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Abstract

Network intruders often use non-standard ports or standard ports in non-standard ways to bypass
detection. This report describes techniques and software for collecting, analyzing, and classifying
Internet packet flows to assist in intrusion detection. Flows are characterized by packet size, inter-
arrival times, direction, and inter-packet correlations without looking at packet contents. Statistical
signatures for known flows are used to classify unknown flows.



1 Introduction

Most intrusion detection systems (IDS) are based on recognizing known attack signatures and/or
anomalous activity. Network-based IDSs look for attack signatures on standard service ports
(DNS, IMAP, POP, SNMP, SYSLOG) or monitor interactive activity on standard interactive ser-
vice ports (TELNET, RLOGIN, RSH, FTP), or look for activity on ports used for known backdoors
(NETbus, BackOrifice). In our experience over the last few years, these detection methods are quite
effective. However, we have had several intrusions where the attacker has used non-standard ports
and avoided detection.

An attacker may have gained access to an internal system by capturing an account password at
another site. The attacker can then access an internal system and install backdoors on non-standard
ports for later access. This is also an insider threat. Even the currently popular PC-based backdoors
(Netbus and BackOirifice) are "port agile” — the attacker can choose the port to use for the backdoor.
These backdoors can later be used to provide interactive access, chat channels, pass-throughs to
other hosts, or file transfers.

The attacker also may use standard services in non-standard ways. Firewalls may pass HTTP,
mail, DNS, or ICMP traffic, and IDS systems often ignore these services when they originate from
the inside. The attacker can tunnel his own services through these standard ports, for example,
transferring files in what looks like DNS packets, or providing interactive service through ICMP
echo packets.

The objective of this research is to identify network flows by their statistical signature and

hopefully identify intruder flows. This research is divided into three broad areas:

e network traffic capture, data reduction/visualization/storage
e statistical analysis of flow characteristics

e learning and decision systems for classifying flows

Network traffic data is captured and some portion of each packet is saved for later post-
processing. Information retained for each packet includes time of arrival (to the microsecond),
source address, source port, destination address, destination port, packet length, and TCP flags.
This reduces a packet of hundreds of bytes to twenty or thirty bytes.

Using the collected network data, statistical signatures of known flows are developed using var-

ious features of the flow. Features include packet lengths inbound versus outbound, inter-packet
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arrival times, session duration, number of packets inbound and outbound, or other temporal char-
acteristics. Flow categories include interactive sessions, file transfer, chat sessions, audio/video
flows, web flows, DNS flows, remote console flows (PCAnywhere, Timbuktu), email, ICMP, IP
tunnels.

Another part of this research developed a decision system to determine the effectiveness of
various flows features in classifying a flow. A flow-classifier was developed to classify an unknown
flow using the statistical signatures of known flows.

In the following section, other work similar to ours is discussed. Section 3 describes how we
capture network flows. Section 4 describes various ways to characterize network flows, and section

5 describes techniques for classifying unknown flows.

2 Related work

Most of the research on Internet traffic consider aggregate behavior (link utilization, packet loss,
packet/data volume, network service/port usage, time-of-day, packet size, interarrival times, flow
direction) [1] [17] [24]. Since web/http traffic accounts for most of the Internet traffic, much work
has been done on analyzing web traffic [14] [11]. Mena [13] analyzes Internet audio flows and
derives metrics for identifying audio flows. He finds that audio flows have distinct packet length
distributions and temporal signatures. He shows that packet interdeparture times have a distinct
regularity across all audio flows. Cleveland [3] looks at the statistical properties of Internet traffic
and the difficulties of handling the complex and very large data bases that result from collecting
packet headers. Cleveland utilized the S statistical package for analyzing the data.

Frank [7] used data collected by NSM [8] from the Internet to classify network flows. The
features of each flow included:

e flow duration

packets from source

packets from destination

bytes from source

bytes from destination



e intrusion warning

The intrusion warning field was from content analysis of the flow by NSM and represented
how likely the flow was to be an intrusion. The classification error rate of a decision tree was used
to evaluate which features were most effective in classifying a flow. Feature selection is used to
reduce the amount of information needed to classify a flow and to improve the error rate of the
classification. Frank used three different search algorithms to evaluate features for a collection of
known flows. With as few as three features, the classifier error rate was just under 2% (All error
rates actually reported are a factor 100 smaller, which is not possible with the data set size used.
This misprint, superfluous % signs, was confirmed by the author to us in an e-mail.) The three
features found by all the search algorithms were flow duration, destination packets, and source
bytes. Frank’s data included login, email, and remote shell services. Frank used one set of data
of about 16,000 flows. Considering the small error rates and that this contained three classes of
connections, it is not clear if the training and testing data sets were independent by further apriori
division of this data into two sets. Doak [5] has a more general evaluation of search algorithms for
feature selection.

Cannady [2] describes a neural network trained to detect network intrusions from packet header
data. Cannady uses IP protocol, source and destination addresses, source and destination ports (or
ICMP type and code fields), and packet length to characterize each packet. In training the neural
network an additional attack element was included to indicate if the packet was from an attack.

Porras [18] looks for statistical anomalies in network traffic that might indicate intrusions.
Current traffic is compared against a data base of historical traffic characteristics. The data base
includes metrics for traffic intensity, typical port usage, typical active hosts. They also check the
content of some network packets against a list of attack signatures.

Paxson [15] describes both content-based and heuristic techniques for identifying backdoor
services established by an intruder. Paxson monitors packet content of arbitrary flows to detect
signatures of the various interactive services (rlogin, telnet, ssh). He also uses a heuristic to identify
interactive traffioy= % whereSis the number of small packets,the number of gaps between
small packets, antll the total number of packets He also has a metric for the interarrival of small
packets, noting that non-interactive traffic tends to send packets back to back. He uses Internet
traces to test his classifiers.

Paxson [16] also describes a timing-based system for detecting stepping stones — a host com-



promised to forward traffic from one host to another. He notes that interactive sessions can be
characterized by active and inactive periods. He detects forwarders by correlating the start of

active periods between flows.

3 Packet capture

The Internet Protocol (IP) is used to carry data over the Internet and IP-based intranets. Every data
packet carries at least an IP header, and often additional protocol headers in addition to the user
data (Figure 1).

| IP headerl TCP/UDP heade} application headef user datg

Fig. 1. IP packet layout.

Each IP packet, including fragments, carries the IP header in the first 20 bytes (or more if op-
tions are present). Figure 2 shows the layout of the IP header. For our analysis, we are interested
only in the 32-bit destination and source addresses, length, and the protocol field. The 8-bit proto-
col field specifies the type of payload following the IP header, for example, UDP, TCP, or ICMP.

For more details on the function of each field refer to Stevens [23], Comer [4], or RFC791 [20].

version/lth| TOS length
ID flags| offset
TTL | proto| checksum
source address
destination address
options (if any)

Fig. 2. IP header.

The primary transport protocols are UDP, TCP, and ICMP. UDP is a connectionless, lossy
datagram protocol used for audio/video streams, time synchronization (NTP), and host-name reso-
lution (DNS) on the Internet. For our analysis we are only interested in the source and destination
ports of the 8-byte UDP header (Figure 3).

\ source port destination port
| length checksum

Fig. 3. UDP packet header.



TCP is a reliable protocol used for most services on the Internet (file transfer, telnet, web/http,
email). Our analysis needs the source and destination port from the 20-byte TCP header (Figure

4). We also save the flags byte since it can indicate the start and finish of a flow.

source port | destination port
sequence number
acknowledgement number
hdrlth | flags window
checksum | urgent pointer

Fig. 4. TCP header.

The Internet Control Message Protocol (ICMP) is used by a host or router to report unusual
conditions or to control packet flows [19]. Most ICMP messages are generated at the kernel level
of an OS or by a router. The format of the ICMP payload varies depending on ICMP type, but the
first word consists of an 8-bit type field, 8-bit code field, and a 16-bit checksum (Figure 5). For

our analysis, we are interested in only the type and code fields.

| type | code| checksum

Fig. 5. First word of ICMP header.

There is software available (like tcpdump) that can capture all of the packet headers and record
the data to disk. However, to reduce disk usage and speed packet capture, we developed our packet-
capture software that only saves a portion of each packet to disk. The software is béibpdam
[12], a library available on most UNIX systems. The software runs in promiscuous mode and reads
every IP packet on the network interface saving data from the IP header and transport header of

each packet. The software records the following information (24 bytes) from each packet:

e timestamp (8 bytes, microseconds)

source IP address (4 bytes)

destination IP address (4 bytes)

IP length (2 bytes)

IP protocol (1 byte)

TCP flags (1 byte)



e UDP/TCP source port (2 bytes)
e UDP/TCP destination port (2 bytes)

The C structure (Figure 6) provides another view. The timestamp is providdodoapand itis in
the byte-order of the capturing machine. The remaining data elements are in network-byte order.

Libpcapis portable across most UNIX platforms thus making our data collector portable as well.

struct FlowRec {
unsigned int secs;
unsigned int usecs;
unsigned int srcip;
unsigned int dstip;
unsigned short 1th;
unsigned char proto,flags;
unsigned short sport,dport;

Fig. 6. C structure data for each packet.

For this research, we collected IP packets from the external FDDI ring at ORNL. For a typical
24-hour period, the ring would carry over 80 gigabytes of data carried in 150 million packets. Our
24-byte packet summary file then is nearly 4 gigabytes for 24 hours. The raw data file has packets
from various network connections (flows) intermixed, so we developed additional software to split
the data into flows based on source address/port and destination address/port for each IP protocol
(TCP, UDP, ICMP, or other).

4 Characteristics of Internet traffic flows

We developed software to split the packet summary data into individual flows. Although TCP has a
flags field which can indicate the beginning and end of a flow (and we have that field in our packet
data), we chose to define the end of a flow as 10 minutes of idle time. (We did some experiments
varying the flow cutoff from 5 to 20 minutes and found 10 minutes to be an effective limit.) Our
initial studies concentrated on flows for telnet, rlogin, ssh, rsh, ftp, smtp (email), IRC (chat), ICMP.
We also had some "mystery” flows from machines that had been compromised, and ICMP flows

that were being used for remote shell services. We discarded one-way flows and flows with fewer



than 10 packets as part of this initial study. Our data differs from earlier studies in that we have
time-stamps for each packet, so we can study inter-packet arrival times.

Visual examination of raw data is an important first step in any data analysis exercise. When the
data sets are very large, as is the case with network flows, visualization tools that present the data
in a manageable way need to be developed. We used S-Plus[21] to plot collections of individual
flows. Presenting a number of individual flow plots together on a page provides a useful facility
for studying flows. We agree with Cleveland and Sun [3], who emphasize that Internet traffic data
must be explored in its full complexity and relying on summaries is inadequate.

Figures 7 to 13 present individual flow plots in groups of 80 flows. We present the first 80 flows
with at least 10 packets within each flow type from a two hour collection of IP packets. Rlogin and
IRC have fewer flows within this period. The following flow types are presented:

Figure 7  file transfer (port 20)

Figure 8 FTP-command and remote shell (port 21)

Figure 9  secure shell (port 22)

Figure 10 telnet (port 23)

Figure 11 email (port 25)

Figure 12 rlogin (port 513)

Figure 14 ICMP

Figure 13 IRC (port 6667)
Within individual flow plots, packets are distinguished by four colors indicating the side of the
connection and whether they follow a packet from the same or other side of the connection. Each
packet in an individual flow is plotted as a point and connected with a line to the previous packet
point. The horizontal axis is time between packets (log10 of seconds) and the vertical axis is packet
size (log10 of size).

These flow plots capture nearly all of the heuristics that are often used for classifying flows.
Interactive traffic (presumably with a human on one end) has longer inter-packet delays than bulk-
transfer services like email or ftp. We can also determine which end is the client and which is
the server for interactive flows. Bulk transfers (ftp) tend to have big packets originating from just
one side of the flow and often have back to back packets. One can also detect machine-controlled
(fixed interval packets) interaction over interactive (telnet/rlogin) ports.

The flow visualization has proved useful in classifying unknown flows from compromised ma-

chines. Figure 15 illustrates two unknown flows from a compromised machine. The two flow
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images are nearly identical in structure but reversed in color. Later forensic analysis of the com-

promised machine found that the intruder had installed an Internet-chat relay. These two images
are an example of a relay (Paxson’s stepping stone [15]). The inbound traffic from one remote host
is forwarded by the compromised host as outbound traffic to another remote host (hence the color

reversal).

5 Classifying network flows

The SPlus images of flows provide a visual summary of flow behavior that can be used to study flow
traffic in great detail. However, for practical monitoring we need an automated way of classifying
the flows, and then a way to compare an unknown flow to a knowledge-base of known flows. For
this research, we experimented with both heuristic and statistical methods for classifying flows.
From our observations and visualizations of various network flows, we experimented with various
heuristics for classifying flows. We developed various indexes for a flow based on packet length
(average length inbound versus outbound, or maximum/median packet length), packet runs or
bursts (number of back-to-back packets inbound versus outbound), inter-packet times (distribution
of on/off times, which side of flow would restart after an idle period). These heuristics can be
effective but they do not provide a systematic way of selecting characteristics for classification.
Most of our effort was directed at using statistical techniques to classify flows, trying to mimic
possible visual differentiation of our flow plots. Our approach at quantizing the flow plots was
to "bin” the image. We can logically superimpose a grid over the flow plot and count the data
points in the plot that fall in each bin. A few packet sizes are binned individually because of their
high frequency and special use. This is motivated by the appearance of high frequencies at a few
specific packet sizes in many flow plots. See Figure 16 for an enlarged example of a rlogin flow and
an IRC flow showing concentrated traffic at distinct packet sizes. The packets that are not binned
individually are binned in intervals. Figure 17 is an example of a grid that results in 28324
bins. In this example, special packet sizes 40, 41, 576, and 1500 and four log10(size) bins provide
8 bins for size across nine bins for delay. This gives a total of 72 exclusive bins. When repeated
for the four types of packet directions (00, 01, 10, and 11, indicating the directions of the current
packet and of the last packet) this gives 288 bins. Thus in this example, each flow is characterized
with a vector of 288 counts. We further divide the counts of each flow by the total count for that
flow. The result is a packet distribution on 288 points for a single flow that is independent of the
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Fig. 17. Binning a flow plot: intervals define a set of bins; intersections of special packet sizes with
interval bins define additional bins.

number of packets in the flow. This distribution is a characterization of a single flow as a set of
288 characteristics, all on the [0,1] interval. These characteristics are mostly a reduction of the
information contained in a flow plot, but they do not suffer from over-plotting loss as do some
longer flow plots.

Conceptually, we can use a set of flows from a single flow type, to estimate a 288-dimensional
density. This density then provides the probability that an unknown flow belongs to that flow type.
With estimated densities for a number of flow types, an unknown flow would be classified to the
flow type that provides the highest probability.

In order to visualize the density shapes and suggest a density estimation technique, we used two
dimension reduction techniques. One, a linear projection technique called principal components
(see [10], for example) and the other a nonlinear projection technique of metric multi-dimensional
scaling (see [9], for example).

Principal components analysis (PCA) is a technique that sequentially finds orthogonal direc-

19



Comp..3

-0.4 -

-0.6

08 -06 -04 -0.8 1

- 0.6 0.2 0.4 0.6 20

22
-02  Comp..2 021 23

0.0

513
o 6667
icmp

-0.2 4

Comp..1

—OI.4 —0|.2

Fig. 18. Pairwise plots of the first three principal components for a 2 hour collection of flows.

tions of highest variation in the original high dimensional space. The underlying problem is an
eigenvalue computation on a covariance matrix of the packet flow distributions. Associated with
the largest eigenvalues are the eigenvectors that capture most of the variation in the original vari-
ables (288 in the preceding binning example). This is also useful for visualization of the separation
that the original variables achieve among the flow types. Although high variation is not the same
criterion as flow type separation, separation is often obtained. This is because variation within
a flow-type is usually less than variation between flow-types. An example giving pairwise plots
of the first three principal components is in Figure 18. In computing the principal components,
the more frequent flow types (port 25 and ICMP) were limited to 500 (by sub-sampling), while

the least frequent rlogin had only 24 flows. This was done to reduce the domination of the more
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frequent flows.

Metric multidimensional scaling (MDS) is a non-linear technique that begins with a distance
matrix from the high dimensional representation and attempts to preserve those distances in a
lower dimensional space. The solution involves an eigenvalue problem on the distance matrix.
Pairwise plots of a four-dimensional MDS representation applied to a group of network services is
in Figure 19.

Particularly the first two dimensions of the MDS projection in Figure 19 show a separation of
flows that have a human on one end (ports 21, 22, 23, and 513) from those that have a machine at
both ends (ports 20 and 25). The two "unknown” flows (marked as port 0) from a compromised
machine are clearly on the human side.

Repeating the multidimensional scaling on the machine flows only (Figure 20) shows that 20
(file transfer) clusters into two distinct groups: one easily separated from 25 and the other more
difficult. Although the number of packets per flow is not used in the analysis, the easily separated
group is a set of massive file transfers that are one to two orders of magnitude larger than the rest.
Their packet size and inter-packet delay profile must be different from the rest.

Applying multidimensional scaling to the flows with a human on one end (Figure 21) shows
some separation but also considerable overlap between the flows. Flow 23 (telnet) also presents
two distinct clusters. The two "unknown” flows (marked as port 0) are most likely classified as
port 22 (secure shell). This is reasonable as the flows were an Internet-chat relay, that carries an
overhead machine traffic not unlike secure shell.

The visualization of low-dimensional representations of flows is useful for understanding of
various flow characteristics and can be a source of more in-depth study of flow patterns and network
service relationships. Our goal was to examine the spatial distributions of individual network
services. These distributions are irregularly shaped, as can be seen in the MDS and PCA plots. The
reasons underlying this irregularity are probably that each service can likely be further subdivided
into subgroups. The two file transfer groups are a clear example. This irregularity suggests that
nonparametric density estimation is appropriate.

Nonparametric density estimation works well up to about three or four dimensions [22]. For
this reason, we use dimension reduction to three extracted features before density estimation in
the reduced space. We use PCA for this dimension reduction because features are extracted with a
linear transformation, resulting in fast evaluation of new flows. MDS requires inter-flow distances

to every flow in the training set in the original high-dimensional space.
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Fig. 19. Pairwise plots of a four-dimensional MDS representation of a group of network services.
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Fig. 20. Pairwise plots of a four-dimensional MDS representation of two machine flows.
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Fig. 21. Pairwise plots of a four-dimensional MDS representation of flows with a human on one end.



Binning and kernel density estimation are possible nonparametric density estimation candi-
dates [22]. We choose binning because our goal is fast density evaluation for unknown flows.
Evaluation of kernel density estimates requires visiting every data point (every flow) that was used
to construct the estimate. Binned density estimates only require the evaluation of an index to access
the appropriate bin.

The learning process for flow classification is as follows:

Learning Process

Computeflow distributions on selected binning parameters.
ComputePCA transformation from full collection of flow distributions.
Estimatedensity for each flow type from three PCA.

Selecting flow binning parameters is a critical step because these are the features which will dis-
criminate between network services. Based on a tabulation of packet size frequencies for eight
network services (ftp, rsh, ssh, telnet, e-mail, rlogin, ICMP, and IRC) over a two hour period we
selected the following packet sizes as an initial binning set: 40, 41, 42, 52, 56, 60, 64, 68, 70, 76,
84, 576, 1064, and 1500. The remainder were grouped into two intervals 100 bytes and below,
and above 100 bytes. Inter-packet delays (in seconds) were binned into four groups: urier 10
103 to under 1691, 10791 to under 18>, and 18> and over. These binning parameters are not
optimal and are selected from aggregate information on each network service. An optimization of
these parameters should be based on individual flows rather than an aggregate, because it is the
flows that we ultimately classify. We discuss such optimization elsewhere.

Currently we have implemented a three-dimensional binned density estimation algorithm for
the Estimatestep of the learning process. A small amount of density smoothing (or regression
toward the mean) is useful to prevent overfitting and needs to be added for effective classification
of unknown flows.

With an estimated density for each network service we can rapidly classify flows with the

following algorithm:

Classification of a flow

Computeflow distribution on the binning parameters.
Apply PCA transformation to flow distribution.
Evaluateflow probability for each network service density.
Selectflow type with highest probability.

The Computestep is O(n), where n is the number of packets in the flow. In relation tGtmepute

step, the remaining steps are fast O(1) computations. Overall, this is feasible in real time.
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Table 1. Classification counts and error rate

FTP
FTP com ssh telnet e-mail rlogin ICMP IRC total | error rate

FTP| 316 0o 2 4 0 0 0 0 322|.0186
FTP-com 0O 436 2 7 4 0 0 0 449 .0229
ssh 0 0 85 0 0 0 0 0 85 | .0000
telnet 3 1 1 176 0 0 1 0 182]|.0330
e-mail| 25 711 5 241 13293 1 99 114376| .0753
rlogin 0 0O O 0 0 24 0 0 24 | .0000
ICMP 0 0O O 2 0 0 1474 g 1476 .0014
IRC 0 0O O 0 0 0 0 35 35| .0000

Based on a two hour collection of traffic, we took all two-sided flows with over 10 packets and
selected those that belonged to one of eight network services. This provided 16,949 flows. Using
the learning process and classification of the same flows, we obtained the table below. Because
e-mail and to some extent ICMP dominated the data set, we limited these two services to 500
flows in the PCA computation by sub-sampling. We used the first three principal components.
Classification performance on this data is shown in Table 1. The results show that it is possible
to effectively separate network services on the basis of packet size, direction, and inter-packet
delay information only, without content analysis. Preliminary results for classifying a second data
set with email flows resulted in a .18 error rate, up from the .07 rate in Table 1 as expected. In
order to build an effective classification algorithm for new flows, this work needs to continue with
optimizing binning parameters, density smoothing, and more data for characterizing less frequent
services.

We emphasize that the parameters (packet size and delay bin boundaries) should be optimized
with respect to classification performance. The following is a sketch of an optimization algorithm.

Flow Binning Parameter Optimization
Whileimprovement seen in lagtiterations
Replacebins with low coefficient contribution
Bin flows into the resulting bins
Computethe firstp principal components of the binned flows
For all combinations of 3 components
Estimatedensity for each flow type
Classifyall flows and compute maximum error rate
Set coefficient contributiowith best set of PCA components
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While the maximum error rate provides a criterion for the optimization, contributions of individual
bins enter through their coefficient magnitudes in the best set of 3 principal components. An
alternate contribution criterion might be the coefficients of the best multiple linear discriminator
function (another eigenvalue problem). The optimization requires substantial computation but it
does not need to be repeated unless there is a change in the protocol of a monitored service. Once
parameters are optimized, the learning process computes network service density estimates and
flows can then be classified in real time. It is also likely that values of the optimized parameters
will have an interpretation that enhances our understanding of network service performance and
protocols.

Because of the substantial computational requirements of this optimization, a faster implemen-
tation (in C) than we currently have in S-Plus is necessary. Preliminary C versions Bfrthe

Compute andEstimatesteps have been recently completed by a graduate student.

6 Conclusions

We have shown that it is possible to categorize Internet traffic flows without content analysis.
The various Internet services have distinctive statistical signatures and it is possible to identify
certain classes of service even when they are running on non-standard ports. Our classifier can
detect interactive sessions running over services that are normally used for bulk transfer or network
control. Relay-traffic from hosts that intruders have compromised and setup as forwarders can be
identified as well. The classifier works off-line and its effectiveness is sensitive to the amount of
packets in a flow.

Further work is needed to provide an effective real time classifier. First, binning parame-
ters must be optimized as suggested in Section 5. Second, density smoothing should be added
to network service density estimators. And finally, more data needs to be collected for training
classification of relatively infrequent network services.

It should be noted that the clever intruder can defeat statistical flow classifiers, though it re-
quires more effort, time, and more sophisticated intrusion software. If only a one-way conver-
sation is required into the attacked site, for example, to initiate a passive daemon, the intruder
could change source addresses, protocol, and port numbers for each packet sent to the attacked
site, foiling any flow categorization. Packets could be padded to fixed or varying lengths to defeat
categorization by packet size. Also the packet rate could be quite low, say, one per hour, further
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defeating flow categorization. Packet-rate characterizations could also be masked by sending at
fixed intervals. Time-based signatures, in general, are difficult because of delays that can be intro-
duced by congestion and queuing along the packet’s route through the Internet. Information could
also be passed inside legitimate packets [6]. For two-way conversations, defeating detection is a
little harder, but the intruder could still use the afore-mentioned techniques for inbound traffic, and
the returning traffic could vary port and protocol but would probably need the same destination
address. (Though the intruder could have multiple destination addresses to accept “replies.”)

Since flow characterization can be fooled, it must be combined with other intrusion detection
schemes (content analysis, host traffic profiles, host system logs, host file integrity checks) and
defense mechanisms such as filtering routers, firewalls, proper authentication.

We believe that the flow classifier could be made more effective with some additional analysis
and research. Future work can adapt the software to work in real-time, identifying "interesting”

flows, alerting security personnel, initiating content recording of the flow, or blocking the flow.
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