN(fd, filename) call gopen(fd,filename,M_MODE)

#define WOPEN(fd, filename) call gopen(fd,filename,M_MODE)

#define LSIZE(fd, newsize) ierr = lsize( fd, newsize, SIZE_SET )

#define CREAD(fd, ibuffer,nbytes) call cread(fd,ibuffer,nbytes)

#define CWRITE(fd, ibuffer, nbytes) call cwrite(fd, ibuffer, nbytes )

#define CCLOSE(fd) close( fd )

#define GSYNC() call gsync()

#else

integer rflags,wflags,mode

parameter(rflags=0,wflags=(512+1),mode=(8*8*6+8*6+6))

integer doopen, doread, dowrite, dolseek

external doopen, doread, dowrite, dolseek

external doclose,dolsize

c---

c--- note: fd is declared as a variable

c---

integer fd

#define IOINIT(myid,nproc) call donio(myid,nproc)

#define LSEEK dolseek

#define ROPEN( fd, filename) fd = doopen( filename, rflags,mode)
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#define WOPEN( fd, filename) fd = doopen( filename, wflags,mode)

#define LSIZE( fd, newsize ) call dolsize( fd, newsize )

#define CREAD(fd, ibuffer,nbytes) ierr = doread(fd, ibuffer, nbytes )

#define CWRITE(fd, ibuffer, nbytes) ierr = dowrite( fd, ibuffer, nbytes )

#define CCLOSE( fd ) call doclose(fd)

#define GSYNC() call dogsync()

#endif

integer indev,outdev,sizeint,nvertex,maxnez

parameter(indev=5,outdev=6,sizeint=4,nvertex=8,maxnez=1024)

integer data_size,disk_size

integer ipreload

double precision tstart,tend

character*80 filename

integer i, ix,iy,iz, nnx,nny,nnz, nex,ney,nez

integer jx,jy,jz

integer mbuf(nvertex,maxnez)

integer mbuf2(nvertex,maxnez)

integer nbytes, myid,nproc,ihost

real*8 totalbytes

integer mi,miold,ierr,offset, iwork

logical ismine

c---

c--- 8 vertices of an hexahedral brick element

c---

integer dx(nvertex),dy(nvertex),dz(nvertex)

data dx /0,1,1,0, 0,1,1,0/

data dy /0,0,1,1, 0,0,1,1/

data dz /0,0,0,0, 1,1,1,1/

integer ijk2mi,ijk2ni

ijk2mi(ix,iy,iz,nex,ney,nez) = iz+(ix-1)*nez+(iy-1)*nez*nex

ijk2ni(ix,iy,iz,nnx,nny,nnz) = iz+(ix-1)*nnz+(iy-1)*nnz*nnx

c---

c--- code begins

c---

myid = mynode()

nproc = numnodes()

#if RX || I860

call open0(nproc, myid, ihost )

#endif

IOINIT( myid, nproc )
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nex = 0

ney = 0

nez = 0

data_size = 0

disk_size = 0

ipreload = 0

if (myid .eq. 0) then

write(outdev,*) 'enter nex,ney,nez '

read(indev,*) nex,ney,nez

write(outdev,*) 'nproc, nex,ney,nez ', nproc,nex,ney,nez

write(outdev,*) 'enter data_size, disk_size (in Kbytes)'

read(indev,*) data_size,disk_size

write(outdev,*) 'data_size,disk_size',data_size,disk_size

write(outdev,*) 'enter use of preload '

read(indev,*) ipreload

write(outdev,*) 'ipreload ',ipreload

endif

call gisum( data_size, 1, iwork )

call gisum( disk_size, 1, iwork)

call docsize( data_size, disk_size )

call gisum( ipreload, 1, iwork )

call gisum(nex,1,iwork)

call gisum(ney,1,iwork)

call gisum(nez,1,iwork)

nnx = nex + 1

nny = ney + 1

nnz = nez + 1

totalbytes = dble(nex*ney*nez)*dble(nvertex*sizeint)

GSYNC()

tstart = dclock()

#ifdef USE_NX

#if RX || I860

filename = '/cfs/nxex.bin'
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#else

filename = '/pfs/nxex.bin'

#endif

#else /* USE_NX */

c---

c--- IMPORTANT NOTE: string MUST be null terminated

c---

#if RX || I860

filename = '/cfs/ex.bin' // char(0)

#else

filename = '/pfs/ex.bin' // char(0)

#endif

#endif /* USE_NX */

WOPEN( fd, filename )

GSYNC()

tend = dclock()

if (myid .eq. 0) then

write(outdev,*) ' open takes ', tend-tstart,' sec'

write(outdev,*) ' total file size is ',

& int(totalbytes/1024.0/1024.0),' Megbytes'

endif

c

nbytes = nvertex*sizeint

GSYNC()

tstart = dclock()

miold = -1

do iy=1,ney

do ix=1,nex

ismine = (mod( ix+(iy-1)*nex, nproc) .eq. myid )

if (ismine) then

do iz=1,nez

do i=1,nvertex

jx = ix+dx(i)

jy = iy+dy(i)

jz = iz+dz(i)

mbuf(i,iz)=ijk2ni(jx,jy,jz,nnx,nny,nnz)

enddo

enddo

mi = ijk2mi( ix,iy,1, nex,ney,nez)

if (miold.eq.-1) then

offset = (mi-1)*nvertex*sizeint

ierr = LSEEK( fd, offset, SEEK_SET )
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else

offset = (mi-miold)*nvertex*sizeint - nbytes

ierr = LSEEK( fd, offset, SEEK_CUR )

endif

miold = mi

nbytes = nez*nvertex*sizeint

CWRITE( fd, mbuf(1,1), nbytes )

endif

enddo

enddo

GSYNC()

tend = dclock()

if (myid .eq. 0) then

write(outdev,*) ' write takes ', tend - tstart,' sec'

endif

GSYNC()

tstart = dclock()

CCLOSE( fd )

GSYNC()

tend = dclock()

if (myid .eq. 0) then

write(outdev,*)' close for write takes ',tend-tstart,' sec'

endif

c ---

c --- read the element list back

c ---

GSYNC()

tstart = dclock()

ROPEN( fd, filename )

GSYNC()

tend = dclock()

if (myid .eq. 0) then

write(outdev,*)' open for read takes ', tend-tstart,' sec'

endif

if (ipreload.ne.0) then

GSYNC()

tstart = dclock()

call dopreload( fd )

GSYNC()

tend = dclock()

if (myid.eq.0) then

write(outdev,*) 'preload takes ',tend-tstart,' sec'

endif

endif
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nbytes = nvertex*sizeint

GSYNC()

tstart = dclock()

miold = -1

do iy=1,ney

do ix=1,nex

ismine = (mod( ix+(iy-1)*nex, nproc) .eq. myid )

if (ismine) then

do iz=1,nez

do i=1,nvertex

jx = ix+dx(i)

jy = iy+dy(i)

jz = iz+dz(i)

mbuf2(i,iz)=ijk2ni(jx,jy,jz,nnx,nny,nnz)

enddo

enddo

endif

if (ismine) then

mi = ijk2mi( ix,iy, 1, nex,ney,nez)

if (miold.eq.-1) then

offset = (mi-1)*nvertex*sizeint

ierr = LSEEK( fd, offset, SEEK_SET )

else

offset = (mi-miold)*nvertex*sizeint - nbytes

ierr = LSEEK( fd, offset, SEEK_CUR )

endif

miold = mi

nbytes = nez*nvertex*sizeint

CREAD( fd, mbuf(1,1), nbytes )

endif

c ---

c --- double check results

c ---

if (ismine) then

do iz=1,nez

do i=1,nvertex

if (mbuf2(i,iz).ne.mbuf(i,iz)) then

write(*,9900) i,iz,mbuf2(i,iz),mbuf(i,iz)

9900 format('i,iz,mbuf2(i,iz),mbuf(i,iz)',4(1x,i7))

stop '** ERROR ** '

endif

enddo

enddo

endif
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enddo

enddo

GSYNC()

tend = dclock()

if (myid .eq. 0) then

write(outdev,*) ' all reads take ',tend-tstart,' sec'

endif

GSYNC()

tstart = dclock()

CCLOSE( fd )

GSYNC()

tend = dclock()

if (myid .eq. 0) then

write(outdev,*) ' close for read takes ', tend-tstart,' sec'

endif

stop

end
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