ARE BILINEAR QUADRILATERALS BETTER
THAN LINEAR TRIANGLES?
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Abstract. This paper compares the theoretical effectiveness of bilinear approximation over quadri-
laterals with linear approximation over triangles. Anisotropic mesh transformation is used to generate
asymptotically optimally efficient meshes for piecewise linear interpolation over triangles and bilinear
interpolation over quadrilaterals. For approximating a convex function, although bilinear quadrilaterals
are more efficient, linear triangles are more accurate and may be preferred in finite element computa-
tions; whereas for saddle-shaped functions, quadrilaterals may offer a higher order approximation on a
well-designed mesh. A surprising finding is different grid orientations may yield an order of magnitude
improvement in approximation accuracy.
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1. Introduction. This paper compares the theoretical effectiveness of bilinear
approximation over quadrilaterals with linear approximation over triangles. The
novelty is in the use of anisotropic mesh transformation to generate asymptotically
optimally efficient meshes in the comparison. Elementary analysis based on a sim-
ple quadratic data model is used. Although both linear and bilinear interpolants are
O(h?) accurate, the results suggest linear triangles are always more accurate than gen-
eral convex bilinear quadrilaterals in approximating a convex function but bilinear
approximation may offer a higher order approximation for saddle-shaped functions
on a well-designed mesh. A surprising finding is different grid orientations may
yield an order of magnitude “super-convergence” improvement in approximation
accuracy. This work is a basic study on optimal meshes with the intention of gaining
insight into the more complex meshing problems in finite element analysis.

We consider the problem of interpolating a given smooth data function with con-
tinuous piecewise linear triangles or bilinear quadrilaterals over a domain to satisfy
a given error tolerance. A mesh that achieves this error tolerance with the fewest
elements is defined to be optimally efficient. Intuitively, one would expect smaller
and denser elements in regions where the function has sharp peaks or large varia-
tions. Since each convex quadrilateral can be split across either one of the diagonals
into two triangles, one can imagine embedding a refined triangular mesh within the
guadrilateral mesh. A practical question arises as to whether the bilinear approxi-
mation over quadrilaterals or linear approximation over triangles is more effective.

To make a fair comparison, we need to compare bilinear approximation over
an “optimal” quadrilateral mesh versus linear approximation over an “optimal” tri-
angular mesh. Provably optimal triangular meshes [2, 4] have been produced by
anisotropic mesh transformation.

Anisotropic mesh transformation is emerging as an effective technique for un-
structured grid generation where the vertex distribution is highly non-uniform. The
central idea is to control the element shapes and sizes by specifying a symmetric met-
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ric tensor that measures the approximation error. The metric tensor determines the
corresponding anisotropic transformation. The anisotropic mesh is then the image
of a uniform mesh of optimal shape elements under the anisotropic transformation.
Simpson [8] gives a survey on anisotropic meshes.

Nadler [6], D’Azevedo and Simpson [3, 4], and D’Azevedo [2] have studied
local anisotropic transformation for the generating of optimally efficient triangular
meshes. Peraire et al. [7] applied anisotropic transformation in mesh generation for
dynamic remeshing in solving compressible flow problems. In these works, piece-
wise linear approximation of a quadratic function is used as the model for local
analysis. In this paper we extend a similar analysis to bilinear approximation on
guadrilateral patches.

An outline of the paper follows. In §2, we review the key ideas in [2] for gen-
erating optimally efficient triangular meshes. In §3, we consider error properties of
bilinear interpolation. We consider the optimal geometry for quadrilateral patches
in §4. We compare the effectiveness of quadrilaterals versus triangular meshes using
the local quadratic model in §5. Numerical experiments and the results are described
in §6. Finally §7 gives a brief summary.

2. Triangular Patch. This section is a brief review of the basic ideas in [2] for
determining optimal triangle geometry. We show a linear transformation of a regular
mesh of optimal-shape triangles yields an optimally efficient mesh for interpolating
a quadratic function.

2.1. Quadratic Model. We shall consider a local analysis where we assume the
data function f(x, y) in the neighborhood of (x., y) is well approximated by its quadratic
Taylor expansion,

f(x,y) = f(xc + dx, yc + dy)
1
(2.1) ~ f(Xe, Yo) + VI(Xc, ye)[dx, dy] + E[dx, dy]H[dx, dy]".

Let the error formula be E(Xx, y) = ps(X,y) — f(X,y), where p,(x,y) is the linear in-
terpolant. By our assumption, Et(x, y) is a quadratic function and level curves for
Et(X,y) = ¢ form a family of conics with a common center at (x., y;). They form a
family of ellipses if det(H) > 0, and hyperbolas if det(H) < 0. Note by the interpo-
lation condition, the curve Et(X, y) = 0 passes through all vertices of the triangle. If
det(H) > 0 (conic is an ellipse) then E+1(x, y) attains the local maximum at the center
(Xc, Ye); otherwise, det(H) < 0 (conic is a hyperbola) the maximum error is attained
at the midpoint of an edge. The error at a displacement from the center is given by

1
(2.2)  Erlxc+dx,yc+dy) = Er — S[dx, dy]H[dx, dyl', Er=Er(xc,Y0) -
The key insight in [2] is in interpreting the Hessian matrix H in (2.2) as a sym-

metric metric tensor. Let the symmetric Hessian matrix be diagonalizable as

0 A 0

(2.3) S= [ ViAil

0

H=Q" { A 0 ] Q=+¢' { L S ] S, where ¢ = sign(det(H)),

0 .
Q, and Qs orthogonal, Q'Q =1 .
Vel ]

Note that transformation S is essentially a rotation to align eigenvectors along the
coordinate axes then followed by a simple scaling. Under this transformation S, the
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expression [dx, dy]H[dx, dy]' reduces to (dX)? + e(d¥)?, where [X, §]' = S[x, y]*. The
error function can be rewritten as

1
Er(xc+dx, Yo+ dy) = Er — S[dx, dy]H[dx, dy]'

(2.4) =E; - % ((dR)? + €(d9)?)
= Er(X + d&, §, + dY),

where Et(X, ) denotes the corresponding error function under transformation S in
(X, y)-space. The error expression Et(X, ¥) has no preferred direction (except for the
sign), hence we shall call the (X, ¥)-space the “isotropic” space.

2.2. Optimal shape. In the following, we shall determined the best triangle
shape that minimizes the interpolation error. We can determine the “efficiency” of
the elements by computing their ratio of Error to Area. A small ratio indicates a more
efficient element, i.e. one can achieve a lower error tolerance and tile the domain with
about the same number of elements.

We consider first the case f(x, y) is convex (det(H) > 0, ¢ = 1) and level curves or
contours of E+(X, ¥) are concentric circles given by

(2.5) Er(% + d%, §, +dy) = E — % ((dR)? + (d§)?)

Let T be the transformed image of triangle T over the isotropic space, with vertices
at (X1, ¥,), (X2, ¥,) and (X3, ¥3). The circum-circle of T corresponds to the level curve
of value zero. Hence the radius of this circum-circle is sqrt(2|E+|) and relates directly
to the maximum error attainable (at the center). If this center is exterior to triangle
T, the maximum error is attained at the mid-point of the longest edge (of length L)
with value L?/8. We can easily see that an equilateral triangle covers the most area
for a fixed circum-circle; therefore an equilateral triangle for T is of optimal-shape.
If f(X,y) is not convex but has a saddle-shaped graph (det(H) < 0, e = —1), then

ET()h(‘a y) = ET(jzc + dX, )70 +dy)
@) = Er— 3 (@7 - (09))
=Er— 5 (R %P~ - 9.°)

We note that the error function Er(X, ¥) is a harmonic function and thus attains its
extrema on the boundary of T. By calculus, we can show that the local extrema along
edge (X, ¥;), (Xj, yj) is attained at the midpoint with value

g 5+% itV 1
2 72

=g |&%i— 5 — (%97 -

The details for finding the optimal-shape triangle in this case are found in [2]. The

optimal-shape triangle geometry that minimizes the efficiency ratio (Error/Area) is

not unique, but the same maximum error is attained at the mid-point of each edge.
From the above two results on optimal-shape triangles, we see that a regular

mesh of optimal-shape triangles over the isotropic (X, §)-space corresponds to an op-

timally efficient mesh over the original (x, y)-space. Every triangle attains the same
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maximum error; moreover, these triangles cover the most area for the error attained
and so are optimally efficient. Since the linear transformation S is basically a rota-
tion followed by a rescaling of coordinate axes, we find the areas of triangles are
scaled accordingly. Hence the inverse transformation S~1, maps this regular mesh to
produce an optimally efficient mesh in the original (x, y)-space.

2.3. Differential Geometry. The constant Hessian Matrix H in (2.1) determines
the coordinate transformation S that maps [X, ¥]' = S[x, y]' so that

[dx, dy]H[dx, dy]' = (d%? + ed§?) .

For more general functions, we may view the Hessian matrix H(x, y) as a metric ten-
sor for measuring the interpolation error [dx, dy]H[dx, dy]. Thus we need to deter-
mine (X(x, y), ¥(x, y)), a continuous transformation that satisfies [dx, dy]H[dx, dy]t =
d%? + ed§?. The conditions for finding the anisotropic coordinate transformation
(X(x,y), Y(x,y)) are given by a classical result in differential geometry for character-
izing a “flat” space [9]: that the Riemann-Christoffel tensor formed from the metric
tensor H is identically zero. In this case, a sufficient condition is for H = {hj;} to
satisfy

Kihin + Kaohgg + Kzhy =0

for some constants Ky, Ky, K3. The coordinate transformation (X(x, y), ¥(x, y)) may be
found by solving an initial value ordinary differential equation. Again, the inverse
transformation (X(X, ¥/), y(X, ¥)) maps a regular mesh of optimal shaped triangles to
yield an optimally efficient mesh.

3. Quadrilateral Patch. In this section, we derive the error term for bilinear ap-
proximation of a quadratic data function.

We shall use the isoparametric formulation (commonly used in finite element
analysis) by considering basis functions over the normalized (p, g)-space over the
unit square, 0 < p, q < 1. Basis functions are

3.1) ¢1(p, @) =1 —p)2—0a),  ¢2(p,q) = p(1—0),
' ¢3(p, 4) = pd, $a(p,q) =(1—p),

that satisfy ¢i(x;j, y;) = d;j, and sumto one, 1 = 2:2‘1‘ i(p,q).
Mapping from (p, g) to the original (X, y)-space is by
3.2) X(p, Q) = X191(p, Q) + X202(P, 9) + X3¢3(P, A) + Xa¢4(P, q)
y(p, a) = Y1¢1(p, A) + Y2¢2(p, ) + Y3h3(P, Q) + Ya¢a(p, q)

that maps vertex (0, 0) to (X, Y1), vertex (1,0) to (x», y»), (1, 1) to (X3, y3) and (0, 1) to
(X4, Y4)- The bilinear interpolant (over (p, g)-space) is given by

i=4

(3.3) Po(X(p, a), y(p, ) = > f(xi, yi)¢i(p,q) -
i=1

4. Optimal Shape. In the following, we shall determine the best quadrilateral
shape that minimizes the interpolation error. The error function for quadratic inter-
polation over a parallelogram can be shown by direct algebraic expansion (see Ap-
pendix A) to be

Eq(p,a) = po(x(p,a), y(p,a)) — f(x(p,q), y(p,q))
@.1) =Eq— (mp— pe + pala—a:y) |
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with centroid at [p¢,qc] =[1/2,1/2],

[ux,uy] = [X2 — X1, Y2 = Y1l,  [Vx, Vy] = [Xa — X1, Ya — y1],

1
EQ = EQ(pc;QC) = 3 (1 + p2)

0 0
(4.2) 0= a_pEQ(pc>QC) = 8_qEQ(pc;qc) )

p1 = [ux, uy]H[uy, Uy]ta M2 = [V><>Vy]|'|[Vx>Vy]t .

For a convex function (det(H) > 0), u1 and u, are positive, hence the maximum error
is attained at the centroid [pc, qc].

For this convex case, we can show a square over the isotropic space is of optimal
shape by minimizing the efficiency ratio (Error/Area). Since the isoparametric bilin-
ear interpolant (3.3) exactly fits linear functions [5], the error attained at the centroid
(X¢, Ye) (which is a lower bound on the maximum error) can be written as

i—4
(4.3) Em= % (Z %[Xi,Yi]H[Xi,Yi]t> = 2[xc, YeHIXc, Vel
i=1

=1

=4
- % (Z (Ixi, YilHIxi, yil* = [Xc, Yc]H[XCaVC]t)>

(4.4) [Xc, Ye] = [(X2 4+ X2 + X3+ Xa) /4, (Y1 + Y2 + Y3+ Ya) /4] .

This expression can be further simplified over the isotropic space where H is the
identity,
(i
I

(R + %5 + %5 + %5) — 4% + (F1 + V5 + 95 + ) — 47)

4
Em= (& +9) — (% + Y’E)))
1

= ol

~ 8
1 . o ~
= g+ L+ L5 +1D, with L = (% — %)% + (- 9%

where [Xi, ,]' = S[xi, yil' and [Xc, §.]' = S[xc, yc]' are the corresponding coordinates
over the isotropic space. The area of this transformed convex quadrilateral is (see
Figure 4.1)

Area = 1 (LyL,sin(f1) + LoLgsin(8,) + LsLasin(fs) — LaLysin(fy + 62 + 63)) .

Since the isotropic transformation S in (2.3) is a rotation followed by a rescaling
of coordinate axis, the area of quadrilateral over the isotropic space is scaled by
sqrt(| A1 Az|) = sqrt(det(H)) (intrinsic to H). By Calculus, we can show this ratio
of Epm/Area is minimized and attained by a square with Ly = L, = L3 = L4 and
61 = 6, = 63 = /4. Hence the most efficient shape among all general convex bi-
linear quadrilaterals is a square over the isotropic space with an efficiency ratio of
1/4.

If f(x,y) is saddle-shaped (det(H) < 0), the error expression for a parallelogram
is still

Eq(p, )= g+ 1) — (P — B + 2 — )
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(X3, ¥3)

(Xa,Y4)

(X2, ¥2)

F1G. 4.1. Convex quadrilateral over isotropic space.

Under the anisotropic transformation S,

_ 2 m2 7 ) Ox Vx | _ Ux Vx
=ty e =Ny {Gy Vy _S{Uy Vy]
Now both p; and p, vanish for

(45) [GX7 Gy] = [L7 L]: [VXJ \7y] = [_L7 L] )

which correspond to a square rotated by /4. The above indicates an “exact fit”
(Eo(p,q) = 0) if n1 = pp = 0. This suggests bilinear approximation is a better in-
terpolant than linear interpolation and the simple quadratic model is inadequate to
fully capture the error properties in this case.

To summarize, a square over the isotropic space in any orientation is optimal for
the elliptic case, and a square rotated by 7 /4 is optimal for the hyperbolic case.

5. Comparison of quadrilaterals versus triangles. In this section, we shall show
a refined triangulation produced by the Delauney Triangulation (DT) will always
produce better accuracy for approximating a convex quadratic function. We shall ap-
ply the geometric interpretation of the maximum interpolation error over the trans-
formed isotropic space.

THEOREM 5.1. Any convex quadrilateral over the isotropic space can be decomposed
into two triangles with no increase in maximum interpolation error for approximating a
convex quadratic.

Proof. We shall use the Delauney Triangulation (DT) [3] in selecting the diagonal
for decomposing the general convex quadrilateral into two triangles. The DT has an
interesting properties that three vertices form a triangle in DT iff no other vertex is



Are quadrilaterals better than triangles? 7

interior to the circum-circle formed by these vertices. This is also commonly known
as the “empty circle” property.

D(X4, Ya)
(X3, Y3)

AL Y1)

.:B(X27 y2)

FiG. 5.1. Maximum triangulation error attained on boundary edge.

Case 1. The maximum error of the DT is attained at the mid-point (E) of a bound-
ary edge (see Figure 5.1). In this case the error attained is due to linear interpolation
along the edge AB, with value |AB|?/8. Since the isoparametric bilinear interpolant
over the quadrilateral also reduces to linear interpolation along the boundary edge,
the maximum error for bilinear quadrilateral cannot be less than this value. There-
fore the theorem holds.

Case 2. The maximum error of the DT is attained at the center of circum-circle,
(Xc, Ye) (see Figure 5.2). For simplicity and without loss of generality, we perform a
translation such that the isotropic quadratic data function is %((x —Xe)2 4+ (Y — Ye)d).
The maximum error is R?/2, where R is the radius of the circum-circle. The interpo-
lation error given by the quadrilateral is (3.3),

i=4

Eq(Xe, o) = (Z fi¢i(p,q)> — flxe,ye),  fi = f(xi, i)
i=1

(5.1) = ((1 — ¢3(p, M)R?/2 + ¢3(p, ) f3) — O
since f; = f, = f = R?/2and f(xc, yc) = 0. We have
(5.2) f(xa, ¥3) = ((Xs — Xc)° + (y3 — yo)?)/2 > R?/2,

and therefore the error attained by quadrilateral at (x, y.) is higher than R?/2, thus
the theorem holds.

Cases 1 and 2 are exhaustive since the maximum error of the DT cannot be at-
tained at the the mid point of a diagonal, unless it also satisfies Case 1 or Case 2
as in a square (see Figure 5.3). We have /BCD < 7/2 to satisfy the “empty circle”
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C(X3, Y3)

DY)

(X2,¥2)

AlX1, Y1),

B_(Xza y2)

F1G. 5.3. Maximum triangulation error cannot be on diagonal.

property. If ZCDB > /2 (similar argument for ZCBD > 7/2), then by Cosine rule
for triangles,

(5.3) |BC|> = |CD|?+ |BD|? — 2|CD||BD| cos(/CDB) > |BD|?,

thus the maximum error is attained in ABCD on edge BC (Case 1). The remaining
alternative is where ABCD forms an acute triangle. Then ABCD will have a larger
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maximum error given in terms of radius of circum-circle, which is covered in Case 2.
Therefore over the isotropic space, the DT refined linear triangulation is more
accurate than the isoparametric bilinear quadrilateral. O
This theorem suggests if the data function is not saddle-shaped, the refine DT
triangulation (over the isotropic space) produced above will yield better approxima-
tion accuracy, even on arbitrary meshes of general convex quadrilaterals.

5.1. Comparison of efficiency ratio. For the optimal shape equilateral triangle,

the area, Ar, is v/3L%/4, from (2.4) we obtain an efficiency ratio of
2

Er _ _L/6 =2v/3/9~0.385..

At V3L?/4
Area of the optimal square configuration is L2, thus the ratio is 1/4 = 0.25. Hence for
an element by element comparison, the quadrilateral is more efficient. In other words,
if we were to approximate a function with either N quadrilaterals or N triangles,
guadrilaterals are preferred.

On the other hand, triangles may have advantages over quadrilaterals for finite
element computations. Matrix assembly and the solution of the sparse linear equa-
tions are commonly the most intensive calculations. If we decompose a quadrilat-
eral mesh into triangles as done above, no extra nodes are introduced. There will be
twice as many triangular elements but the resulting assembled matrix has a similar
sparsity pattern and the same number of unknowns. Matrix assembly with ageneral
convex quadrilateral usually requires costly evaluations of the Jacobian distortion in
numerical quadrature over the isoparametric space, whereas assembly of linear tri-
angle elements is simpler. Therefore if computation with N quadrilaterals is as costly
as using 2N triangles, then triangles are preferred due to their better accuracy and
simplicity. The actual computation costs may depend on the implementation of the
finite element code.

Consider the approximation of a saddle-shaped function by a square (unrotated)
over the isotropic space. The error formula gives

1 1
Eo(p,q) = g(ul + p2) — E(Nl(p —pe)’ + p2(q — 4c)?),  (Pe,dc) = (%; %)
1
(5.4) = —3(P—PoPLE— (@ —QLD), where iy = L2 = —piz .

The maximum error is attained at the mid-point of each edge. Let (p,q) = (1,1/2),
then Eq = L?/8. This gives an efficiency ratio of 1/8 = 0.125. One optimal tri-
angle shape for saddle-shaped function is the triangle with vertices at (0, 0), (L, 0),
(1/2L,+/5/2L) over the isotropic space [2], which has area v/5L%/4. The maximum
error is L?/8 and attained at the mid-point of each edge. This gives an efficiency
ratio of 1/(2\/5) ~ 0.224. Thus over the isotropic space, a mesh with N (unrotated)
squares should yield roughly the same accuracy as 2N triangles. This is verified in
the numerical experiments.

6. Numerical Experiments. In this section, we demonstrate that a well designed
mesh for bilinear interpolation of a saddle-shaped function may give substantial im-
provements over a triangular mesh. The examples are taken from [2]. The proce-
dure in [2] for generating optimal triangular meshes is modified to generate optimal
guadrilateral meshes. Only elements entirely interior to the unit square are gener-
ated to simplify the presentation.
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Example 1. Exponential increase along x-axis,

f(x,y) = exp(5x)sin(5y) .
Example 2. A near singularity at (X, Yo) = (0.5, —0.2),

(X = X0)* — (¥ — Yo)*
((x = x0)* + (¥ — Y0)*)?
Example 3. A more severe near singularity,

((x = x0)* + (¥ = Y0)*)* — 8(x — X0) (Y — Yo)? _
((x = %0)* + (¥ = Yo)*)*
Example 4. Example 4 is Example 2 modified by a rescaling of y-axis,

(X — X0)* — (V10y — yo)?
((x = %0)? + (V10y — y0)*)®

The results of the experiments are summarized in Figures 6.1-6.4 and Tables 6.1—
6.4. Mesh | is generated by optimal squares over the isotropic space. Mesh Il is gen-
erated by optimal squares with a 7/4 rotation over the isotropic space to capture
the “super-convergence” behavior. Both meshes have similar element size, element
shape and density and differ mainly in their orientation. The meshes are displayed
in Figures 6.5-6.12. Results for optimal triangular meshes produced in [2] are in-
cluded for comparison. Mesh | produces an almost level error profile. This indi-
cates an equilibration of interpolation error evenly over all elements. Error profile
for Mesh 1 is roughly comparable to an optimal triangular mesh with about twice
as many triangles and in agreement with discussions in §5. Mesh Il displays the
“super-convergence” behavior by consistently achieving an error 5-10 times smaller
than Mesh 1.

Table 6.5 shows the effect of generating finer meshes over the isotropic space. If
we consider the median error, Mesh | shows the expected O(h?) convergence. From
the efficiency ratio (Error/Area), we can also predict the decrease of error is propor-
tional to the number of elements. Results for Mesh Il clearly display the higher than
0O(h?) “super-convergence” behavior. From another perspective, about 5-10 times
more elements are needed for Mesh | to match the accuracy of Mesh II.

It can be shown [1] that the coordinate lines in the isotropic space are mapped
to eigen-trajectories of the Hessian matrix. Thus as the curved element boundaries
are poorly approximated by straight edges, the resulting quadrilateral will no longer
have parallel sides (Fig. 6.9, 6.10). The simple analysis for super-convergence in §3
for parallelograms may not be adequate and this leads to an anomalous increase in
the error displayed in Example 3 of a severe singularity.

fx,y) =

fx,y) =

f(x,y) =

7. Summary. We have used a simple locally quadratic model to develop a ge-
ometric interpretation of the interpolation error. We determine the optimal element
shapes and their efficiency ratio (Error/Area) over the isotropic space. The analy-
sis shows for approximating convex data functions, although bilinear quadrilaterals
are more efficient, linear triangles are more accurate and may be preferred in finite
element computations. For approximating saddle-shaped data functions, a well de-
signed quadrilateral mesh may show “super-convergence” improvements in approx-
imation accuracy. Numerical experiments show good agreement with the analysis,
and a surprising finding is different grid orientations may have an order of magni-
tude improvement in accuracy.
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TABLEG6.1

Summary of results for Example 1.

Minimum | Median 90 Maximum | Number of
error error percentile error elements
Triangle 5.27E-2 5.39E-2 5.50E-2 5.74E-2 2923
Mesh | 5.75E-2 5.76E-2 5.78E-2 5.79E-2 1488
Mesh |1 2.29E-4 4.62E-4 8.30E-4 3.04E-3 1480
TABLE 6.2
Summary of results for Example 2.
Minimum | Median 90 Maximum | Number of
error error percentile error elements
Triangle 1.87E-2 2.01E-2 2.16E-2 2.57E-2 1072
Mesh | 2.13E-2 2.15E-2 2.17E-2 2.21E-2 550
Mesh |1 2.82E-4 4.69E-4 7.33E-4 1.38E-3 546
TABLE6.3
Summary of results for Example 3.
Minimum | Median 90 Maximum | Number of
error error percentile error elements
Triangle 1.02 1.16 1.32 1.70 650
Mesh | 1.11 1.14 1.16 1.23 349
Mesh |1 1.80E-2 3.94E-2 6.75E-2 3.16E-1 352
TABLE 6.4
Summary of results for Example 4.
Minimum | Median 90 Maximum | Number of
error error percentile error elements
Triangle 2.91E-2 3.68E-2 4.61E-2 6.46E-2 608
Mesh | 3.81E-2 4.00E-2 4.24E-2 4.61E-2 284
Mesh |1 9.36E-4 1.76E-3 3.04E-3 6.13E-3 286
TABLE 6.5
Convergence test on Example 3.
Minimum | Median 90 Maximum | Number of
error error percentile error elements
Mesh | 11.1E-1 11.4E-1 11.6E-1 12.3E-1 349
Mesh | 3.22E-1 3.23E-1 3.24E-1 3.26E-1 1223
Mesh | 8.03E-2 8.07E-2 8.12E-2 8.23E-2 5063
Mesh | 1.99E-2 2.02E-2 2.04E-2 2.08E-2 20603
Mesh 11 1.80E-2 3.94E-2 6.75E-2 3.16E-1 352
Mesh 11 2.35E-3 4.22E-3 9.16E-3 6.35E-2 1260
Mesh 11 3.10E-4 7.20E-4 1.29E-3 9.41E-3 5244
Mesh 11 5.19E-5 1.79E-4 3.78E-4 1.24E-3 21389
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F1G. 6.5. Mesh | for Example 1.
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F1G. 6.7. Mesh | for Example 2.
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F1G. 6.9. Mesh | for Example 3.

F1G. 6.10. Mesh Il for Example 3.
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Appendix A. In this section, we show the error function for quadratic interpo-
lation over a parallelogram is given by (4.1) by simple algebraic expansion. Let the
data function be

(1.0 f(x,y) = 506 YIHDG VI [0, alix, y]' + ¢

and the affine isoparametric transformation be

X(p,9) | _ p X1 Clue v | ] xe—=xX1 Xa—Xg
(7'2){y(p,q)]_T[q]+[y1]’T_[uy Vy]_{yZ_YI Ya—Y1 |’

Then the interpolation error can be shown to be
Ea(p,a) = pe(x(p, ), y(p,a)) — f(x(p,q), y(p,q))
1
(7.3) =Eq — 5 (m(p — po)* + p12(0 - 00)%)

11
2020

with centroid at [p¢, 0c] = [
Eq = Eq(pe, tc) = %(Nl +h2)
g = [ux, uylH[ux, uyl', 2 = [vx, vylH[vx, vy]'
Let the data function over (p, q)-space be written as

f(p,q) = f(x(p,q), y(p,q))

1 ~ A "
= 5[p, alHIp, al' + [§y, Gollp, ] + €
7 t ﬁ11 ﬁ12
(7.4) where H=T'HT = { ~ ~ ] and
h12 h22
(75) [617 GQ] = ([917 gZ] + [X17 yl]H) T )

€ = c+[91, 9al[X1, yal' + %[Xl, ya]H[xa, y1]*.
The function values at the four interpolating corners are
76) f=10,00=¢, f3=f11)= %(ﬁn + g +2h1) + 6, + 6, + €,
= 0= Jhu+ 6,48, fo=f0.0= Fntg+C.

By (3.3) and (7.3) (note the vanishing of linear and constant terms),

i=4 .
Eq(p,a) = (Z fa¢i(p,q)> — f(p,0)
i=1

(P(L — a1 + pa(har + Pz + 2h1,)
+(1 - p)ahze — (p?hus + 0PNz + quﬁlz))

NI =
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(pﬁll + qﬁzz + 2pqﬁ12 - pzﬁn - q2ﬁ22 - 2qu112)

NI N -

(p(1 — p)hus +q(L — g)hz)
(7.7) = %(ﬁn + ﬁzz) - %(Hn(p - %)2 + ﬁ22((1 - %)2) .

From (7.2) and (7.4), we have ﬁll = pp and ﬁzg = u»; hence the error function has the
form given in (7.3).
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