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Abstract—
Rather than painful, manual, static, per-connection optimization of TCP

buffer sizes simply to achieve acceptable performance for distributed appli-
cations [1], [2], many researchers have proposed techniques to perform this
tuning automatically [3], [4], [5], [6], [7], [8]. This paper first discusses
the relative merits of the various approaches in theory, and then provides
substantial experimental data concerning two competing implementations
– the buffer autotuning already present in Linux 2.4.x and “Dynamic Right-
Sizing.” This paper reveals heretofore unknown aspects of the problem and
current solutions, provides insight into the proper approach for various cir-
cumstances, and points toward ways to improve performance further.

Keywords: dynamic right-sizing, autotuning, high-performance
networking, TCP, flow control, wide-area network.

I. I NTRODUCTION

TCP, for good or ill, is the only protocol widely available for
reliable end-to-end congestion-controlled network communica-
tion, and thus it is the one used for almost all distributed com-
puting.

Unfortunately, TCP was not designed with high-performance
computing in mind – its original design decisions focused on
long-term fairness first, with performance a distant second. Thus
users must often perform tortuous manual optimizations simply
to achieve acceptable behavior. The most important and often
most difficult task is determining and setting appropriate buffer
sizes. Because of this, at least six ways of automatically setting
these sizes have been proposed.

In this paper, we compare and contrast these tuning methods.
First we explain each method, followed by an in-depth discus-
sion of their features. Next we discuss the experiments to fully
characterize two particularly interesting methods (Linux 2.4 au-
totuning and Dynamic Right-Sizing). We conclude with results
and possible improvements.

II. BUFFERTUNING TECHNIQUES

TCP Buffer tuning techniques balance memory demand with
the reality of limited resources – maximal TCP buffer space is
useless if applications have no memory. Each technique dis-
cussed below uses different information and makes different
trade-offs.

A. Current Tuning Techniques

1. Manual tuning [1], [2]
2. PSC’s Automatic TCP Buffer Tuning [3]
3. Dynamic Right-Sizing (DRS) [4], [5]
4. Linux 2.4 Auto-tuning [6]
5. Enable tuning [7]
6. NLANR’s Auto-tuned FTP (in ncFTP) [8]
7. LANL’s DRS FTP (in wuFTP)

Manual tuning is the baseline by which we measure autotun-
ing methods. To perform manual tuning, a human uses tools
such asping andpathchar or pipechar to determine net-
work latency and bandwidth. The results are multiplied to get
thebandwidth×delay product, and buffers are generally set to
twice that value.

PSC’s tuning is a mostly sender-based approach. Here the
sender uses TCP packet header information and timestamps to
estimate thebandwidth× delay product of the network, which
it uses to resize its send window. The receiver simply advertises
the maximal possible window. Paper [3] presents results for a
NetBSD 1.2 implementation, showing improvement over stock
by factors of 10-20 for small numbers of connections.

DRS is a mostly receiver-based buffer tuning approach where
the receiver tries to estimate thebandwidth× delay product of
the network and the congestion-control state of the sender, again
using TCP packet header information and timestamps. The re-
ceiver then advertises a window large enough that the sender is
not flow-window limited.

Linux autotuning refers to a memory management technique
used in the stable Linux kernel, version 2.4. This technique
does not attempt any estimates of thebandwidth× delay prod-
uct of a connection. Instead, it simply increases and decreases
buffer sizes depending on available system memory and avail-
able socket buffer space. By increasing buffer sizes when they
are full of data, TCP connections can increase their window size
– performance improvements are an intentional side-effect.

Enable uses a daemon to perform the same tasks as a human
performing manual tuning. It gathers information about every
pair of hosts between which connections are to be tuned, and
saves it in a database. Hosts then look up this information when
opening a connection, and use it to set their buffer sizes. Pa-
per [7] reports performance improvements over untuned con-
nections by a factor of 10-20, and above 2.4 autotuning by a
factor of 2-3.

Auto-ncFTP also mimics the same sequence of events as a
human manually tuning a connection. Here, it is performed once
just before starting a data connection in FTP so the client can set
buffer sizes appropriately.

DRS FTP uses a new command added to the FTP control lan-
guage to gain network information, which is used to tune buffers
during the life of a connection. Tests of this method show per-
formance improvements over stock FTP by a factor of 6 with
100ms delay, with optimally tuned buffers giving an improve-
ment by a factor of 8.
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Tuning Level Changes Band Visibility
PSC Kernel Dynamic In Transparent

Linux 2.4 Kernel Dynamic In Transparent
DRS Kernel Dynamic In Transparent

Enable User Static Out Visible
NLANR FTP User Static Out Opaque

DRS FTP User Dynamic Both Opaque
Manual Both Static Out Visible

TABLE I
COMPARISON OFTUNING TECHNIQUES

B. Comparison of Tuning Techniques

User-level versus Kernel-levelrefers to whether the buffer
tuning is accomplished as an application-level solution, or as a
change to the kernel (Linux, *BSD, etc.).

Manual tuning tediously requires both types of changes. An
‘ideal’ solution would require only one type of change – kernel-
level for situations where many TCP-based programs require
high performance, user-level where only a single TCP-based
program (such as FTP) requires high performance.

Kernel-level implementations will always be more efficient,
as more network and high-resolution timing information is
available, but they are complicated and non-portable. Whether
this is worth the 20-100% performance improvement is open to
debate.

Static versus Dynamicrefers to whether the buffer tuning is
set to a constant at the start of a connection, or if it can change
with network “weather” during the lifetime of a connection.

Generally a dynamic solution is preferable – it adapts itself to
changes in network state, which some work has shown to have
multi-fractal congestion characteristics [9], [10]. Static buffer
sizes are always too large or small given “live” networks. Yet,
static connections often have smoother application-level perfor-
mance than dynamic connections, which is desirable.

In-Band versus Out-of-Bandrefers to whetherbandwidth×
delay information is gathered separately from the data transmis-
sion to be tuned, is obtained from the connection itself. An ideal
solution would be in-band to minimize user inconvenience and
ensure the correct time-dependent and path-dependent informa-
tion is being gathered.

DRS FTP is ‘both’ because data is gathered over the con-
trol channel; usually this channel uses the same path as the data
channel, but in some ‘third-party’ cases the two channels are
between different hosts entirely. In the first case data collection
is ‘in-band’, while in the second not only is it out of band, it
measures characteristics of the wrong connection! Auto-ncFTP
suffers from the same ‘third-party’ problem.

Transparent versus Visible refers to user inconvenience –
how easily can a user tell if they are using a tuning method,
how many changes are required, etc. An ideal solution would
be transparent after the initial install and configuration required
by all techniques.

The kernel approaches are transparent; other than improved
performance they are essentially invisible to average users.
The FTP programs are ‘opaque’ because they can generate de-

tectable out-of-band data, and require some start-up time to ef-
fectively tune buffer sizes. Enable is completely visible. It re-
quires a daemon and database separate from any network pro-
gram to be tuned, generates frequent detectable network bench-
marking traffic, and requires changes to each network program
that wishes to utilize its functionality.

III. E XPERIMENTS

These experiments shift our focus to the methods of direct
interest: manual tuning, Linux 2.4 autotuning, and Dynamic
Right-Sizing under Linux. The remaining approaches are not
discussed further because such analysis is available in the refer-
enced papers.

A. Varied Experimental Parameters

Our experiments consider the following parameters:

Tuning (None, 2.4-auto, DRS): We compare a Linux 2.2.20
kernel which has no autotuning, a 2.4.17 kernel which has Linux
autotuning, and a 2.4.17 kernel which also has Dynamic Right-
Sizing. We will refer to these three as 2.2.20-none, 2.4.17-Auto,
and 2.4.17-DRS.

Buffer Sizes(32KB to 32MB): Initial buffer size configura-
tion is required even for autotuning implementations. There are
three cases:

1. No user or kernel tuning; buffer sizes at defaults. Gives base-
line for comparison with tuned results.
2. Kernel-only tuning; configure maximal buffer sizes only.
Gives results for kernel autotuning implementations.
3. User and kernel tuning; usesetsockopt() to configure
buffer sizes manually. Gives results for manually tuned connec-
tions.

Network Delay (≈0.5ms, 25ms, 50ms, 100ms): We vary the
delay from 0.5ms to 100ms to show the performance differences
between LAN and WAN environments. We use TICKET [11]
to perform WAN emulation. This emulator can route at line
rate (up to 1Gbps in our case) introducing a delay between 200
microseconds and 200 milliseconds.

Parallel Streams(1, 2, 4, 8): We use up to 8 parallel streams
to test the effectiveness of this commonly-used technique with
autotuning techniques. This also shows how well a given tuning
technique scales with increasing numbers of flows. When mea-
suring performance, we time from the start of the first process
to the finish of the last process.

B. Constant Experimental Parameters

Topology: Figure 1 shows the generic topology we use in
our tests. We have some number of network source (S) pro-
cesses sending data to another set of destination (D) processes
through a pair of bottleneck routers (R) connected via some
WAN cloud. The “WAN cloud” may be direct long-haul con-
nection or through some arbitrarily complex network (In the
simplest case, both routers and the “WAN cloud” could be a
single very high bandwidth LAN switch).
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Fig. 1. Generic Topology

Our experiments place all processes (parallel streams) on a
single host. The results of more complicated one-to-many or
many-to-one experiments (common in scatter-gather computa-
tion, or for web servers) can be inferred by observing memory
and CPU utilization on the hosts. This information shows the
scalability of the sender and receiver tuning, and if one end’s
behavior characterizes the performance of the connection. This
distinction is critical for one-to-many relationships, as the “one”
machine must split its resources among many flows while the
each of the “many” machines can dedicate more resources to
the one flow.

Unidirectional Transfers: Although TCP is inherently a full
duplex protocol, the majority of traffic generally flows in one
direction. TCP protocol dynamics do not significantly differ be-
tween one flow with bidirectional traffic and two unidirectional
flows sending in opposite directions [12].

Loss: Our WAN emulator is configured to emulate no loss
(although loss may still occur due to sender/receiver buffer over-
runs). All experiments are intended to be the best-case scenario.
The artificial inclusion of loss adds nothing to the discussion, as
congestion control for TCP Reno/SACK under Linux is a con-
stant for all experiments.

Data Transfer: Rather than using some of the available
benchmarking programs we chose to write a simple TCP based
program to mimic message-passing traffic. This program tries
to send large (1MB) messages between hosts as fast as possible.
A total of 128 messages are sent, a number chosen because:
1. 128MB transfers are large enough to allow the congestion
window to fully open.
2. 128MB transfers are small enough to occur commonly in
practice1.
3. Longer transfers do not help differentiate among tuning tech-
niques (tested, but results omitted).
4. It is evenly divisible among all numbers of parallel streams.

Hardware: Tests are run between two machines with dual
933MHz Pentium III processors, a Alteon Tigon II Gigabit Eth-
ernet card on a 64-bit 66-MHz PCI bus, and 512MB of memory.

IV. RESULTS AND ANALYSIS

We present data in order of increasing delay. With constant
bandwidth (Gigabit Ethernet) this will show how well each ap-
proach scales as pipes get “fatter.”

A. First Case,≈0.5ms Delay

With delays on the order of half a millisecond, we expect that
even very high bandwidth links can be saturated with small win-
dows – the default 64KB buffers should be sufficient.

1“In the long run we are all dead.” -John Maynard Keynes

Figure 2 shows the performance using neither user nor kernel
tuning. With a completely default configuration, the Linux 2.4
stack with autotuning outperforms the Linux 2.2 stack without
autotuning by 100Mbps or more (as well as showing more stable
behavior). Similarly, 2.4.17-DRS outperforms 2.4.17-Auto by a
smaller margin of 30-50Mbps. This is due to more appropriate
use of TCP’s advertised window field, and faster growth to the
best buffer size possible.

Unexpectedly for such a low-delay case, all kernels benefit
from the use of parallel streams, with improvements in perfor-
mance from 55-70%. When a single data flow is striped among
multiple TCP streams, it effectively obtains a super-exponential
slow-start phase and additive increase by N. In this case, that
behavior improves performance.

Note that limitations in the firmware of our gigabit Ethernet
NICs limit performance to 800Mbps or below, so we simply
consider 800Mbps ideal.2
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Fig. 2. No Tuning, 0.5ms

Figure 3 shows the performance with kernel tuning only; that
is, increasing the maximum amount of memory that the kernel
can to allocate to a connection.

As expected, results for 2.2.20-none (which does no autotun-
ing) mirror the results from the prior test.

2.4.17-Auto connections perform 30-50Mbps better than in
the untuned case, showing that the default 64KB buffers were
insufficient.

2.4.17-DRS connections also perform better with one or two
processes, but as the number of processes increases, DRS ac-
tually performs worse! DRS is more aggressive in allocating
buffer space; with such low delay it overallocates memory, and
performance suffers (see Figure 5’s discussion). This can be a
good thing – parallel flows can induce chaotic network behavior
and be unfair in some cases; by penalizing users of heavily par-
allel flows, DRS could induce more network fairness while still
providing good performance.

2Custom firmware solutions can improve throughput, but such results are nei-
ther portable nor relevant to this study.
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Fig. 3. Kernel-Only Tuning, 0.5ms

Figure 4 shows the results for hand-tuned connections. DRS
obeys the user when buffers are set bysetsockopt() , so
2.4.17-Auto and 2.4.17-DRS use the same buffer sizes and per-
form almost identically. The performance difference between
2.2.20 and 2.4.17 is due to stack improvements in Linux 2.4.
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Fig. 4. User/Kernel Tuning with Ideal Sizes, 0.5ms

The “ideal” buffer sizes in the prior graph are larger than
one might expect; this graph shows the performance of 2.4.17-
Auto with buffer sizes per process between 8KB and 64MB. We
achieve peak performance with sizes larger than the expected
64KB – on the order of 1MB. The difference is due to the in-
teraction and feedback between several factors: TCP congestion
control, process scheduling, and stack traversals. A more com-
plete discussion has been omitted due to space constraints.
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B. Second Case,≈25ms Delay

This case increases delay to values more in line with a net-
work of moderate size, giving abandwidth × delay product
of over 3MB. In this case, the default configuration is insuffi-
cient for high performance, giving less than 20Mbps for a single
process with all kernels. As the number of processes increases,
our effective flow window increases, and we achieve a linear
speed-up. In this case, simple autotuning outperforms DRS, as
the memory-management technique is more effective with small
windows (it was designed for heavily loaded web servers).
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Fig. 6. No Tuning, 25ms

With Kernel-Only Tuning, the performance of DRS improves
dramatically, while the performance of simple autotuning and
untuned connections is constant. As we increase the number of
processes we again see the performance of DRS fall.

This graph actually reveals a bug in the Linux 2.4 kernel series
that our DRS patch fixes; the window scaling advertised in SYN
packets is based on initial (default) buffer size, not the maximal
buffer size up to which Linux can tune. Thus with untuned de-
fault buffers, no window scaling is advertised – so even if the
kernel is allowed to allocate multi-megabyte buffers, the size of
those buffers cannot be represented in TCP packet headers.
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Fig. 7. Kernel-Only Tuning, 25ms

With both user and kernel tuning, maximal performance in-
creases for all kernels. However, performance does fall for DRS
in the two and four process case – here we see that second-
guessing the kernel can cause problems, and larger buffer sizes
are not always desirable.
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The other feature of note is that 2.4.17-DRS performance is
not identical to 2.4.17-Auto – the only difference in this case
is that DRS uses a slightly different algorithm to advertise its
receiver window, and this pays off with a 150Mbps performance
improvement.
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Fig. 8. User/Kernel Tuning with Ideal Sizes, 25ms

C. Third and Fourth Cases, 50-100ms Delay

The patterns observed in results for the 50ms and 100ms cases
do not significantly differ (other than adjustments in scale) from
those in the 25ms case – the factors dominating behavior are the
same.

The completely untuned cases differ so little that the follow-
ing three equations suffice to calculate the bandwidth in Mbps
with error uniformly below 20%, given only the number of pro-
cesses and the delay in milliseconds.
• 2.2.20-none:(processes× 214)/delay
• 2.4.17-auto:(processes× 467)/delay
• 2.4.17-DRS:(processes× 355)/delay

As in Figure 7, the kernel-only tuning case shows 2.4.17-
DRS significantly outperforming 2.4.17-Auto (by a factor of
5 to 15). DRS at 50ms and 100ms delay with 8 processes
achieves 310Mbps and 180Mbps, respectively. The perfor-
mance of 2.2.20-none and 2.4.17-Auto, which do not change
with kernel-only tuning, are still limited to the above equations.

Similar to Figure 8, the hand-tuned case shows 2.4.17-DRS
and 2.4.17-Auto performing identically with 2.2.20-none per-
forming slightly worse. Interestingly, as delay increases the per-
formance difference falls – the factors dominating performance
are not buffer sizes but rather standard TCP slow-start, additive
increase, and multiplicative decrease behaviors.

V. CONCLUSION

We have presented a detailed discussion on the various tech-
niques for automatic TCP buffer tuning, showing the benefits
and problems with each approach. We have presented exper-
imental evidence showing the superiority of Dynamic Right-
Sizing over simple autotuning as found in Linux 2.4. We have
also uncovered several unexpected aspects of the problem (such
as the calculated “ideal” buffers performing more poorly than
somewhat larger buffers). Finally, the discussion has provided
insight into which solutions are appropriate for which circum-
stances, and why.
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