
Chapter 1

DOLIB: Distributed Object Library�

E.F. D'Azevedo
y

C.H. Rominey

Abstract

DOLIB (Distributed Object Library) emulates global shared memory in distributed
memory environments intended for scienti�c applications. Access to global arrays is
through explicit calls to gather and scatter. Use of DOLIB does not rely on language
extension, compiler or operating system supports. Shared memory provided by DOLIB

was also used by DONIO (Distributed Network I/O Library) as large disk caches that gave
improvements of 15 to 30 fold on the Intel Paragon. DOLIB shared memory simpli�es
the parallelization of the CHAMMP Semi-Lagrangian Transport (SLT) code that has
particle tracking as the kernel computation.

1 Introduction

DOLIB (Distributed Object Library) [1] is a library of routines that provide support for
accessing emulated global shared memory on distributed memory systems. Access to a
distributed global array is through explicit calls to gather and scatter. Advantages of
using DOLIB include: dynamic allocation and freeing of huge (gigabyte) distributed arrays,
both C and Fortran callable interfaces, and the ability to mix shared-memory and message-
passing programming models for ease of use and optimal performance. DOLIB supports
automatic caching of read-only data for high performance. DOLIB also supports atomic
accumulation and update operations that avoid explicit locking/unlocking for use in parallel
�nite element matrix assembly.

Section 2 contains details in implementing DOLIB. Currently DOLIB is implemented
on the IPX message system developed at Brookhaven National Laboratory. The original
ipsc860 implementation of IPX relies heavily on the hrecv() preemptive interrupt handling
capability of the Intel machines. We have modi�ed a more portable version of IPX to use
polling. Performance of DOLIB on the synthetic and application codes will be described.

We have used DOLIB to create DONIO (Distributed Object Network I/O Library) [2] for
faster disk I/O performance on Intel machines, described in x3. DONIO uses DOLIB to store
a \cached" copy of the entire disk �le in the aggregate memory of the multiprocessor. All
disk I/O routines are then translated into memory updates (again using the DOLIB gather

and scatter operations) to exploit the faster high bandwidth network for moving data.
Actual disk I/O operations are performed in large blocks using a few I/O processors to take
advantage of RAID 0 striping across multiple disks for optimal disk performance. Tests on
both synthetic codes and actual application codes in x4 show that DONIO improves disk I/O

�This research was supported by the Applied Mathematical Sciences subprogram of the O�ce of Energy

Research, U.S. Department of Energy under contract DE-AC05-84OR21400 with Martin Marietta Energy

Systems, Inc.
yMathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831{6367.

1

2 D'Azevedo and Romine

performance by a factor of 15 to 30 compared to native Intel NX I/O calls to their parallel
�le system cfs or pfs.

Virtual shared memory provided by DOLIB also simpli�ed the parallelization of particle
tracking kernels of the CHAMMP Semi-Lagrangian Transport (SLT) code as discussed in
x5. By storing the
ow �eld in shared memory, we can eliminate the need for an arti�cial
constraint on time step.

2 Implementation of DOLIB

There has been much research on software emulation of virtual shared memory in
distributed memory environments.

The CHAOS library [5] is an attempt to provide support for the parallel solution
of irregular problems; that is, problems whose communication patterns are not easily
predictable. CHAOS is a runtime library that can analyze the pattern of indirect addressing of
arrays (such as x(ia(i)) = x(ia(i)) + y(ib(i)), and automatically devise an optimized
schedule of communication. CHAOS supports irregular assignment of data arrays to
processors by using a globally accessible translation table to describe the location of
elements of the array. The loop iterations are automatically partitioned (or repartitioned)
and assigned to processors (based on trying to optimize the resulting load balance and
communication volume). A preprocessing phase constructs the required communication
schedules for the given distribution of workload and data.

DOLIB presents a simpli�ed view of shared memory for use in scienti�c applications.
DOLIB is implemented in C using standard message passing protocols (PVM or PICL) and
does not rely on language extension, compiler or operating system support. We are also
considering an implementation of DOLIB in lower level primitives such as Active Messages [4]
and Split-C [6] for higher performance.

The performance of virtual shared memory on a distributed memory system requires an
e�ective caching strategy. DOLIB avoids the complexity of cache coherency by supporting
a restricted virtual shared memory. Speci�cally, DOLIB assumes that any global array with
caching enabled contains read-only data. If the array is updated, it is the programmer's
responsibility to
ush the cache to prevent erroneous results. In many important
applications such as distributed �nite element matrix assembly, parallel sparse matrix
factorization and Lagrangian particle tracking, updates to global arrays occur at well-
de�ned phases in the computation so cache coherency is commonly not an issue. For
example, global data such as a
ow �eld typically remains constant throughout a time-step
for Lagrangian particle tracking. At the beginning of the next time step, the cache can be

ushed to prepare for recomputing the
ow �eld.

DOLIB views a large global array as composed of �xed size pages stored in a block
wrapped fashion across all processors. This page structure simpli�es caching, which is vital
for good performance. The restriction to a block wrapped mapping allows DOLIB to easily
map array references to pages and processors. Pages are dynamically malloc'ed or free'ed.

DOLIB for the Intel ipsc860 and Paragon machines is implemented using the IPX (Inter
Process eXecution) [3] system developed at Brookhaven National Laboratory.1 The ipsc860
version of DOLIB (IPX) relies heavily on a reliable interrupt mechanism provided by hrecv

on Intel multiprocessors. If a processor makes a call to do gather, DOLIB �rst determines
where (on which other processors) the requested data reside. For example, suppose that
processor A requires data residing on processors B and C. do gather causes processor A to

1IPX is available by anonymous FTP from the site msg.das.bnl.gov under the directory /pub/ipx.

DOLIB: Distributed Object Library 3

send message requests that interrupt processors B and C from regular computation. These
processors package the requested data and send reply messages back to Processor A. They
then exit this \interrupt" mode and resume regular computation. At no time is the thread
of regular computation \aware" of the interruption. The do scatter operation involves a
similar sequence of messages as the do gather.

We have also developed a portable version of DOLIB (based on a polling version of
IPX) that does not require a preemptive interrupt mechanism and uses standard message
systems such as PICL or PVM. Each call to DOLIB primitive actively polls a message queue
to service requests for shared memory.

The main DOLIB routines that access the globally shared arrays are do gather,
do scatter and do axpby. The do axpby routine implements the operation

y(ix(:)) �x(:) + �y(ix(:));

where � and � are constants, y is a globally shared array in DOLIB, and ix(:) is an index
vector and x is a local vector. do axpby is a powerful and
exible primitive, and is commonly
used in such contexts as �nite element matrix assembly without explicit locks. We are
experimenting with a generalization of this atomic operation do axpby to

z(:) y(ix(:)); y(ix(:)) �x(:) + �y(ix(:));

return a copy of the value of y just before being modi�ed. This may be used as a \test-
and-set" facility for use in implementing queues and in dynamic load balancing.

3 Distributed Object Network I/O Library (DONIO)

DONIO is designed to speed up the I/O for distributed-memory parallel applications where
all processors open a large multi-megabyte shared �le for simultaneous access. To access
a shared �le, each processor relocates its own private copy of the �le pointer with lseek's
to speci�c places in the �le and then performs input/output operations. (Simultaneous
output to overlapping regions in a shared �le is nondeterministic; therefore, we assume
that output operations do not overlap among processors). Such �le access patterns are
common in �nite element codes that are based on subdomain decomposition. For example,
the data for material properties or boundary conditions are commonly stored in shared �les.
This arrangement provides
exibility in solving the same problem with varying numbers or
con�gurations of processors without rearranging the data �les.

A disadvantage of large shared �les is that the overhead induced by many processors
attempting to access the disk �le concurrently can be quite large. Machines like the Intel
i860 and Paragon attempt to support simultaneous access through a special �le system
(CFS for the i860, PFS for the Paragon). Even with this support, the cost for concurrent
access to the same �le can signi�cantly degrade the performance of a parallel program. The
performance of the current generation of Intel's CFS and PFS �le systems is hampered by
strict adherence to the OSF/1 standard. This in e�ect serializes the I/O to prevent any
anomalous behavior of the �le system.

DONIO o�ers a UNIX-like interface consisting of the `C' callable primitives do open,
do read, do write, do lseek, do lsize, do flush and do close, which are similar to
UNIX and NX routines.

DONIO uses the simple idea of caching the entire disk �le into the memory on the
multiprocessor. Each processor has a limited amount of memory, so the cached data must
be distributed among all processors. do read and do write access the cached copy in the

4 D'Azevedo and Romine

Table 1

DONIO routines on 81� 81� 61 grid, �le size is 12,288,000 bytes.

processor wopen write wclose ropen read rclose

4 0.72 13.53 13.05 20.76 67.56 0.01
8 0.57 7.33 13.53 11.72 31.51 0.01
16 0.59 3.85 10.85 14.98 16.30 0.01
32 1.09 2.15 8.80 10.86 8.55 0.01
64 0.66 1.29 8.84 12.07 4.87 0.01

aggregate memory instead of the disk �le. Actual disk operations in DONIO are performed
only during do open for read-only and read-write �les, and do close for read-write and
write-only �les.

Most parallel supercomputers support a high performance parallel disk partition where
disk records are striped across multiple disk for fast access. On the Intel machines, disk
requests are serviced by dedicated I/O processors. Any actual disk I/O that is performed
by DONIO operates on large blocks of contiguous data using the available I/O processors to
take full advantage of RAID 0 striping across multiple disks. Note that a 2 gigabyte �le
can be comfortably stored in DONIO with 4 megabytes each on 512 processors.

4 Performance of DONIO on Intel Paragon

In this section we present a rough comparison of disk performance by DONIO versus native
NX routines. We devised an example that simulates the disk I/O common in �nite element
codes by performing multiple direct access lseek's, read's and write's to a single �le to
generate the element-to-vertex list for a three dimensional nnx�nny�nnz grid. Elements
along the vertical direction are grouped before writing, to obtain better disk performance.
Note that the element-to-vertex list �le is independent of the number of processors. The
same �le is later read again.

We present results on a medium 81�81�61 (384,000 elements), and a large 121�121�91
(1,296,000 elements) problem. Timings for NX native routines on the largest problem were
over 1,000 seconds. These times were highly variable since the machine was not dedicated
to our application, and hence they are not reported.

Tables 1{3 list the runtimes obtained from dclock(). wopen (wclose) denotes the
time for opening (closing) a �le for write-only access; similarly, ropen and rclose apply
to read-only access. Note that most time-consuming actual disk operations are performed
in DONIO during wclose and ropen. Only 4 processors were used to perform real disk I/O,
hence actual disk I/O time is largely insensitive to the total number of processors.

Note that read and write times in DONIO decrease with the addition of more processors;
since as more processors are used, fewer messages per processor are generated. On the other
hand, NX disk operations are handled by 6 dedicated I/O processors. For a given problem
the total number of disk requests is �xed, and hence I/O times do not decrease with more
processors. We see that on all test cases, total time for DONIO is over 15 times faster than
using native NX routines.

5 Semi-Lagrangian Transport (SLT)

We have used DOLIB to parallelize a serial version of the CHAMMP Semi-Lagrangian
Transport (SLT) code to perform simple advection of scalar �elds, such as moisture.

DOLIB: Distributed Object Library 5

Table 2

NX routines on 81� 81� 61 grid, �le size is 12,288,000 bytes.

processor wopen write wclose ropen read rclose

4 1.71 241.02 0.25 1.75 182.80 0.18
8 4.24 237.12 0.46 3.31 162.70 0.46
16 9.52 231.62 0.78 9.54 179.01 0.74
32 16.95 247.22 1.32 23.92 185.91 1.05
64 51.18 239.68 3.12 45.47 182.56 2.79

Table 3

DONIO routines on 121� 121� 91 grid, �le size is 41,472,000 bytes.

processor wopen write wclose ropen read rclose

8 0.95 20.69 46.13 56.91 77.19 0.01
16 0.81 10.79 41.44 47.00 36.32 0.01
32 0.61 5.65 36.97 40.80 21.16 0.01
64 0.64 3.03 41.64 42.67 11.57 0.01
128 0.65 1.80 33.05 39.22 6.90 0.02

One goal of developing SLT is to ultimately couple semi-Lagrangian advection [7] with
a global spectral transform dynamical model such as the Parallel Community Climate
Model (PCCM) code. SLT uses a backward in time Lagrangian one-step particle tracking
to determine, given an arrival point (nodal point on a grid), the departure point in the
previous time step. Let (�A; �A), (�D; �D) denote the coordinates of the arrival and
departure points, and u(�; �; t), v(�; �; t) the velocities. The departure points are given
by

�D = �A �

Z (�A;�A;t+�t)

(�D;�D;t)

u(�; �; t)

cos�
dt ;(1)

�D = �A �

Z (�A;�A;t+�t)

(�D;�D;t)
v(�; �; t)dt :(2)

SLT uses a centered-in-time point along the trajectory for evaluating the integral quantities
in (1) (mid-point quadrature rule),

�D = �A � �t

�
u(�M ; �M ; t+ �t=2)

cos�M

�
;(3)

�D = �A � �t [v(�M ; �M ; t+ �t=2)] :(4)

The locations of the centers of the trajectories (�M ; �M) are found by iteration

�k+1M = �A �
1
2�t

"
u(�kM ; �kM ; t+ �t=2)

cos�kM

#
;(5)

�k+1M = �A �
1
2�t

h
v(�kM ; �kM ; t+ �t=2)

i
;(6)

The velocity components at (�kM ; �kM) are found by shape preserving interpolation. SLT
has special coordinate transformation to avoid singularities in the vicinity of the poles,
however, this extra transformation may lead to load imbalance among processors.

6 D'Azevedo and Romine

A host/node version of SLT was parallelized by John Drake by assigning grid
subdomains to processors. The velocity/
ow �eld was replicated in an extended region
surrounding each subdomain (processor). The overall time step and bu�er region were
determined to guarantee no particle can escape this extended region. At the start of each
time step, each processor exchanged velocity values with neighboring processors to �ll this
extended region. No further communication of velocity values were required until the next
time step.

Although fairly straight-forward to implement, the extended region approach su�ers
from high memory use and high communication volume. In a high resolution simulation
(T63), 96 mesh layers are estimated to be required for a simulation with time step of 30
minutes. Exchange of the velocity �eld would also produce a high communication volume.

We parallelized SLT by storing arrays associated with the velocities into global shared
memory emulated in DOLIB. We identi�ed critical do-loops and performed gathers before
entering do-loop calculations and immediately scattering results back into global memory.
Most of the debugging was done on a serial processor using a serial version of DOLIB
(gather/scatter's are simply memory copies). Synchronization primitives were added to
prevent race conditions in the parallel code. Further gains may be possible by rewriting
the original code to issue long vector gather/scatter operations for better message passing
performance.

5.1 Performance of SLT on Intel Paragon

Here we present runtimes for one step of SLT on the Intel Paragon. All times exclude
time for I/O and averaged for one time step of problem T42 (64 latitudes, 128 longitudes,
18 levels). Due to load imbalance, we measured runtime for the slowest processor. On 16
processors, each time step required 16.8 seconds and 11.2 seconds on 32 processors. A DOLIB

cache size of 64 pages (approximately 580Kbytes) was used. The runtimes were insensitive
to size of time step (�t), changing by about 5% with time step twice as large (2�t). For
comparison, a host/node version of SLT, which was parallelized by John Drake using an
extended velocity �eld around each subdomain, required 19.2 seconds on 16 processors
for a timestep. The DOLIB shared memory approach to Lagrangian particle tracking hold
promise for taking longer time steps in a higher spatial resolution.

References

[1] E. F. D'Azevedo and C. H. Romine,DOLIB: Distributed object library, Tech. Rep. ORNL/TM-
12744, Oak Ridge National Laboratory, 1994.

[2] , DONIO: Distributed object network I/O library, Tech. Rep. ORNL/TM-12743, Oak
Ridge National Laboratory, 1994.

[3] B. Marr, R. Peierls, and J. Pasciak, IPX { Preemptive remote procedure execution for
concurrent applications, tech. report, Brookhaven National Laboratory, 1994.

[4] R. Riesen, A. B. Maccabe, and S. R. Wheat, Split-C and active messages under SUNMOS on
the Intel Paragon, submitted to Super Computing 94, (1994).

[5] S. Sharma, R. Ponnusamy, B. Moon, Y.-S. Hwang, R. Das, and J. Saltz, Run-time and compile-
time support for adaptive irregular problems. Submitted for Publication.

[6] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, Active messages:A mechanism
for integrated communication and computation, in Proceedings of the 19th International
Symposium on Computer Architecture, Gold Coast, Australia, ACM Press, May 1992.

[7] D. L. Williamson and P. J. Rasch, Two-dimensional semi-lagrangian transport with shape-
preserving interpolation, Monthly Weather Review, (1989), pp. 102{129.

