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EXPLICIT COST BOUNDS OF STOCHASTIC GALERKIN
APPROXIMATIONS FOR PARAMETERIZED PDES WITH

RANDOM COEFFICIENTS

Nick Dexter ∗ Clayton G. Webster † Guannan Zhang ‡

Abstract. This work analyzes the overall computational complexity of the stochastic Galerkin
finite element method (SGFEM) for approximating the solution of parameterized elliptic partial dif-
ferential equations with both affine and non-affine random coefficients. To compute the fully discrete
solution, such approaches employ a Galerkin projection in both the deterministic and stochastic do-
mains, produced here by a combination of finite elements and a global orthogonal basis, defined on
an isotopic total degree index set, respectively. To account for the sparsity of the resulting system,
we present a rigorous cost analysis that considers the total number of coupled finite element systems
that must be simultaneously solved in the SGFEM. However, to maintain sparsity as the coefficient
becomes increasingly nonlinear in the parameterization, it is necessary to also approximate the coef-
ficient by an additional orthogonal expansion. In this case we prove a rigorous complexity estimate
for the number of floating point operations (FLOPs) required per matrix-vector multiplication of the
coupled system. Based on such complexity estimates we also develop explicit cost bounds in terms
of FLOPs to solve the stochastic Galerkin (SG) systems to a prescribed tolerance, which are used
to compare with the minimal complexity estimates of a stochastic collocation finite element method
(SCFEM), shown in our previous work [16]. Finally, computational evidence complements the the-
oretical estimates and supports our conclusion that, in the case that the coefficient is affine, the
coupled SG system can be solved more efficiently than the decoupled SC systems. However, as the
coefficient becomes more nonlinear, it becomes prohibitively expensive to obtain an approximation
with the SGFEM.

Key words. stochastic Galerkin, stochastic collocation, sparse polynomial approximation, com-
plexity analysis, explicit cost bounds, finite elements

1. Introduction. Nowadays, stochastic polynomial methods are widely used al-
ternatives to Monte Carlo methods (see, e.g., [15]) for predicting the solution to
physical and engineering problems described by parameterized partial differential
equations (PDEs) with a finite number of random variables. In the last decade, two
classes of such methods have been proposed that often feature much faster conver-
gence rates: intrusive stochastic Galerkin (SG) methods and non-intrusive stochastic
collocation (SC) methods. Both approaches typically employ a Galerkin projection
in the physical domain, produced here by finite elements, and the resulting fully dis-
crete approximations only differ in their choice of multivariate polynomials for the
discretization in the stochastic domain. For details about the relations between these
methods see [17–19, 21, 24], and for computational comparisons between the SG and
SC methods see, e.g., [3, 13,19].
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The focus of this paper is to provide explicit cost bounds for applying the stochas-
tic Galerkin finite element method (SGFEM) to the solution of an elliptic PDE, with
stochastic diffusion coefficient parameterized by finitely many random variables. In
particular, we focus on the cost of constructing isotropic total degree SG approxima-
tions when the coefficient has both affine and non-affine dependence on the param-
eters. Under very basic assumptions on the coefficient, the solution to this problem
has been shown to have analytic regularity in the random variables (see [33]). As a
result, SG approximations that employ a global orthogonal basis have been shown to
be optimal projections in the L2 sense, converging sub-exponentially with respect to
the cardinality of the polynomial subspace [32]. However, the computational cost of
solving the coupled SG system does not grow linearly in the cardinality of the given
subspace. Therefore, the convergence estimates do not indicate the total complexity
of obtaining the approximation for a prescribed tolerance.

When the diffusion coefficient can be written as a sum of separable functions
of the physical and random parameters, the SG system can be written as a sum
of Kronecker products of mass and stiffness matrices. For every mass matrix, each
nonzero element leads to a nonzero block of the coupled SG system, where the size
of the block equals the size of the finite element stiffness matrix. To solve the SG
system, one must simultaneously solve all the coupled finite element problems. In the
case that the coefficient is affine in the parameters, the number of nonzeros in each
mass matrix is of order O(Mp) [14], where Mp is the cardinality of the isotropic total
degree polynomial subspace of order p ∈ N. Thus, a matrix-vector product involving
the coupled SG system requires O(JhMp) floating point operations (FLOPs), where
Jh is the number of physical degrees of freedom. Therefore, the work of solving the
coupled SG system when employing an iterative method, e.g., conjugate gradient
(CG), is of the order O(JhMpN

SG
iter) where NSG

iter is the number of iterations required
to achieve a prescribed accuracy of the fully discrete approximation [3, 14,34].

On the other hand, when the diffusion coefficient is a general non-affine function of
the random parameters, the cost of obtaining an approximation with the SGFEM is
not as obvious as before. In this setting we consider two cases, namely, the coefficient
is: (1) a polynomial with respect to the random variables, and; (2) a transcendental
function with respect to the random variables. In the first case, as we increase the
order of the polynomial, the block-sparsity of the SG system decreases, resulting in a
SG system that incrementally becomes block-dense [12, 14, 21, 23, 34, 35]. In the sec-
ond case, a separable representation can be guaranteed with the use of an orthogonal
expansion [36, 37], such that, substituting the expansion into the discretized PDE
recovers the Kronecker product structure. However, when the expansion is not trun-
cated, the SG system is known to be entirely block-dense [14, 23]. Without a priori
knowledge on the exact sparsity of the mass matrices in this case, it was estimated that
the complexity of matrix-vector multiplications of the SG Kronecker product system
is between O(JhM

2
p ) and O(JhM

3
p ) [34]. As such, it is impossible to make a conclusive

statement about the computational cost, and, more importantly, does not account

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.



ORNL/TM-2015/328: N. C. Dexter, C. G. Webster, and G. Zhang 3

for the two cases above, i.e., when the coefficient is possibly a truncated polynomial
of fixed total degree r ∈ N such that 1 ≤ r < ∞. In these cases, the work of solv-
ing the coupled SG system with an iterative method is given by O(JhM(p, r)NSG

iter),
where M(p, r) is the total number of O(Jh) finite element problems that must be
simultaneously solved.

The key challenge of estimating the cost of solving the SG system when the coef-
ficient is a (truncated) polynomial of finite order is to provide bounds on the block-
sparsity of the matrix, i.e., nonzeros of the SG system. To achieve this, we provide
a rigorous counting argument, which can be seen as a generalization of [14], for the
exact sparsity of the mass matrices for an arbitrary order orthogonal expansion of
a non-affine coefficient. As a result, we are able to provide bounds for M(p, r) of
the order O(MpMr min{2r,Mdr/2e}), where Mr is the cardinality of the total degree
polynomial subspace used in an orthogonal expansion of order r of the coefficient.
This result provides sharper estimates than the bounds in the case of the full orthog-
onal expansion from [35] since it depends on the truncation order r, and allows us
to estimate the total complexity of solving the coupled system for general non-affine
coefficients. Since the counting argument for the sparsity of the SG system relies only
on the SG discretization of an elliptic operator in terms of orthogonal polynomials, we
note that this argument can be reused to estimate the complexity of solving similarly
defined PDEs with this method.

In addition, we also develop explicit cost bounds in terms of FLOPs to solve the
SG system. Our approach relies on ε-complexity analysis, wherein we balance the
errors arising from the approximation with the SGFEM and the iterative solver, e.g.,
CG, so as to ensure the solution to the fully discrete approximation achieves a given
tolerance of ε > 0. With this result, we are able to provide a direct comparison with
ε-complexity estimates for the stochastic collocation finite element method (SCFEM)
in our previous work [16]. Finally, we present numerical results in agreement with
the theoretical work estimates for both the SGFEM and SCFEM all cases described
above.

An outline of the paper is as follows. In §2, we provide a discussion on the
model problem, and requirements on the diffusion coefficient. In §3, we define the
parameterized finite element and SG approximations, derive the SG system, and
provide examples of the resulting linear systems that arise from the SG discretization
with various coefficients. We then define the cost of solving the SG system and discuss
preconditioning strategies. In §4, we derive the exact number of coupled finite element
problems in the SG system and bounds on the sparsity in the non-affine case, and
present explicit cost bounds of the SGFEM. We also discuss the conditioning of the
system in the non-affine case in order to provide a comparison with similar results
from [29]. In §5, we briefly describe the SCFEM, and provide theoretical comparison
with results from [16] in terms of minimum work to reach a given tolerance, both
in the affine and non-affine cases. Finally, in §6, we present illustrative numerical
examples corroborating our theoretical results.
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2. Problem setting. We consider the simultaneous solution of the parameterized
linear elliptic PDE:{

−∇ · (a(x,y)∇u(x,y)) = f(x) ∀x ∈ D, y ∈ Γ
u(x,y) = 0 ∀x ∈ ∂D, y ∈ Γ

(2.1)

where f ∈ L2(D) is a fixed function of x, D ⊂ Rd, d = 1, 2, 3, is a bounded Lipschitz
domain, and y(ω) = (y1(ω), . . . , yN(ω)) : Ω→ Γ =

∏N
i=1 Γi ⊆ RN is a random vector

with ω ∈ Ω and Ω the set of outcomes. In this setting we assume the components
of y have a joint probability density (PDF) % : Γ → R+, with %(y) =

∏N
i=1 %i(yi) ∈

L∞(Γ) known directly through, e.g., truncations of correlated random fields [22] in
(Γ,B(Γ), %(y)dy), where B(y) denotes the Borel σ-algebra on Γ and %(y)dy is the
probability measure of y. Without loss of generality, we assume that Γi = [−1, 1]
and %i(yi) = 1

2
∀yi ∈ Γi, i = 1, . . . , N , so that yi are uniformly distributed (i.e.,

yi ∼ U(−1, 1) ∀i = 1, . . . , N). We require the following assumptions related to the
continuity, coercivity, and holomorphic dependence of the coefficient a(x,y). Namely:

(A1) There exist constants 0 < amin ≤ amax <∞ such that for all x ∈ D and y ∈ Γ,
amin ≤ a(x,y) ≤ amax.

(A2) The complex continuation of a(x,y), denoted a∗ : CN → L∞, is a L∞(D)-
valued holomorphic function on CN .

The holomorphic dependence on y of the coefficient a(x,y) holds in many exam-
ples, including polynomial, exponential, and trigonometric functions of the variables
y1, . . . , yN shown below.

Example 2.1 (The affine case). We consider an affine function of the random
parameters, e.g.,

a(x,y) = a0(x) +
N∑
k=1

ykbk(x), x ∈ D, y ∈ Γ, (2.2)

where a0, {bk}Nk=1 ⊂ L∞(D) are such that a(x,y) satisfies (A1). Such examples
include general Karhunen-Loève expansions [22] or piecewise constant random fields.

Example 2.2 (The non-affine, polynomial case). We consider a non-affine, poly-
nomial function of the random parameters, e.g.,

a(x,y) = a0(x) +
∑

1≤|α|≤r

yαcα(x), x ∈ D, y ∈ Γ, (2.3)

where α = (α1, . . . , αN) is a multi-index, |α| = α1 + · · · + αN , yα = yα1
1 · · · y

αN
N ,

r < ∞ is the polynomial order of a(x,y), and {cα}|α|≤r ⊂ L∞(D) are such that
a(x,y) satisfies (A1). Examples include fixed-order Taylor or orthogonal expansions
of a general random field.
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Example 2.3 (The non-affine, transcendental case). We consider a non-affine,
transcendental function of the random parameters, e.g.,

a(x,y) = a0(x) + g(x,y), x ∈ D, y ∈ Γ, (2.4)

where a0, g ⊂ L∞(D), and g(x,y) is a general transcendental function of x and y,
such that a(x,y) satisfies (A1). Examples of g(x,y) include the sine, logarithm, or
exponential functions of (2.2) or (2.3).

Let L2
%(Γ) be the space of square integrable functions with respect to the measure

%(y)dy and L∞(Γ) be the space of essentially bounded functions, where the essential
suppremum is taken with respect to %. By H−1(D) we denote the dual of H1

0 (D),
the space of square integrable functions in D having zero trace on the boundary and
square integrable distributional derivatives. We will often use the abbreviation H2

%

to denote H1
0 (D)⊗ L2

%(Γ) and H∞ to denote H1
0 (D)⊗ L∞(Γ). For the space H1

0 (D)
we have the energy norm ‖v‖H1

0 (D) = ‖∇v‖L2(D), hence H1
0 (D) ⊗ L2

%(Γ) is a Hilbert

space with norm ‖v‖2
H2

%
=
∫

Γ
‖v‖2

H1
0 (D)

%dy. The stochastic weak form of problem (2.1)

is given by: find u ∈ H1
0 (D)⊗ L2

%(Γ) such that ∀v ∈ H1
0 (D)⊗ L2

%(Γ)∫
Γ

B[u, v](y)%(y) dy =

∫
Γ

F (v)%(y) dy, (2.5)

where

B[u, v](y) =

∫
D

a(x,y)∇u(x,y) · ∇v(x,y)dx, F (v) =

∫
D

f(x)v(x,y)dx. (2.6)

For convenience, we will often use the abbreviation B(y) = B[·, ·](y) and suppress
the dependence on x ∈ D in writing a(y) = a(·,y) and u(y) = u(·,y). It follows
from (A1) that B(y) is a symmetric, uniformly coercive, and continuous bilinear
operator on H1

0 (D), parameterized by y ∈ Γ, and B(y) induces the norm ‖u‖2
B(y) :=∫

D
a(x,y)|∇u|2dx. Also from (A1), the Lax-Milgram lemma ensures the existence

and uniqueness of the solution u to (2.5) in H1
0 (D)⊗ L2

%(Γ).
The convergence of the global stochastic polynomial methods used to approxi-

mate (2.1) exploits the uniform ellipticity of the coefficient a(y) and depends on the
regularity of u(y) with respect to y. By Re(z) and Im(z) we denote the real and
imaginary parts of z ∈ C, and for 0 < δ < amin we define

U(a, δ) = {z ∈ CN : Re(a(x, z)) ≥ δ, ∀x ∈ D}. (2.7)

If U(a, δ) 6= ∅ for some 0 < δ < amin, we say that a(x, z) is uniformly elliptic
on the set U(a, δ) and we refer to U(a, δ) as its domain of uniform ellipticity. For
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γ = (γ1, . . . , γN) with γi > 1 ∀i we denote the polyellipse

Eγ =
⊗

1≤i≤N

{
zi ∈ C : Re(zi) ≤

γi + γ−1
i

2
cosφ, Im(zi) ≤

γi − γ−1
i

2
sinφ, φ ∈ [0, 2π)

}
.

In [33] it was shown that if a(y) satisfies (A1) and (A2), then for any 0 < δ < amin

there exists a γ = (γ1, . . . , γN) with γi > 1 ∀i such that Eγ ⊂ U(a, δ). We can
also similarly define the polydisc Dγ =

⊗
1≤i≤N{zi ∈ C : |zi| ≤ γi}, though, for

arbitrary 0 < δ < amin, it is not always possible to find a γ with γi > 1 ∀i such that
Dγ ⊂ U(a, δ). Figure 1 provides an illustration of this fact for various one-dimensional
coefficients a(y), y ∈ C. Note that in the case of the 6th degree polynomial and
exponential random variables, no disc of radius γ > 1 containing Γ can fit in the
region. The following theorem, proved in [33], shows the regularity of the solution u
with respect to the parameterization.

Figure 1: Domains of uniform ellipticity for some one-dimensional coefficients a(x, y)
are indicated by the gray regions in each plot. The blue and red curves represent the
maximal discs and ellipses, respectively, that can be contained in those domains, and
the green lines represent the interval Γ = [−1, 1].

Theorem 2.4. When the coefficient a(x,y) satisfies (A1) and (A2), so that for
some 0 < δ < amin and γ = (γ1, . . . , γN) with γi > 1 ∀i we have Eγ ⊂ U(a, δ), then
the function z 7→ u(z) from (2.1) is holomorphic in an open neighborhood of Eγ.

This result states that a direct consequence of the uniform ellipticity of the func-
tion a(x,y) on the polyellipse Eγ ⊂ U(a, δ) is that the solution u of (2.1) has ana-
lytically smooth dependence on the parameterization y. Theorem 2.4 is the key in
motivating the construction of global stochastic Galerkin (SG) approximations to the
solution u of (2.1), to be described in the following sections.

3. Stochastic Galerkin finite element method. In this section we define the
SGFEM for constructing fully discrete approximations to the solution u of problem
(2.1). This discretization employs mixed Galerkin projections in the spatial and pa-
rameter domains. In particular we rely on the finite element method for the spatial

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.
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discretization, described in §3.1, and the stochastic Galerkin method for the parame-
ter discretization, described in §3.2. In §3.3 we describe the linear systems that result
from the SG discretization when Examples 2.1, 2.2, and 2.3 are used in problem (2.1).
We then conclude in §3.4 with a discussion of the cost of solving the SG systems.

3.1. Parameterized finite element approximation. We briefly define the finite
element method for obtaining a discretization of u from (2.1) over the spatial domain
D. Let Th, be a triangulation of D with maximum mesh size h > 0, and Vh(D) ⊂
H1

0 (D) a finite element space of piecewise continuous polynomials on Th parameterized
by h → 0. Let {φj(x)}Jhj=1 denote a finite basis of Vh(D) of dimension Jh. We can
write the semi-discrete problem as: find uh(y) ∈ Vh(D) such that ∀v ∈ Vh(D)

B[uh(y), v](y) = F (v), (3.1)

where B[·, ·](y) and F (·) are defined in (2.6). For almost every y ∈ Γ, problem (3.1)
admits a unique solution of the form uh(x,y) =

∑Jh
j=1 uj(y)φj(x). We discretize

problem (3.1) by defining, for i, j = 1, . . . , Jh,

[A]i,j(y) = B[φj, φi](y), Fi = F (φi). (3.2)

The coefficients uh(y) = [u1(y), u2(y), . . . , uJh(y)]T of uh(x,y) are determined by
solving the linear system

A(y)uh(y) = F, (3.3)

at fixed realizations of y ∈ Γ. Here A(y) is symmetric and positive-definite so that
(3.3) can be solved by iterative methods such as the conjugate gradient (CG) method.

3.2. Stochastic Galerkin approximation with an orthogonal basis. Based on
the smoothness of the solution u to (2.1), characterized by Theorem 2.4, we now
consider the construction of approximations to u in terms of global polynomials. Let
Λp ⊂ NN

0 be a finite set of multi-indices, e.g., having dimension #Λp < ∞, and
define the space of polynomials PΛp(Γ) = span{yν : ν ∈ Λp}. A general global
polynomial approximation problem can be framed in terms of solving for the #Λp

stochastic degrees of freedom (SDOF) {up}p∈Λp . Depending on the type of approach,
the resulting systems of equations are either coupled or decoupled finite element
systems. Some isotropic examples of such index sets include

ΛTP
p =

{
p ∈ NN

0 : max
1≤i≤N

pi ≤ p

}
, ΛTD

p =

{
p ∈ NN

0 :
N∑
n=1

pn ≤ p

}
,

ΛSM
p =

{
p ∈ NN

0 :
N∑
n=1

f(pn) ≤ f(p)

}
, f(p) =


0, p = 0
1, p = 1

dlog2(p)e, p ≥ 2

(3.4)
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corresponding to the Tensor Products (TP), Total Degree (TD), and Smolyak (SM)
polynomial spaces PΛTP

p
(Γ), PΛTD

p
(Γ), and PΛSM

p
(Γ), respectively. When the solution u

exhibits an anisotropic dependence on the parameters y, anisotropic weighted versions
of the index sets defined in (3.4) can be introduced to further reduce the number of
SDOF needed to approximate u at a desired accuracy.

Remark 3.1 (BestM -term and quasi-optimal approximations). The optimal choice
of Λp would be the set Λ of cardinality M such that the corresponding approxima-
tion provides maximum accuracy out of all sets of size M . Such approximations
are referred to as best M-term approximations, and recent work has focussed on the
construction of best M-term Taylor and Galerkin approximations [4, 6–8, 33]. These
approaches construct Λ by utilizing the largest M coefficients up or sharp upper bounds
of up. However, in this effort we focus on analyzing the computational complexity of
finding solutions to (2.5) in PΛp(Γ) for a prescribed index set Λp.

Given a specific choice of index set Λp, let p = (p1, . . . , pN) ∈ Λp be a multi-
index and ψpn be a one dimensional orthonormal polynomial over Γn with respect to

%n for each n = 1, . . . , N . We define Ψp(y) =
∏N

n=1 ψpn(yn), to be the multi-variate
orthonormal polynomial over Γ with respect to %(y) corresponding to the multi-index
p. In the case that % = 1

2
for each n = 1, . . . , N , ψpn and Ψp are the univariate and

multivariate Legendre polynomials respectively. It follows that {Ψp}p∈Λp forms a

basis of PΛp(Γ) with dimension Mp = dim(PΛp(Γ)) = #Λp. With {φj}Jhj=1 as in §3.1
and {Ψp}p∈Λp as above, we can now write the fully discrete stochastic Galerkin (SG)
approximation as

uh,p(x,y) =
∑
p∈Λp

Jh∑
j=1

uj,p φj(x)Ψp(y), (3.5)

whose coefficients can be constructed by solving the following coupled problem: find
uh,p ∈ Vh(D)⊗ PΛp(Γ) such that for all v ∈ Vh(D)⊗ PΛp(Γ)

E
[
B[uh,p, v](y)

]
= E

[
F (v)

]
, (3.6)

where B[·, ·](y) and F (·) are defined in (2.6). To construct the linear system of equa-
tions resulting from the SG approximation given by (3.5), we let uh,p = [u1,p, . . . , uJh,p]

T

be the vector of nodal values of the finite element solution corresponding to the p-th
stochastic mode of uh,p, and uh,p = [uh,p]

T
p∈Λp

. Observe that when f is deterministic
〈ΨpFi〉 = Fiδ0,p for all i = 1, . . . , Jh, where δ0,p = 1 if p = 0 and δ0,p = 0 otherwise.
Performing a Galerkin projection onto span{Ψp}p∈Λp for the solution of (3.6) yields
the following system: for each p ∈ Λp∑

q∈Λp

〈Ψp(y),A(y)Ψq(y)〉uh,q = 〈Ψp(y),F〉, (3.7)
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which can be written algebraically as a system of fully coupled finite element problems:
for each p ∈ Λp ∑

q∈Λp

[K]p,quh,q = Fδ0,p (3.8)

with [K]p,q = 〈Ψp(y),A(y)Ψq(y)〉 and A(y) as given in (3.2).
Remark 3.2. Typically matrix free methods are applied to solve (3.8) without ever

explicitly forming K in memory, as described in [27]. When the resulting system is
sparse, as a result of an affine coefficient a(x,y), e.g., Example 2.1, this can lead
to computationally efficient solution strategies. However, these implementations rely
on the fact that the coefficient a(x,y) can be written as a sum of separable func-
tions of x and y, e.g., a(x,y) =

∑N
j=1 bj(x)cj(y). For the transcendental function

a(x,y) from Example 2.3, this may not be the case. Moreover, when K is block-
dense, matrix-vector multiplications require approximately O(JhM

2
p ) floating point

operations (FLOPs), so that when iterative methods are used, the solution of the fully
coupled finite element problems given in (3.8) becomes unfeasible.

3.3. Representations of a(y) and the corresponding matrix K. For a general
coefficient a(x,y), the matrix K in (3.8) requires the storage of at most M2

p block
matrices of the size and sparsity of A(y), i.e., O(JhM

2
p ) elements. However, in several

specific cases the actual block-sparsity of K is much less. We recall the coefficient
from Example 2.1, where K can be rewritten

[K]p,q = 〈Ψp(y),Ψq(y)〉A0 +
N∑
k=1

〈ykΨp(y),Ψq(y)〉Ak,

with [A0]i,j =
∫
D
a0(x)∇φj(x) · ∇φi(x)dx and [Ak]i,j =

∫
D
bk(x)∇φj(x) · ∇φi(x)dx. If

we let [G0]p,q = 〈Ψp(y),Ψq(y)〉 and [Gk]p,q = 〈ykΨp(y),Ψq(y)〉, then K has a matrix
representation, given by,

K = G0 ⊗A0 +
N∑
k=1

Gk ⊗Ak, (3.9)

where A ⊗ B denotes the Kronecker product of A and B. We note that a similar
construction can be optained for any coefficient a(x,y) which can be written as a sum
of separable functions of x and y, such as the polynomial function of Example 2.2.

However, when a(x,y) is not separable in x and y, this construction is no longer
valid, and the resulting matrix K may be block-dense if we simply carry out the
Galerkin projections and compute K directly. For certain special cases, e.g., when
the diffusion coefficient is given by a log-transformed random field, the problem can be
reformulated as a convection-diffusion problem, and the resulting system can be solved
much more efficiently than the original problem [35]. In general, this reformulation
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is not applicable. Hence, for a general transcendental coefficient a(x,y), as given in
Example 2.3, we project the coefficient onto an additional subspace PΛr(Γ), r ∈ N0, in
order to obtain a separable representation. To see this, define {Ψr(y)}0≤|r| to be the
(infinite) basis of orthonormal polynomials of L2

%(Γ) as in §3.2. Then a(x,y) can be
written as an expansion such that a(x,y) =

∑
0≤|r| ar(x)Ψr(y), where the coefficients

ar(x) = 〈a(x,y),Ψr(y)〉. Let Λr be an index set of the type described in §3.2. Since
infinite series representations are not practical in computations, we seek a truncation

ar(x,y) :=
∑
r∈Λr

ar(x)Ψr(y) (3.10)

in the subspace PΛr(Γ) for some r ∈ N0. When ar(x,y) 6= a(x,y), e.g., in the
case that the projection order r is chosen to minimize error independent of the SG
discretization, we let urh,p denote the corresponding solution to the fully discrete SG
approximation problem with a(x,y) replaced with ar(x,y). By substituting ar(x,y)
into (2.6) we obtain∫

D

(∑
r∈Λr

ar(x)Ψr(y)

)
∇φj(x) · ∇φi(x)dx =

∑
r∈Λr

[Ar]i,jΨr(y), (3.11)

[Ar]i,j =

∫
D

ar(x)∇φj(x) · ∇φi(x)dx. (3.12)

Equation (3.11) represents an expansion of the stochastic finite element stiffness
matrix A(y) and equation (3.12) represents the r-th mode of the expansion. Let
urh,p = [ur1,p, . . . , u

r
Jh,p

]T denote the vector of nodal values of the finite element solu-
tion corresponding to the p-th stochastic mode of urh,p, and urh,p = [urh,p]

T
p∈Λp

. We
substitute the expansion of A(y) into the Galerkin equations (3.7), to obtain the
coupled system: for each p ∈ Λp∑

r∈Λr

∑
q∈Λp

[Gr]p,qAru
r
h,q = 〈Ψp,F〉, [Gr]p,q = 〈ΨpΨqΨr〉. (3.13)

Alternatively, similar to (3.9), we may define Kr =
∑
r∈Λr

Gr ⊗Ar to again obtain
the coupled system of finite element problems: for all p ∈ Λp∑

q∈Λp

[Kr]p,qu
r
h,q = Fδ0,p ∀p ∈ Λp. (3.14)

Note that in forming Kr, we now need only store the matrices {Gr}r∈Λr and {Ar}r∈Λr ,
so that the required storage is minimized and efficient, matrix-free, solution strategies
discussed in Remark 3.2 can be applied.

Remark 3.3 (Projection and well-posedness). In the case that the coefficient is a
transcendental function of the random variables, as in Example 2.3, there does not
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exist a r ∈ N0 such that the projection (3.10) is exact. Due to the orthogonality
of the basis, setting r = 2p in the construction of Kr yields an entirely block-dense
system [23] that is equivalent to (3.8), and computationally infeasible to solve. A more
practical approach is to choose the expansion order 0 ≤ r ≤ 2p, based on a-priori
estimates of the error in the solution introduced by the truncation, so that the error
when using the truncated expansion does not exceed that of the SG approximation.
In this approach however, it becomes important to consider whether the truncated
projection violates the well-posedness of (2.1) by failing to satisfy assumption (A1).
One way to guarantee this is to choose r̃ ≤ r ≤ 2p such that

r̃ := min{r ∈ N0 : ‖a− aν‖L∞(Γ×D) ≤ amin, ∀ν ∈ N0, ν ≥ r}. (3.15)

An example of this problem can be seen in Figure 2 where for the function a(x, y) =
0.1 + exp(2.5y), uniform ellipticity of the truncated projection ar(x, y) does not hold
on Γ for r < 4.

Figure 2: Domains of uniform ellipticity for the total degree orthogonal expansions
of order r of the one-dimensional coefficient a(x, y) = 0.1 + exp(2.5y), for y ∈ Γ =
[−1, 1] ⊂ R1, are indicated by the gray regions in each plot. The last plot shows the
domain of uniform ellipticity of the original function a(x, y). The blue and red curves
represent the maximal discs and ellipses, respectively, that can be contained in those
domains, and the green lines represent the interval Γ.

3.4. Cost of solving the generalized SG system. Without loss of generality,
to solve the stochastic Galerkin system (3.14) for urh,p, we use the precondtioned
conjugate gradient (PCG) method, wherein, for the unpreconditioned CG method,
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we have the estimate

‖urh,p − u
r,(k)
h,p ‖Kr ≤ 2

(√
κr − 1
√
κr + 1

)k
‖urh,p − u

r,(0)
h,p ‖Kr . (3.16)

Here κr is the condition number of Kr, u
r,(0)
h,p is the vector of the initial guess, and

u
r,(k)
h,p is the output of the k-th iteration of the CG solver. The CG method is highly

dependent on the conditioning of the system, and when κr is large, the number
of iterations needed to reduce the error in u

r,(k)
h,p will also be significant. Hence we

introduce the mean-based block-diagonal preconditioner (see, e.g., [27, 29]),

P := G0 ⊗A0, (3.17)

with A0 and G0 the matrices defined in (3.12) and (3.13) for r = 0, respectively.
For r ∈ Λr, at every iteration of the CG method, or any iterative approach,

each nonzero entry in each matrix Gr implies a matrix-vector product of the form
〈ΨpΨqΨr〉Arp

(k)
q , where 〈ΨpΨqΨr〉 is a scalar quantity. Let nnz(A) denote the num-

ber of nonzeros of a matrix A, and define

M(p, r) =
∑
r∈Λr

nnz(Gr) (3.18)

to be the total number of nonzeros in all of the matrices {Gr}r∈Λr at order p. With
this in mind, an upper bound for the work in floating point operations (FLOPs) of
solving (3.14) is given by

W SG ≈ O(Jh ∗M(p, r) ∗NSG
iter), (3.19)

where the term O(Jh) corresponds to the cost of a single finite element matrix-vector
product, and NSG

iter is the number of iterations of the CG solver without a precondi-
tioner. If we apply a preconditioner, in hopes to minimize NSG

iter, we must also account
for the added cost of applying the preconditioner at each iteration. With the mean-
based preconditioner from (3.17), at each iteration we multiply an additional matrix
of size JhMp × JhMp, but the matrix consists only of Mp diagonal blocks. Hence,
for each iteration we require Mp additional matrix-vector products of the size of the
original finite element system, so the work estimate in FLOPs for the case of this
preconditioner is given by

W pSG ≈ O
(
Jh ∗ (Mp +M(p, r)) ∗NpSG

iter

)
, (3.20)

where NpSG
iter is the number of iterations needed by the PCG method. Other precondi-

tioners, such as the Kronecker product preconditioner suggested in [34] would require
a different form of (3.20).
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Figure 3 displays the effect of fixing the projection order of the solution but
increasing the order of the projection of the coefficient. In order to minimize the
error of the projection, such a situation would be required if the coefficient is highly
nonlinear and reflects the importance of considering M(p, r) in the computational
cost of the SGFEM.

Figure 3: Visualization of the number of nonzeros of a 165 × 165 SG matrix with
elements [Kr]p,q =

∑
r∈Λr

[Gr]p,q ∗Ar. Each pixel represents a block finite element
system when using a total degree projection of the solution of fixed degreee p = 3, and
increasing the total degree of the projection of the coefficient, i.e., r = 0, 1, 2, 3, 4, 5.
At r = 6, the matrix is entirely block-dense.

4. Explicit cost bounds for the SGFEM. The primary goal of this section is to
estimate the algorithmic complexity required by the SGFEM to construct an approx-
imation to (2.1) within a prescribed tolerance ε > 0. We assume a(x,y) is a general
non-affine coefficient, as in Examples 2.2 and 2.3, satisfying assumptions (A1) and
(A2). Let ar(x,y) be the orthogonal expansion of a(x,y), given by (3.10), of total
degree r, i.e., ar(x,y) ∈ PΛr(Γ) with Λr = ΛTD

r from (3.4). We further assume that
r̃ ≤ r ≤ 2p, with r̃ given in (3.15), so that ar(x,y) also satisfies (A1) and (A2). We
will focus on the complexity of solving (3.14), when the stochastic discretization to
(2.1) is performed in PΛp(Γ) with Λp = ΛTD

p from (3.4), i.e., in the space of total
degree polynomials of order p, and the physical discretization is performed with the
finite element method. These results are presented in the context of solving the linear
system (3.14) with a PCG method when a zero initial vector is used to seed the solver.
The results, however, can be generalized to other methods, such as preconditioned
GMRES, Krylov methods, etc.

The results are organized as follows. In §4.1 we discuss the overall complexity of
the matrix-vector products associated with solving (3.14) when using the SG matrix
Kr =

∑
r∈Λr

Gr ⊗Ar. Our analysis extends the results of [14] in order to provide a
bound on the block-sparsity of the SG system Kr in the more general setting of a non-
affine coefficient ar(x,y), as given in Examples 2.2 and 2.3. In particular, for Gr given
in (3.13), we show that nnz(Gr) = O(min{2|r|,Md|r|/2e}Mp−d|r|/2e) for every r ∈ Λr,

where Mr =
(
N+r
N

)
for r ∈ N0, when solving (3.14), so that the total complexity of

the matrix-vector products with the Galerkin system is O(JhMpMr min{2r,Mdr/2e}).
In §4.2, we perform an ε-complexity analysis to derive the explicit cost bounds of the
SGFEM using PCG, in terms of FLOPs as the tolerance ε → 0. Finally, in section
4.3 we discuss issues related to the conditioning of the SG system.
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4.1. Complexity of matrix-vector multiplications in the SG approximation.
In this section we provide a rigorous counting argument for the number of nonzeros
in the Galerkin matrices Gr from (3.13), for arbitrary r ∈ Λr with 0 ≤ r ≤ 2p, and
p ∈ N0. Our main result, given by Theorem 4.1, is an extension of the estimates
in [14, Lemma 28], where an upper bound on the sparsity of Gr was shown in the
case |r| = 1 when the integrals [Gr]p,q = 〈ΨrΨpΨq〉 are defined in terms of even
weight functions % to the generalized case |r| ∈ N. We then provide upper bounds
on the total number of nonzeros blocks M(p, r) =

∑
r∈Λr

nnz(Gr) of the matrix Kr

from (3.14), both in the cases that a(x,y) is a finite order polynomial as in Example
2.2 and the case that a(x,y) is a transcendental function of the random variables, as
in Example 2.3. Our first major result is summarized in the following Theorem:

Theorem 4.1. Let Λp and Λr be the isotropic total degree index sets corresponding
to the solution and coefficient, respectively, with p, r ∈ N0, and 0 ≤ r ≤ 2p. If r ∈ Λr,
and %i are even for all i = 1, . . . , N , then for the matrix Gr from (3.13) we have

nnz(Gr) =

|r|∑
`=d|r|/2e

c(r, `)

(
N + p− `
p− `

)
,

c(r, `) =

{
#S(r, `) |r| even, ` = |r|/2,

2#S(r, `) otherwise,

(4.1)

with S(r, `) =
{
s ∈ NN

0 : |s| = `, s ≤ r
}

, so that #S(r, `) is equal to the coefficient

of t` in the polynomial Pr(t) =
∏N

i=1

∑ri
j=0 t

j. Moreover, we have the following bound
for nnz(Gr), i.e.,

nnz(Gr) ≤ 2 min

{
2|r|,

(
N + d|r|/2e

N

)}(
N + p− d|r|/2e

N

)
, (4.2)

so that

M(p, r) ≤ 2
r∑
j=0

min

{
2j,

(
N + dj/2e

N

)}(
N − 1 + j

N − 1

)(
N + p− dj/2e

N

)
. (4.3)

Proof. For a given r ∈ Λr, we estimate the number of pairs (p, q) ∈ Λp×Λp such that

〈ΨrΨpΨq〉 =
∏N

i=1〈ψriψpiψqi〉 6= 0. To do this, we extend the result of [14, Lemma 28]
to a general matrix Gr with |r| ∈ N. Since {Ψr}r∈Λr are orthonormal with respect to
the even weight function ρ(y) =

∏N
i=1 ρi(yi), we see that 〈ΨrΨpΨq〉 6= 0 if and only

if (p, q) ∈ Θr, where

Θr = {(p, q) ∈ Λp × Λp : |pi − qi| ≤ ri ≤ pi + qi,

and pi + qi + ri is even ∀i = 1, . . . , N}.
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Therefore, to estimate the number of nonzeros in the matrix Gr, we must estimate
#Θr. However, Θr is different for each r ∈ Λr. Even when r1, r2 ∈ Λr are such that
|r1| = |r2|, in general we do not have that #Θr1 = #Θr2 . On the other hand, if
r2 is a permutation of r1, then it is easy to see that #Θr1 = #Θr2 since Λp is the
isotropic total degree set. Also note that 〈ΨrΨpΨq〉 = 〈ΨrΨqΨp〉 so if (p, q) ∈ Θr

then (q,p) ∈ Θr as well. Note that Θr can be rewritten

Θr = {(p, q) ∈ Λp × Λp : |pi − qi| ≤ ri ≤ pi + qi,

and |pi − qi|+ ri is even ∀i = 1, . . . , N}.

Hence if (p, q) ∈ Θr, then we see that (p, q) must satisfy

(i) |pi − qi| ≤ ri for all i = 1, . . . , N ,

(ii) ri ≤ pi + qi for all i = 1, . . . , N , and

(iii) |pi − qi|+ ri is even for all i = 1, . . . , N .

Note that when ri = 0, we see that pi = qi ≤ p, and when ri > 0 we see that (i) and
(iii) imply |pi − qi| ∈ {0, 2, 4, . . . , ri} for ri even, and |pi − qi| ∈ {1, 3, 5, . . . , ri} for ri
odd. For each i = 1, . . . , N , let {k(n)

i }
bri/2c
n=0 be the sequence defined by

k
(n)
i =

{
2n+ 1 ri odd,

2n ri even,

so that fixing |pi − qi| = k
(n)
i implies that conditions (i) and (iii) are met.

To satisfy (ii) we must have ri ≤ pi + qi and to satisfy (i) and (iii) we must have

|pi − qi| = k
(n)
i . To avoid overcounting due to symmetry, we first fix possible values

of pi and consider what qi must be. Let {s(n)
i }

bri/2c
n=0 be the sequence defined by

s
(n)
i =

ri + k
(n)
i

2
,

which we will refer to as the sequence of starting points for pi corresponding to k
(n)
i .

Note that the starting points {s(n)
i }

bri/2c
n=0 enumerate the integers between dri/2e and

ri. Picking pi ∈ {s(n)
i , s

(n)
i + 1, . . . , p} and qi = pi − k(n)

i we have

pi + qi = 2pi − k(n)
i ≥ 2s

(n)
i − k

(n)
i = 2

(
ri + k

(n)
i

2

)
− k(n)

i = ri

or pi + qi ≥ ri, so that (ii) is satisfied.

Since (i), (ii), and (iii) are satisfied by setting pi ∈ {s(n)
i , s

(n)
i + 1, . . . , p} and

qi = pi − k(n)
i for a fixed 0 ≤ n ≤ bri/2c, we count the number of admissible pairs for
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these choices. In N −1 variables, the number of polynomials of total degree less than
or equal to p− pi is given by (

N − 1 + p− pi
p− pi

)
,

where
(
n
k

)
= 0 if n < k or k < 0. To simplify notation, pick si = s

(n)
i (one of the

starting points in the i-th direction) and ki = k
(n)
i (its associated distance), where

0 ≤ n ≤ bri/2c is fixed. To count the number of admissible pairs associated with the
difference ki and starting point si, we compute

p∑
pi=si

(
N − 1 + p− pi

p− pi

)
=

p−si∑
j=0

(
N − 1 + j

j

)
=

(
N + p− si
p− si

)
.

Define s ∈ NN
0 with the si as above, then s corresponds to a possible combination of

starting points in each direction. To estimate the number of polynomials associated
with the starting point s, we compute

p∑
p1=s1

p−p1∑
p2=s2

· · ·
p−p1−···−pN−1∑

pN=sN

(
p− p1 − · · · − pN
p− p1 − · · · − pN

)
=

(
N + p− |s|
p− |s|

)
, (4.4)

where the sum easily follows by an induction argument and Pascal’s rule.
Enumerating all of the pairs (p, q) ∈ Θr thus reduces to counting the number of

possible combinations of starting points. Hence, in N dimensions we consider all such
multi-indices of the {s(n)

i }
bri/2c
n=0 whose components sum to some integer d|r|/2e ≤ ` ≤

|r|. For two multi-indicies s, r ∈ NN
0 , we say s ≤ r if and only if si ≤ ri for all

i = 1, . . . , N . Define the set S(r, `) =
{
s ∈ NN

0 : |s| = `, s ≤ r
}

, which corresponds
to a particular slice of the desired set of starting points. To estimate #S(r, `),
we consider the familiar counting argument of placing N bars among ` stars with
the added restriction that the numer of stars in the i-th bin not exceed ri. Such
a problem can be reframed in terms of finding the coefficient c(r, `) of t` in the
generating function Pr(t) =

∏N
i=1

∑ri
j=0 t

j. Combining (4.4) and summing over `
between d|r|/2e ≤ ` ≤ |r| we arrive at (4.1), where the coefficients c(r, `) = #S(r, `)
when |r| is even and ` = |r|/2 (in this case the roles of pi and qi can not be reversed)
and c(r, `) = 2#S(r, `) otherwise.

Noting that ∪|r|`=d|r|/2eS(r, `) is a change of coordinates of a total degree index set

of order d|r|/2e intersected with the hyperrectangle {s ∈ NN
0 : s ≤ r} yields the

bound
|r|∑

`=d|r|/2e

c(r, `) ≤ 2

|r|∑
`=d|r|/2e

#S(r, `) ≤ 2

(
N + d|r|/2e

N

)
.
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On the other hand, from the generating function Pr(t) we see that c(r, `) is bounded
by
(|r|
`

)
when |r| is even and ` = |r|/2 and 2

(|r|
`

)
otherwise. This follows from the

fact that when k is the multi-index having |r| ones and the rest zeros, since ` ≤ |r|,
we have that #S(r, `) ≤ #T (k, `) where T (k, `) = {s ∈ NN

0 : |s| = `, s ≤ k} and

#T (k, `) is given by the coefficient of t` in Pk(t) = (1 + t)|r| =
∑|r|

`=0

(|r|
`

)
t` from the

binomial theorem. Then

|r|∑
`=d|r|/2e

c(r, `) ≤ 2

|r|∑
`=0

c(r, `) = 2|r|+1,

so that

nnz(Gr) =

|r|∑
`=d|r|/2e

c(r, `)

(
N + p− `
p− `

)

≤ 2 min

{
2|r|,

(
N + d|r|/2e

N

)}(
N + p− d|r|/2e

N

)
,

showing (4.2). Substituting (4.2) into (3.18) shows the bound of M(p, r) from (4.3).

We note that the bound of M(p, r) from (4.3) is an overestimate due to the
particular form of (4.1), which is different for each r ∈ Λr. As a consequence, we see
that nnz(Gr) = O(min{2|r|,Md|r|/2e}Mp−d|r|/2e) for r ∈ Λr. For large N and small r,
2r is smaller than Mdr/2e, however, as r → ∞ the bound Mdr/2e is sharper. For the
ε-complexity analysis in the next section, we note that

M(p, r) ≤ 2 min

{
2r,

(
N + dr/2e

N

)}(
N + r

N

)(
N + p

N

)
, (4.5)

which can be seen by bounding the elements of the sum of (4.3) above by their largest
values. Figure 4 plots how sharply M(p, r) is bounded by (4.3) and (4.5).

Corollary 4.2. Under the same conditions in Theorem 4.1, when r ∈ Λr is such
that |r| = 1, we have

nnz(Gr) =

|r|∑
`=d|r|/2e

c(r, `)

(
N + p− `
p− `

)
= 2

(
N + p− 1

p− 1

)
. (4.6)

Corollary 4.2 is the result of [14, Lemma 28], and follows from Theorem 4.1, since in
this case we can use the exact formula for nnz(Gr) from (4.1). Here |r| = d|r|/2e = 1
is odd and S(r, 1) has only one element S(r, 1) = {s ∈ NN

0 : |s| = 1, s ≤ r} =
{r}. Hence c(r, 1) = 2#S(r, 1) = 2, and (4.6) is shown. In the remarks that
follow, we make a distinction between the cases that a(x,y) is a polynomial of fixed
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Figure 4: For r = p with p ranging from 0, 1, . . . , 6 we plot for N = 4 (left) and
N = 8 (right) the actual sparsity M(p, r) given by (3.18) of the Galerkin system Kr

from (3.14) (blue), the bound on the sparsity from (4.3) (green), and the bound on
the sparsity from (4.5) (red).

degree r <∞, e.g., the coefficients from Examples 2.1 and 2.2, and that a(x,y) is a
transcendental function of the random variables, e.g., the coefficient from Example
2.3.

Remark 4.3. (Complexity of matrix-vector products for polynomial coefficients,
see e.g., Examples 2.1 and 2.2) From Corollary 4.2 and the work estimate (3.20) when
using (3.17) as a preconditioner, we see that for coefficients that are affine functions
of the random variables, e.g., Example 2.1, the complexity of a single PCG iteration
is of the order O(Jh(2Mp + 2NMp−1)) = O(JhMp), where Mp = #ΛTD

p =
(
N+p
N

)
. On

the other hand, when the coefficient a(x,y) is a polynomial function of the random
variables, e.g., Example 2.2, having fixed order r ∈ N, r < ∞, we use Theorem 4.1
to obtain a different estimate. Since {Ψr}r∈Λr̄ is a basis for the space PΛr̄(Γ), there
exits coefficients {ar(x)}r∈Λr̄ such that a(x,y) = ar(x,y) =

∑
r∈Λr̄

ar(x)Ψr(y). With
this representation, it is clear to see that substituting a(x,y) into (3.11) yields Kr

from (3.14), and Kr = K from (3.8). However, it is not clear how many of the
coefficients ar(x) are identically zero. In this case, we can provide an upper bound
on the block-sparsity of Kr under the assumption that ar(x) 6≡ 0 ∀r ∈ Λr. Using the
bound of (4.5), the complexity of a single matrix-vector product of Kr is of the order
O(JhMpMr min{2r,Mdr/2e}). Thus, when r is fixed, Mr min{2r,Mdr/2e} is a constant,
and this estimate has the same asymptotic complexity as O(JhMp).

Remark 4.4. (Complexity of matrix-vector products in the trascendental case, see
e.g., Example 2.3) We recall the discussion of [34, Section 3.4]. There, the complexity
of matrix-vector products with the SG system was estimated when a full orthogonal
expansion is substituted into the SG discretization. This case corresponds to fixing
the expansion order r = 2p following Remark 3.3. Assuming that nnz(Gr) = O(Mp)
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or O(M2
p ), it was estimated in [35] that the cost of matrix-vector products involving

Kr is be between O(JhM
2
p ) and O(JhM

3
p ). However, the use of Theorem 4.1 allows

us to consider the complexity in the case of truncating the expansion, where a sharper
estimate can be obtained. Let Tr :=

∏r
k=dr/2e+1

N+k
k
� Mdr/2e =

(
N+dr/2e
dr/2e

)
, which is

bounded independent of r, i.e.,

Tr ≤
(
N + dr/2e+ 1

dr/2e+ 1

)dr/2e+1

→ eN as r →∞,

so that Mr = TrMdr/2e ≤ eNMdr/2e. From (4.5), we see that M(p, r) is of the order
O(MpMrMdr/2e) as p, r → ∞, since min{2r,Mdr/2e} → Mdr/2e as r → ∞. When
r = 2p, this implies the complexity of matrix-vector multiplications involving Kr is of
the order O(JhMpMrMdr/2e) = O(JhMpTrM

2
dr/2e) = O(JhM

3
p ). On the other hand,

when r = p, we see that the complexity of matrix-vector products with Kr is order
O(JhMpMrMdr/2e) = O(JhT

2
rM

3
dp/2e) = O(JhM

3
dp/2e).

4.2. ε-complexity analysis of the SGFEM. An estimate of the total complexity
to obtain a fully discrete approximation of tolerance ε > 0 with the SGFEM and
PCG solver can be shown in four steps:

1. Estimate the maximum mesh size hmax and minimum polynomial order pmin

necessary in the finite element and SG discretizations, respectively,

2. If projection of the coefficient is necessary, estimate the minimum projection
order rmin, otherwise set rmin = r where r <∞ is the order of the coefficient,

3. Estimate the minimum number of iterations kmin needed by the PCG solver,

4. Substitute hmax, pmin, rmin, and kmin into the cost (3.20).

We proceed to estimate these parameters as follows. Denote by ur the corresponding
solution of (2.1) when ar(x,y) is substituted in place of a(x,y), and let ũrh,p be the
approximation to urh,p found by PCG. Then the total error for the SG approximation
satisfies the following bound:∥∥u− ũrh,p∥∥H2

%
≤ ‖u− ur‖H2

%︸ ︷︷ ︸
SG(I)

+ ‖ur − urh‖H2
%︸ ︷︷ ︸

SG(II)

+
∥∥urh − urh,p∥∥H2

%︸ ︷︷ ︸
SG(III)

+
∥∥urh,p − ũrh,p∥∥H2

%︸ ︷︷ ︸
SG(IV)

. (4.7)

In this setting SG(I) is the approximation error using a truncated expansion of a(x,y),
SG(II) is the discretization error induced by the finite element method, SG(III) is the
SG error coming from the orthogonal expansion (3.5), and SG(IV) is the solver error
resulting from the PCG method. We note that when the projection of the coefficient
is exact, as discussed in Remark 3.3, the approximation error SG(I) is no longer
present and urh,p ≡ uh,p.
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We start with bounding SG(III). Without loss of generality, it is reasonable to
assume that since ur has a holomorphic dependence on z ∈ CN in an open neigh-
borhood of the polyellips Eγ from Theorem 2.4, then urh does as well. Then, the
following result, whose proof is found in [32], and immediately follows from classical
spectral convergence results [9,31], describes the convergence rate of the fully discrete
solutions obtained by the SG method using a total degree approximation in PΛTD

p
(Γ):

Proposition 4.5 (Convergence rate for the SG method). If Theorem 2.4 holds for
the solution urh to (3.1) with coefficient ar(x,y), and urh,p is the solution to (3.6) with
Λp the order p total degree index set, then

‖urh − urh,p‖H∞ ≤ C1 exp(−C2p) ∀p ∈ N,

for some constants C1, C2 > 0 independent of p.
To investigate the error in SG(I), we note that since a(x,y) satisfies assumption

(A2), the projection error in PΛTD
r

(Γ) can be similarly estimated as

‖a− ar‖L2
%(Γ)⊗L∞(D) ≤ C3 exp(−C4r) ∀r ∈ N, (4.8)

for some constants C3, C4 > 0 independent of r. Hence, ∀r ∈ N,

‖u− ur‖H2
%
≤ ‖f‖H

−1

a2
min

‖a− ar‖L2
%(Γ)⊗L∞(D) ≤

‖f‖H−1

a2
min

C3 exp(−C4r) (4.9)

providing a bound for SG(I). For a bound of SG(II), we present the following conver-
gence result reguarding solutions to the parameterized finite element problem, whose
proof can be found in a number of standard texts on the theory of finite element
methods, e.g., [2, 20]:

Lemma 4.6. Let Th be a uniform finite element mesh over D with Jh = O(h−d)
degrees of freedom and h > 0. For the elliptic PDE (2.1) and y ∈ Γ, when ur(y) ∈
H1

0 (D) ∩Hs+1(D), the error from the finite element approximation is bounded by

‖ur(y)− urh(y)‖H1
0 (D) ≤ CFEMh

s,

where the constant CFEM > 0 is independent of h and y.
For the treatment of SG(IV), we begin by defining Br(y) to be the corresponding

bilinear operator in (2.6) with a(x,y) replaced with ar(x,y). Since both B(y) and
Br(y) are symmetric, uniformly coercive and continuous bilinear operators on H1

0 (D),
there exist α, β > 0 independent of y such that for every u, v ∈ H1

0 (D)

|Br[u, v](y)| =
∣∣∣∣∫
D

ar(x,y)∇u · ∇vdx
∣∣∣∣ ≤ α‖u‖H1

0 (D)‖v‖H1
0 (D),

β‖u‖2
H1

0 (D) ≤
∫
D

ar(x,y)|∇u|2dx = ‖u‖2
Br(y),
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and similarly for Br(y) with the same α, β, e.g., taking α to be the maximum and β
to be the minimum in each case. Recall urh,p = [ur1,p, . . . , u

r
Jh,p

]T, the vector of nodal
values of the finite element solution corresponding to the p-th stochastic mode of urh,p,
and urh,p = [urh,p]

T
p∈Λp

. Then we have the following estimates expressing

Continuity:
∥∥urh,p∥∥Kr

=
∥∥urh,p∥∥E[Br(y)]

≤
√
α
∥∥urh,p∥∥H2

%
, and (4.10)

Ellipticity:
√
β
∥∥urh,p∥∥H2

%
≤
∥∥urh,p∥∥E[Br(y)]

=
∥∥urh,p∥∥Kr

, (4.11)

where ‖urh,p‖2
Kr

= (urh,p)
TKru

r
h,p is the Kr matrix norm. Given Proposition 4.5,

Lemma 4.6, and the estimates from (4.9), (4.10), and (4.11), we can now provide the
minimal projection orders p, r ∈ N for the SG approximation (3.5) and the coefficient
(3.10), respectively, the maximum mesh size h for finite element method, and the
minimum number of PCG iterations k necessary to ensure that the error in the
SGFEM solution ũrh,p is less than the tolerance ε > 0.

Lemma 4.7. Let u ∈ L2
%(Γ;H1

0 (D)∩Hs+1(D)) be the solution to (2.1), urh,p be the
solution to (3.6) with the coefficient ar(x,y), and ũrh,p be the approximation of urh,p
found by PCG with a zero initial guess. Then, for ε > 0, to ensure that ‖u−ũrh,p‖H2

%
≤

ε we must choose h ≤ hmax, r ≥ rmin, p ≥ pmin, and k ≥ kmin, where:

hmax =

(
ε

4CFEM

) 1
s

, rmin = log

[(
4C5

ε

) 1
C4

]
,

pmin = log

[(
4C1

ε

) 1
C2

]
, kmin =

log
(

4C6

ε

)
log
(√

κ̃r+1√
κ̃r−1

) ,
with CFEM > 0 the constant from Lemma 4.6, C1, C2, C3, C4 > 0 the constants from
Proposition 4.5 and (4.8), and, for α, β > 0 from (4.10) and (4.11)

C5 = C3
‖f‖H−1

a2
min

, C6 = 2

√
α

β

∥∥urh,p∥∥L∞ ,
with κ̃r is the condition number of P−1Kr with P the mean-based preconditioner from
(3.17).

Proof. Without loss of generality, we seek to bound the quantities SG(I)-SG(IV) from
(4.7) each by ε/4. For the error SG(I) we recall estimate (4.9) and solve for r. From
Lemma 4.6, when u ∈ L2

%(Γ;H1
0 (D) ∩Hs+1(D)) we have that ‖ur − urh‖H2

%
≤ CFEMh

s

∀h > 0, and from Proposition 4.5 we have that ‖urh−urh,p‖L∞ ≤ C1 exp(−C2p) ∀p ∈ N,
so that solving for h and p gives the desired maximum mesh size hmax and minimum
polynomial order pmin to bound SG(II) and SG(III) by ε/4. Let urh,p and u

r,(k)
h,p be the

coefficients of the exact SG solution urh,p and the approximate SG solution ũrh,p after
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k PCG iterations, respectively. Then from (3.16) and (4.11) we see that

∥∥urh,p − ũrh,p∥∥H2
%
≤ 1√

β
‖urh,p − u

r,(k)
h,p ‖Kr ≤

2√
β

(√
κ̃r − 1√
κ̃r + 1

)k
‖urh,p − u

r,(0)
h,p ‖Kr ,

where u
r,(0)
h,p is the initial guess used in CG and κ̃r = cond(P−1Kr) with mean based

preconditioner P from (3.17). If we use the zero vector as the initial iteration in PCG,
we have from (4.10)

∥∥urh,p − ũrh,p∥∥H2
%
≤ 2√

β

(√
κ̃r − 1√
κ̃r + 1

)k
‖urh,p‖Kr

≤ 2

√
α

β

(√
κ̃r − 1√
κ̃r + 1

)k ∥∥urh,p∥∥H2
%
.

(4.12)

Solving for k gives the minimum number of iterations kmin required to ensure SG(IV)
is bounded by ε/4.

Given the necessary parameters from Lemma 4.7 to achieve ‖u− ũrh,p‖H2
%
≤ ε, and

the estimates on the computational complexity of one iteration in the PCG method
from §4.1, we provide a bound on the minimal number of FLOPs required by the
SGFEM when approximating (2.1). We split these results into the cases that the
stochastic coefficient a(x,y) from (2.1) is:

(i) an affine function of the random parameters, e.g., a(x,y) ∈ PΛr̄(Γ) with r = 1,
as in Example 2.1,

(ii) a non-affine polynomial of the random parameters, e.g., a(x,y) ∈ PΛr̄(Γ) for
some 1 < r <∞, as in Example 2.2,

(iii) a non-affine, transcendental function of the random parameters, e.g., a(x,y) 6∈
PΛr(Γ) for any r ∈ N, as in Example 2.3, so that r must be chosen to satisfy
r ≥ rmin from Lemma 4.7.

The results are summarized in Theorems 4.8 and 4.9 next.
Theorem 4.8. Let u ∈ L2

%(Γ;H1
0 (D)∩Hs+1(D)) be the solution to (2.1), and r be

the smallest natural number such that a(x,y) ∈ PΛr
(Γ). When r = 1, the minimum

work (3.20) of solving (3.14) with PCG to a tolerance ε > 0 can be bounded by

W pSG
A ≤ C7

(
3CFEM

ε

) d
s

2eN(1 +N)

×

(
1 + log

[(
3C1

ε

) 1
C2N

])N
 log

(
3C6

ε

)
log
(√

κ̃+1√
κ̃−1

)
 ,

(4.13)
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and when r > 1, the minimum work (3.20) of solving (3.14) with PCG to a tolerance
ε > 0 can be bounded by

W pSG
NAP ≤ C7

(
3CFEM

ε

) d
s

 log
(

3C6

ε

)
log
(√

κ̃+1√
κ̃−1

)
 eN

(1 + log

[(
3C1

ε

) 1
C2N

])N

+2
r∑
j=0

(
N − 1 + j

N − 1

)
min

{
2j,

(
N + dj/2e

N

)}(
1− dj/2e

N
+ log

[(
3C1

ε

) 1
C2N

])N
 ,

(4.14)
with CFEM, C1, C2, C6 as in Lemma 4.7, C7 > 0 independent of ε, and κ̃ the con-
dition number of the preconditioned system P−1Kr = P−1K, using the mean-based
preconditioner from (3.17).

Proof. When a(x,y) ∈ PΛr̄(Γ) we do not need to consider SG(I) from (4.7), and
bound SG(II), SG(III), and SG(IV) by ε/3. Hence, to minimize the error of the
SG discretization, we choose p ≥ pmin = log[(3C1/ε)

1/C2 ] which differs from the pmin

stated in Lemma 4.7. For a uniform triangulation Th, Jh = O(h−d) so that

Jhmax = C7

[(
ε

3CFEM

) 1
s

]−d
= C7

(
3CFEM

ε

) d
s

(4.15)

for some constant C7 > 0 depending on the connectivity of the finite element mesh,
but independent of ε. In the case that r = 1, we substitute pmin into (4.1) for the
matrices Gr having 0 ≤ |r| ≤ 1, and apply Stirling’s approximation to obtain

Mpmin
+M(pmin, 1) = 2

(
N + pmin

N

)
+ 2N

(
N + pmin − 1

N

)

≤ 2eN(1 +N)

(
1 + log

[(
3C1

ε

) 1
C2N

])N

,

Similarly, when r > 1 we use the bound from (4.3) and Stirling’s approximation to
obtain

Mpmin
+M(pmin, r̄) ≤ eN

(1 + log

[(
3C1

ε

) 1
C2N

])N

+2
r∑
j=0

min

{
2j,

(
N + dj/2e

N

)}(
N − 1 + j

N − 1

)(
1− dj/2e

N
+ log

[(
3C1

ε

) 1
C2N

])N
 .

Substituting Jhmax for Jh, kmin for NSG
iter from Lemma 4.7, and the bounds for Mpmin

+
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N
(pmin,r)
K into the work estimate (3.20), in the cases r = 1 and r > 1 above, we obtain

the desired results.

Theorem 4.9. Let u ∈ L2
%(Γ;H1

0 (D) ∩ Hs+1(D)) be the solution to (2.1), and
suppose that a(x,y) 6∈ PΛr(Γ) for any r ∈ N. In this case r must be chosen to satisfy
r ≥ rmin from Lemma 4.7. Then the minimum work (3.20) of solving (3.14) with
PCG to a tolerance ε > 0 can be bounded by

W pSG
NAT ≤ C7

(
4CFEM

ε

) d
s

eN

(
1 + log

[(
4C1

ε

) 1
C2N

])N

(4.16)1 + 2e2N

(
1 + log

[(
4C5

ε

) 1
C4N

])N (
1 +

1

N
+ log

[(
4C5

ε

) 1
2C4N

])N
 log

(
4C6

ε

)
log
(√

κ̃r+1√
κ̃r−1

)
 ,

with CFEM, C1, C2, C4, C5, C6 as in Lemma 4.7, C7 > 0 independent of ε, and κ̃r the
condition number of the preconditioned system P−1Kr, using the mean-based precon-
ditioner from (3.17).

Proof. In this setting r must be chosen to satisfy r ≥ rmin = log[(4C5/ε)
1/C4 ] from

Lemma 4.7 and, therefore, we must bound the sum from (4.3) which now depends
on rmin, and hence on ε. Thus, we use the bound (4.5) for M(p, r), noting that as
ε→ 0, rmin →∞ so that

min

{
2rmin ,

(
N + drmin/2e

N

)}
=

(
N + drmin/2e

N

)
.

Substituting pmin and rmin from Lemma 4.7 into (4.5) and applying Stirling’s approx-
imation, we obtain

Mpmin
+M(pmin, rmin) ≤ eN

(
1 + log

[(
4C1

ε

) 1
C2N

])N

1 + 2e2N

(
1 + log

[(
4C5

ε

) 1
C4N

])N (
1 +

1

N
+ log

[(
4C5

ε

) 1
2C4N

])N
 .

As in the proof of Theorem 4.8, we substitute Jhmax for Jh from (4.15), kmin for NSG
iter,

and the bound for Mpmin
+M(pmin, rmin) with pmin and kmin from Lemma 4.7 into the

cost (3.20) to complete the proof.
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Given Theorems 4.8 and 4.9 we see that the work of obtaining the fully discrete
approximation using the SGFEM, with PCG as a solver, is asymptotically given by:

O
(

1

ε

) d
s

︸ ︷︷ ︸
(SG.1)

[
log

(
1

ε

)]g(N)

︸ ︷︷ ︸
(SG.2)

 log
(

1
ε

)
log
(√

κ̃r+1√
κ̃r−1

)


︸ ︷︷ ︸
(SG.3)

, (4.17)

where g(N) = N and κ̃r = κ̃ if a(x,y) is an affine or non-affine, polynomial function
of the random parameters of fixed order r < ∞, e.g., Examples 2.1 and 2.2, and
g(N) = 3N when a(x,y) is a non-affine, transcendental function of the random
parameters, e.g., Example 2.3, requiring a total degree orthogonal expansion of order
r ≥ rmin depending on ε. Here, (SG.1), (SG.2), and (SG.3) correspond to the work
required by the finite element, SG, and PCG methods, respectively. In particular,
(SG.2) corresponds to the estimates for the sparsity of the Galerkin system Kr from
(3.14), and represents the number of coupled finite element systems that must be
solved simultaneously by the PCG method. However, due to the bound (4.3), the
asymptotic complexity in the cases that a(x,y) is affine or polynomial in y are the
same. This does not imply that there is no need to consider the work estimates in
these cases separately. Indeed, if a(x,y) is a polynomial having the representation∑
r∈Λr

ar(x)Ψr(y) where ar(x) 6= 0 for all r ∈ Λr, then the complexity of matrix-
vector multiplications with Kr is of the order O(JhMpMr min{2r,Mdr/2e}). Here,
the constant Mr min{2r,Mdr/2e} grows rapidly with r, suggesting that higher order
polynomial functions of y require additional cost.

4.3. Conditioning of the generalized SG system. In this section, we discuss is-
sues related to the conditioning of the linear system that results from the SGFEM dis-
cretization. We first recall [14, Theorem 10]: the eigenvalues of the matrices {Gr}r∈Λr

from (3.13) lie in the interval [ξr,Ξr], where

ξr := min{Ψr(y) : y ∈ Gm(l)}, Ξr := max{Ψr(y) : y ∈ Gm(l)}, (4.18)

Gm(l) is a tensor product grid of Gauss-Legendre quadrature points having m(l) =
(m(l1), . . . ,m(ln)) points in each direction, and l is such that m(ln) := p+dkn+1

2
e, n =

1, . . . , N . Since ar(x,y) satisfies (A1), the analysis of [29, Theorem 3.8] shows that
the eigenvalues for the preconditioned system P−1Kr lie in the interval [1− τ r, 1+ τ r]
where

τ r =
1

amin

∑
r∈Λr
|r|6=0

ξr‖ar(x)‖L∞(D), τ r =
1

amin

∑
r∈Λr
|r|6=0

Ξr‖ar(x)‖L∞(D). (4.19)

As a result of (4.19), we see that in the case that the projection order r of the
coefficient ar(x,y) depends on ε, the condition number of the preconditioned system
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P−1Kr does as well through the number of terms in τ r and τ r. This should come
as no surprise since even in the case of the Karhunen-Loève expansion, the condition
number of P−1K depends on the number of terms in the truncated Karhunen-Loève
expansion which is chosen a-priori to minimize the error.

5. Comparison with the SCFEM. In this section we compare our explicit cost
bounds for the SGFEM with the complexity estimates for the SCFEM developed
in [16], when solving (2.1). The basic idea behind the SCFEM is to construct a
fully discrete approximation in a subspace of Vh(D) ⊗ L2

%(Γ) by collocating semi-
discrete solutions uh from (3.1) on a deterministic set of points to obtain solutions
{uh(·,yk)}ML

k=1 ∈ Vh(D).

5.1. A generalized SCFEM using Lagrange interpolation. To construct the
stochastic collocation (SC) approximation, we consider a class of multi-index sets
defined in terms of increasing functions m : NN

+ → NN
+ and g : NN

+ → N+. By
m we specify the multivariate function m(l) := (m1(l1), · · · ,mN(lN)) where each
mn : N+ → N+ is an increasing function, possibly different for each n = 1, . . . , N .
Here the mn are referred to as growth functions, specifying how the number of points
grows in the direction n. Associated with mn we define the left-inverse m†n : N+ → N+

by m†n(q) = min{k ∈ N+ : mn(k) ≥ q}, and let m†(q) = (m†1(q1), . . . ,m†N(qN)). In
this case, we note that m†n(mn(k)) = k and mn(m†n(k)) ≥ k for each k ∈ N+ and
n = 1, . . . , N . Given m and g we can define the multi-index set

Λm,g
L =

{
q ∈ NN

+ : g(m†(q + 1)) ≤ L
}
, (5.1)

to be used in constructing polynomial approximations. In particular, setting mn(j) =
j for all j ∈ N+ and n = 1, . . . , N , and defining

gTP(p) = max
1≤n≤N

pn, gTD(p) =
N∑
n=1

(pn − 1), gSM(p) =
N∑
n=1

f(pn), (5.2)

where f(p) is given in (3.4), and using the definition of Λm,g
L from (5.1), we obtain

the TP, TD, and SM index sets ΛTP
L , ΛTD

L , and ΛSM
L , respectively, given in (3.4).

We introduce a sequence of one-dimensional Lagrange interpolation operators
Umn(ln) : C0(Γn) → Pmn(ln)−1(Γn). Then for v ∈ C0(Γ) the generalized multi-
dimensional approximation operator Im,g

L : C0(Γ)→ PΛm,g
L

(Γ) is given by

Im,g
L [v](y) =

∑
g(l)≤L

∑
i∈{0,1}N

(−1)|i|

(
N⊗
n=1

Umn(ln−in)
n

)
[v](y). (5.3)

Construction of the approximation Im,g
L [v](y) requires the independent evaluation

of samples v(y) on a deterministic set of distinct collocation points Gm,g
L having

cardinality ML = #Gm,g
L . Applying Im,g

L [·] from (5.3) to the semi-discrete solution
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uh(x,y) of problem (3.1), we obtain the fully discrete SC approximation

uh,L(x,y) = Im,g
L [uh](x,y). (5.4)

One-dimensional abscissas In this effort, we use three examples for constructing
the fully discrete approximation. The first is that of a fully-nested rule constructed
on the Clenshaw-Curtis choice of abscissas [5] with function gTD(p) from (5.2) and
an isotropic growth rule m = (m, . . . ,m) with m given by

m(1) = 1, m(ln) = 2ln−1 + 1 for ln > 1, (5.5)

This is the classical Smolyak sparse-tensorization construction [30], and here the
choice of m corresponds to a doubling growth rule that leads to a nested sequence
of multi-dimensional grids, e.g., Gm,g

L ⊂ Gm,g
L+1. On the other hand, we can construct

a sparse-Smolyak approximation on the Gauss-Legendre abscissas corresponding to
the zeros of the Legendre polynomials {Ψp}, as defined in §3. When the points are
grown isotropically according to the linear growth rule with m = (m, . . . ,m) and m
defined as

m(ln) = ln for ln ∈ N, (5.6)

and gTD(p) from (5.2), we obtain a grid that is not nested. Another construction
that yields a sequence of nested grids is that based on the Leja points, defined as
the sequence of points satisfying yk+1 := argmaxy∈Γn

∏k
j=1 |y− yj| (see [10]). Here we

take the Leja sequence of points with gTD from (5.2) and the isotropic linear growth
function m from (5.6).

5.2. Cost of solving the SCFEM systems. To construct the fully discrete ap-
proximation with the SCFEM, we must solveML distinct decoupled finite element sys-
tems, each dependent on a realization of the parameters yk ∈ Gm,g

L for k = 1, . . . ,ML.
Similar to the SGFEM, we can apply the PCG method to the solution of each sys-
tem. Let N

(k)
iter be the number of iterations required by the CG method to solve the

finite element system corresponding to yk and N
p(k)
iter be the corresponding number of

iterations when a preconditioner is used. We are interested in choosing a suitable pre-
conditioning strategy to decrease the total number of iterations NpSC

iter =
∑ML

k=1N
p(k)
iter

required to obtain the fully discrete approximation uh,L. We present a preconditioning
strategy of choosing

P0 := A(y1), (5.7)

with A(y) from (3.2) the finite element stiffness matrix corresponding to the sample
point y1 ∈ Gm,g

L , as the preconditioner for all of the individual finite element solutions.
We refer to this choice of preconditioner as the level-zero preconditioner since it
corresponds to the SC approximation at level L = 0.
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Since we apply CG to the solution of each individual finite element system, the
work in floating point operations (FLOPs) required to obtain a fully discrete approx-
imation with the SCFEM without a preconditioner is given by

W SC ≈ O

(
Jh ∗

ML∑
k=1

N
(k)
iter

)
. (5.8)

On the other hand, the “level-zero” preconditioner induces an an additional matrix-
vector product requiring O(Jh) FLOPs per iteration, hence the work of solving (2.5)
with PCG is given by

W pSC ≈ 2 ∗ O

(
Jh ∗

ML∑
k=1

N
p(k)
iter

)
. (5.9)

Here, the reduction in work due to preconditioning will be seen in the number of
iterations saved in each individual count N

p(k)
iter contributing to the sum.

5.3. Comparing the explicit cost bounds of the SGFEM and SCFEM. Given
a particular “sparse” index set Λp, we can find increasing functions m : NN

+ → NN
+

and g : NN
+ → N+, and L ∈ N such that Λp = Λm,g

L from (5.1). In this setting, we can
either use Galerkin projection or construct an interpolant to obtain an approximation
to u in PΛp(Γ). Let uΛp denote the Galerkin projection of u onto the space PΛp(Γ).
Then in the L2

%(Γ) norm, we have the estimate

‖u− uΛp‖L2
%(Γ) ≤ Ca min

v∈PΛp (Γ)
‖u− v‖L2

%(Γ)

where Ca > 0 depends on the coefficient a(x,y) and the bounds from assumption
(A1). This estimate expresses optimality in the L2

%(Γ) error of the Galerkin projection
since Ca does not grow with Λp, and suggests that the Galerkin method is the best
choice for approximating u in the space PΛp(Γ). We can also define an interpolation
operator Im,g

L : C0(Γ)→ PΛp(Γ), and then we have the estimate

‖u− Im,g
L [u]‖L∞(Γ) ≤ (CΛL

+ 1) min
v∈PΛp (Γ)

‖u− v‖L∞(Γ)

= (CΛL
+ 1)‖u− uΛp‖L∞(Γ)

(5.10)

where CΛL
= ‖Im,g

L ‖L∞(Γ) is the Lebesgue constant of Im,g
L . A good interpolant will

be one for which CΛL
grows moderately with #Λm,g

L . For example, it is known (see
[11,16]) that for a one-dimensional Lagrange interpolation operator using a Clenshaw-
Curtis rule, the Lebesgue constant is bounded by 2

π
log(m − 1) + 1, where m is the

number of points. For the SC method, we define SDOF to be the total number
of points needed to construct the approximation. From (5.10), if we only consider
the number of SDOF needed to represent the solution, we expect the error for the
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Galerkin approximation to be much lower than the error in the interpolant. Indeed,
this is reflected in our numerical results in Figures 6 and 8, and has been observed in
previous comparisons [3, 13].

However, if we are willing to change the space Λp, e.g., adding more interpolation
points to gain a more stable interpolant by changing m or changing which points are
included in the set Λm,g

L by changing g, it might be possible to obtain an approxima-
tion with lower complexity to reach a given tolerance, despite having to solve more
systems. Therefore, to properly compare the work involved in constructing uΛp and
Im,g
L [u], we consider the computational complexity of both methods, not in terms

of SDOF, but in terms of floating point operations (FLOPs). For a chosen Λp, this
reduces to studying the complexity of the system resulting from Galerkin projections
and the stability properties of the interpolant Im,g

L .
Let ũh,L denote the numerical solution to the fully discrete approximation uh,L

obtained with the SCFEM from (5.4) found by the PCG, and observe that we have
a similar splitting to (4.7) for the error in the approximation

‖u− ũh,L‖H2
%
≤ ‖u− uh‖H2

%︸ ︷︷ ︸
SC(I)

+ ‖uh − uh,L‖H2
%︸ ︷︷ ︸

SC(II)

+ ‖uh,L − ũh,L‖H2
%︸ ︷︷ ︸

SC(III)

(5.11)

Note that unlike in the case of the SGFEM, the SCFEM does not require a further
projection of the coefficient a(x,y), so that we do not need to consider the error
‖u − ur‖H2

%
from (4.7). In addition, we do not need to worry about well-posedness

of the truncation as discussed in Remark 3.3. Similar to the complexity analysis for
the SGFEM, we must choose h ≤ hmax and L ≥ Lmin so that the errors ‖u − uh‖H2

%

from the finite element discretization and ‖uh − uh,L‖H2
%

from the SC interpolation
are both bounded by ε/3. From this, a minimum tolerance τmin for the PCG solver
can be derived and the maximum number of PCG iterations, with a zero initial guess,
can be estimated [16]. In what follows, we present a result, whose proof can be found
in [16, Theorem 4.7] that bounds the number of PCG iterations in the context of the
work estimate (5.9). Using this estimate we can compare the cost in FLOPs for the
SCFEM with the SGFEM results from Theorems 4.8 and 4.9 in the previous section.

Theorem 5.1. Let u ∈ L2
%(Γ;H1

0 (D) ∩ Hs+1(D)) be the solution to (2.1). Then
for ε > 0 arbitrary, the work of finding ũh,L, the approximation to the fully discrete
SC solution uh,L from (5.4) found by PCG, denoted by W pSC, can be bounded by

W pSC ≤ 2C7

(
3CFEM

ε

) d
s

C8

[
log

(
3CSC

ε

)]N [
C9 +

1

log 2
log log

(
3CSC

ε

)]N−1

(5.12)

× 1

log
(√

κ̄+1√
κ̄−1

) {log

(
C10

ε

)
+ C11 + 2N log log

[
1

rN
log

(
3CSC

ε

)]}
.
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Here CFEM from Lemma 4.6, C7 from Theorem 4.8, and C8, C9, C10, C11, CSC, and r
from [16, Theorem 4.7] are positive constants independent of ε. Moreover, we define
κ̄ = supy∈Γ κ(y) where κ(y) is the condition number of the preconditioned system

P−1
0 A(y) and P0 is given in (5.7), noting that κ̄ is also independent of ε.

Theorem 5.1 follows from the fact that NpSC
iter =

∑ML

k=1 N
p(k)
iter ≤ Nzero, where Nzero is

the number of iterations needed by the SCFEM with a PCG and a zero vector initial
guess. Substituting the bound on Nzero shown in [16, Theorem 4.7] into the work
estimate (5.9) and using Jhmax = C7(3CFEM/ε)

d/s as in Theorem 4.8, puts the result
in terms of FLOPs. Given Theorem 5.1 we see that the work of obtaining the fully
discrete approximation with the SCFEM with the PCG method is asymptotically
bounded by:

O
(

1

ε

) d
s

︸ ︷︷ ︸
(SC.1)

[
log

(
1

ε

)]N [
log log

(
1

ε

)]N−1

︸ ︷︷ ︸
(SC.2)

 log
(

1
ε

)
log
(√

κ̄+1√
κ̄−1

)


︸ ︷︷ ︸
(SC.3)

(5.13)

where (SC.1), (SC.2), and (SC.3) correspond to the work required by the finite el-
ement, SC interpolant, and PCG methods, respectively. Since the costs associated
with the finite element discretization are the same for both methods, we focus only
on the costs associated with the SG projection and the SC interpolation, coupled
with the costs of the PCG method. In particular, as the work required by the SG
approximation from (SG.2) of (4.17) has different bounds depending on whether the
coefficient is a fixed order polynomial or is given by a total degree orthogonal ex-
pansion having order depending on ε, we now provide a comparison in both of these
cases.

Comparison in the affine and non-affine polynomial cases, e.g., Examples 2.1 and
2.2. The terms (SG.2) from (4.17) and (SC.2) from (5.13) are asymptotic estimates
of the number of coupled and decoupled finite element systems that must be solved
by the SGFEM and SCFEM to construct the stochastic approximation, respectively.
For the coefficients from Examples 2.1 and 2.2, (SG.2) from (4.17) for the SGFEM is
O([log(1/ε)]N). Hence, our analysis shows that in these cases, the number of coupled
finite element systems in the SGFEM matrix is smaller than the number of decoupled
finite element systems required by the SCFEM by a factor of (log log(1/ε))N−1. This
difference is enough to suggest that, if the condition numbers of both the precondi-
tioned coupled system from the SGFEM and the preconditioned individual systems
from the SCFEM are of the same order, then the SGFEM will outperform the SCFEM
in terms of minimum work required to obtain a fully discrete approximation. In fact,
whenever a(x,y) is a general non-affine, polynomial coefficient, e.g., Example 2.2,
having fixed order r < ∞, the complexity of matrix-vector products involving K
from (3.8) is approximately O(JhMpMr min{2r,Mdr/2e}) from Remark 4.3. Hence,
our analysis shows that when O(Mr min{2r,Mdr/2e}) < O((log log(1/ε))N−1), which,
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in limit as ε→ 0, is always the case, and the condition numbers of both systems are
of the same order, the SGFEM will outperform the SCFEM. However, in practical
applications, it may require unrealistically small tolerance ε to see this when r is
large.

Comparison in the non-affine, transcendental case, e.g., Example 2.3. In the case
that a(x,y) is a non-affine, transcendental functon of the random parameters, e.g.,
Example 2.3, the estimate for (SG.2) is O([log(1/ε)]3N). In this case, our analysis
shows that the number of coupled finite element matrices present in the SG system
Kr from (3.14) dominates the number of decoupled finite element systems needed by
the SCFEM by a factor of [log(1/ε)]2N . From this, even if the condition numbers
of both the preconditioned coupled SG system and the preconditioned decoupled
SCFEM systems are of the same order, it becomes difficult to see how the SGFEM
can compete with the SCFEM.

Note that, as in the case of the SGFEM, the term (SC.3) has a dependence on the
condition numbers of the preconditioned finite element systems through the bound
κ̄ = supy∈Γ κ(y). For the unpreconditioned systems A(y), the condition numbers can

be bounded by κ(A(y)) ≤ (Cκ/h)2 for every y ∈ Γ, following from assumption (A1)
and the quasi-uniformity of the mesh Th. However, for the preconditioned systems
P−1

0 A(y), the condition numbers are bounded independent of h and y ∈ Γ, so that κ̄
is independent of mesh size h, level L, and stochastic dimension N . For the SGFEM,
the condition number κ̃r of the preconditioned system P−1Kr can be bounded by

κ̃r ≤
1 + τ r
1− τ r

,

where τ r and τ r are defined in (4.19), hence depend on ε when r ≥ rmin from Lemma
4.7. If τ r and τ r → ∞ as ε → 0, the SG system will eventually become indefinite,
and the PCG method will fail to converge. In this case another strategy must be
used to solve (3.14), such as GMRES, though the cost must be modified in (3.20)
to account for the number of operations required to obtain the numerical solution.
On the other hand, if τ r → 1 as r → ∞, then the condition number will become
increasingly large and a significant number of iterations will be needed to reduce the
error of the numerical solution with PCG. Other preconditioners may be used to
reduce the dependence on r, but then their associated costs must be accounted for in
the work estimate (3.20) as well. For fixed y ∈ Γ, since a(x,y) satisfies assumption
(A1), the system A(y) is positive definite, hence this is not an issue for the SCFEM.

6. Numerical examples. In this section, we provide illustrative numerical ex-
amples comparing the complexity of the SGFEM in the three cases of Examples 2.1,
2.2, and 2.3. We then compare these results with SCFEM and the results of the
theoretical complexity comparison of the previous section. We solve the model prob-
lem (2.1), on the unit square D = [0, 1]2. For a general coefficient a(x,y) we do not
know the exact solution to (2.1). Hence we check the convergence against a “highly
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enriched” approximation, which we consider close enough to the exact one. To con-
struct this “exact” solution uex(x,y), we make use of the isotropic SCFEM based on
Clenshaw-Curtis abscissas using the level Lex. We approximate the computational
error for the SGFEM with orders p = 0, 1, 2, . . . , pmax and for the SCFEM with levels
L = 0, 1, 2, . . . , Lmax as

‖E[εSG]‖`∞ ≈ ‖E[uex − ũh,p]‖`∞ and ‖E[εSC]‖`∞ ≈ ‖E[uex − ũh,L]‖`∞ , (6.1)

where ũh,p and ũh,L are the fully discrete approximations (3.5) and (5.4), respectively,
found by the PCG method, described in §3 and §5. In §6.3, we measure ‖E[εSG]‖`∞ ≈
‖E[uex−ũrh,p]‖`∞ where ũrh,p denotes the solution of (3.14) with the projected coefficient
ar(x,y).

As stated in §3.4 and §5.2, we use PCG with the mean-based preconditioner
for SGFEM and the level-zero preconditioner for the SCFEM. Hence, we believe this
puts both methods at a similar starting point for comparison, if not providing a slight
advantage for the SGFEM. With these choices, the complexity results are presented
in terms of the work estimates (3.20) and (5.9), respectively. The amount of work to
reach a given error in PCG is also dependent on the tolerance used by the solver. If the
tolerance is too small, we may see that the PCG method “over-resolves” the solution.
To ensure that we do not over-resolve either solution, we set the tolerance of the
solvers to be ‖E[εSG]‖`∞/10 and ‖E[εSC]‖`∞/10 respectively, where these quantities
are first estimated for each order p and level L using a tolerance of 1.0 × 10−12. In
practice, we find that this does not affect the convergence results much.

In all three examples, we use the SG approximation constructed in terms of the
orthonormal Legendre polynomials {Ψp}p∈Λp for given index sets Λp. In the presenta-
tion of the results that follow, we use the following abbreviations. For the SGFEM, we
use: “SG-TD” to denote the approximation in the total degree subspace PΛTD

p
(Γ) with

ΛTD
p given in (3.4), and “SG-SM” to denote the approximation in the sparse Smolyak

subspace PΛSM
p

(Γ) with ΛSM
p given in (3.4). For the SCFEM, we use: “SC-GL” and

“SC-LJ” to denote the Smolyak approximation constructed on Gauss-Legendre ab-
scissas and the Leja approximation constructed on Clenshaw-Curtis abscissas, both
defined in terms of gTD and m given in (5.2) and (5.6), respectively, and “SC-CC”
to denote the Smolyak approximation constructed on Clenshaw-Curtis abscissas with
gSM and m given in (5.2) and (5.5).

6.1. Piecewise affine coefficients. One common example in engineering and the
physical sciences is that of isotropic thermal diffusion problem with a stochastic con-
ductivity coefficient. Consider a partitioning of D = [0, 1]2 into 8 circular inclusions
arrayed about 1 square inclusion as in Figure 5. We present the following example
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from [3], where the coefficient was given by

a(x,y) = b0(x) +
8∑

n=1

ynχn(x), (6.2)

with b0 = 1, and yn ∼ U(−0.99,−0.2). Here, χn are indicator functions corresponding
to the 8 circular inclusions of radius r = 1.3. In this example, we also set the forcing
term to be

f(x) = 100χF (x), (6.3)

where F = [0.4, 0.6]2, is the square inclusion centered in D with side length 0.2.
Figure 5 shows the expected value of the solution to this problem. To solve (2.1) with
the coefficient (6.2) and forcing function (6.3), we use a piecewise linear finite element
basis in the deterministic space over a nonuniform mesh Th. Here, the nodes of Th
are adapted to the geometry of our problem, that is, we fix the nodes that lie on the
boundaries of the inclusions in our domain. From this fixed boundary data, we then
use the distmesh MATLAB program [28] to generate a non-degenerate triangulation
that adequately resolves the details of our subdomain geometry. We further specify
the subsets of the total set of nodes that belong to each geometric inclusion, and to
the boundaries of the inclusion, so that the interface conditions for the coefficient may
be correctly applied. The final mesh consists of 10,604 elements, 5,377 total nodes,
and 5,229 unknowns.
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Figure 5: Left: a triangulation of the domain D with circular and square inclusions.
Red nodes highlight the boundary of an inclusion or the domain D, blue nodes high-
light nodes on the interior of an inclusion. Right: the expected value of the solution
of (2.1) with stochastic conductivity coefficient (6.2).

The coefficient (6.2) is an example of a coefficient a(x,y) having affine depen-
dence on the parameters, e.g., Example 2.1. Figure 6 displays the convergence of
the stochastic Galerkin and collocation methods against the total number of SDOF.
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For the SGFEM we take the SDOF to be the cardinality of the set Λp used in con-
structing the fully discrete approximation uh,p from (3.5) by solving (3.6), and for
the SC method we take the SDOF to be the number of points #Gm,g

L corresponding
to an index set Λm,g

L used in constructing the fully discrete approximation uh,L from
(5.4). From the discussion of §5.3, we expect to see that the approximation obtained
with the SGFEM requires fewer SDOF than the SCFEM to achieve the same error,
and this is indeed the observed result. For example, both the SG-TD and SC-LJ
approximations require the same number of SDOF, but the error of the SC-LJ ap-
proximation is much higher. This, of course, is a consequence of the estimate (5.10),
where the errors of the SC approximations are bounded above by their respective
Lebesgue constants against the best-approximation error in the space PΛm,g

L
(Γ).

Figure 6 also displays the convergence of both methods in terms of error versus the
total computational cost of solving the system with the work estimates of (3.20) and
(5.9), respectively. Here, we compute the error in ‖E[εSG]‖`∞ and ‖E[εSC]‖`∞ as given
in (6.1). Our analysis shows the work corresponding to the SG discretization for SG-
TD is asymptotically bounded by O([log(1/ε)]N) while the analysis from [16] shows
that the work corresponding to the SC discretization for SC-CC is asymptotically
bounded by O([log(1/ε)]N [log log(1/ε)]N−1). This closely matches the results of the
numerical experiments in Figure 6, where it can be seen that for polynomial order
p ≥ 2, the SG-TD approximation yields the best results with the least computational
cost for this problem.
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Figure 6: Left: Error versus SDOF in solving problem (2.1) with coefficient (6.2)
and forcing (6.3). Right: Error versus computational cost with the work estimates
given in (3.20) and (5.9) based on total number of matrix-vector products used by
the CG method.

6.2. Polynomial coefficients. The next example we present is that of a polyno-
mial function of the random paramters y, e.g. the coefficient from Example 2.2. We
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consider the following function

a(x,y) = 5 +
∑
|r|≤r

e−1.5|r|ςr(x)yr, (6.4)

ςr(x) =

{
sin (|r|πx1) cos (|r|πx2) if |r| is even,
cos (|r|πx1) sin (|r|πx2) if |r| is odd,

with yn ∼ U(−1, 1) for all n = 1, . . . , N and forcing term f(x) = 1 ∀x ∈ D. For
the results that follow we fix N = 4 and study the convergence of the SGFEM and
SCFEM in the cases r = 1, 3, 7 in (6.4). As in §6.1, we set the finite element space for
the spatial discretization to be the span of piecewise linear polynomials, but here we
use a uniform triangulation of D with 4, 934 elements and 2, 340 spatial unknowns.

Figure 7 displays the convergence of the SGFEM and SCFEM in terms of er-
ror versus the total computational cost of solving the system with the work esti-
mates of (3.20) and (5.9). Here, we compute the error in ‖E[εSG]‖`∞ and ‖E[εSC]‖`∞
as given in (6.1). As we increase the order r in (6.4), we see that the work for
the SGFEM increases, corresponding to the decreasing sparsity of the matrix K
from (3.8). Here, the work of matrix-vector multiplications with K are of the or-
der O(JhMpMr min{2r,Mdr/2e}), where Mr min{2r,Mdr/2e} is a large constant that
grows rapidly with r. As a result, we see that for r = 1, the SGFEM outperforms the
other methods for p ≥ 4. However, for r = 3, 7, the extra work of the matrix-vector
multiplications of the coupled SG system dominates the overall convergence.
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Figure 7: Error versus cost for solving problem (2.1) with coefficient (6.4) having
r = 1 (left), r = 3 (middle), and r = 7 (right), with forcing f(x) = 1. The cost, given
in (3.20) and (5.9), is based on total number of matrix-vector products used by the
PCG method.

6.3. Transcendental coefficients. The next example we present is that of a
random coefficient defined in terms of the truncated Karhunen-Loève expansion of
the function log(a(x,y) − amin), for amin > 0. This example represents a commonly
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used transcendental function of the physical and random parameters, e.g., Example
2.3, and is often presented in the context of enforcing the positivity of a(x,y) required
in assumption (A1). Coefficients of this type are commonly found in groundwater flow
models. For these models, the permeability can exhibit large variance within each
layer of sediment, and as a result are better represented on a logarithmic scale. We
recall the problem of solving (2.1) with a coefficient having one-dimensional (layered)
spatial dependence and a deterministic load f(x1, x2, ω) = 2 cos(x1) sin(x2) as studied
in [25,26], where a(x,y) was given by

log(a(x, ω)− 0.5) = 1 + y1(ω)

(√
πL

2

)1/2

+
N∑
n=2

ζnϕn(x)yn(ω), (6.5)

ζn = (
√
πL)1/2 exp

(
−(bn2 cπL)

2

/8

)
, for n > 1,

ϕn(x) =

{
sin
(⌊

n
2

⌋
πx1/Lp

)
, if n is even,

cos
(⌊

n
2

⌋
πx1/Lp

)
, if n is odd.

Here, {yn(ω)}∞n=1 are independent random variables uniformly distributed in [−
√

3,
√

3]
with zero mean and unit variance. For x1 ∈ [0, b], let Lc be a desired physical cor-
relation length for the random field a(x,y), chosen so that the random variables
a(x1, ω) and a(x′1, ω) become essentially uncorrelated for |x1 − x′1|gLc. Also, let
Lp = max{b, 2Lc} and L = Lc/Lp. Expression (6.5) represents a possible truncation
of a one-dimensional random field with stationary covariance,

cov[log(a− 0.5)](x1, x2) = exp

(
−(x1 − x2)2

L2
c

)
.

Direct integration with the coefficient a(x,y) from (6.5) yields a fully-block dense
linear system K from (3.8) that is computationally infeasible to solve [14, 23, 34, 35].
The purpose of this example is to highlight the difficulties of obtaining a fully discrete
approximation with the SGFEM in this case.

As in the previous example in §6.2, we set the finite element space for the spa-
tial discretization to be the span of piecewise linear polynomials and use a uniform
triangulation of D with 4, 934 elements and 2, 340 spatial unknowns. For the results
that follow, we fix the truncation length N = 9 and correlation length Lc = 1/64 in
(6.5). To maintain sparsity of the SG system, we use the strategy of projecting the
coefficient a(x,y) from (6.5) onto the space PΛr(Γ), as in (3.10), where Λr = ΛTD

r for
the SG-TD approximation, and Λr = ΛSM

r for the SG-SM approximation, obtaining
the matrix Kr from (3.14). We then increase r while p is fixed until the error in
the solution stagnates, in practice finding that, for this problem, r = p is sufficient
to guarantee the error of the projection does not exceed that of the solution, while
maintaining sparsity of the linear system.

Figure 8 compares the error versus SDOFs. There we see that for order p ≥ 3, the
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SG-TD approximation provides the best approximation with respect to SDOFs. As
discussed in §5.3, this is to be expected since the computational complexity of solving
the coupled and decoupled systems is not taken into account. Figure 8 also displays
the convergence in error versus the total computational cost of solving the system
with the work estimates of (3.20) and (5.9). Here however, the results show that the
SGFEM requires significantly more work to obtain the same error than the SCFEM.
In Remark 4.4, we observed that for the TD-SG approximation, when r = p the
cost of solving (3.14) with the PCG method is of the order O(JhM

3
dp/2eN

SG
iter), growing

much more rapidly than the cost in the affine and polynomial coefficient cases, e.g.,
Examples 2.1 and 2.2, as we increase the order p of the total degree approximation
with the SG method. Table 1 shows the amount of work required to achieve an error
on the order of 1.0×10−k for some values of k and the savings in computational effort
of solving the system with the SC method instead of the SGFEM.
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Figure 8: Left: Error versus SDOFs in solving problem (2.1) with coefficient (6.5)
and forcing f(x1, x2, ω) = cos(x1) sin(x2). Right: Error versus cost with the work
estimates given in (3.20) and (5.9).

7. Conclusions. In this work, we presented explicit cost bounds for applying the
SGFEM to the solution of an elliptic PDE having both affine and non-affine random
coefficients. To this end, we have conducted a rigorous counting argument for the
sparsity of the linear system that results from the SG discretization with a global
orthogonal basis defined on an isotropic total degree index set. Our analysis shows
that when the coefficient is an affine or non-affine function of the random variables
having fixed polynomial order, the computational cost of solving the coupled SG
system grows linearly with the dimension of the polynomial subspace. In these cases,
the results only differ by a constant depending on the polynomial order of the random
coefficient and the dimension of the parameter domain.

On the other hand, when the coefficient is a non-affine, transcendental function of
the random variables requiring an additional orthogonal expansion, our analysis shows
that the computational complexity, no longer grows linearly with the polynomial
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SC-CC SC-CC Mat-vec cost SG-TD SG-TD Mat-vec cost
Level Error of SC-CC Order Error of SG-TD

0 1.3626× 10−4 2 0 1.3626× 10−4 4
1 2.8884× 10−6 218 1 3.9444× 10−5 152
2 6.3652× 10−8 3,398 2 6.1427× 10−7 10,710
3 3.6021× 10−9 28,638 3 2.8851× 10−8 213,010
4 1.4794× 10−10 178,894 4 4.9210× 10−10 4,579,575
5 2.2869× 10−12 944,220 5 8.9123× 10−12 49,089,051

Table 1: Comparison of cost in matrix-vector products for solving problem (2.1)
with coefficient (6.5) and forcing f(x1, x2, ω) = cos(x1) sin(x2) using the SC-CC and
SG-TD approximations, with the strategy of picking the CG tolerance to be ‖E[uex−
ũrh,p]‖`∞/10 for the SGFEM and ‖E[uex − ũh,L]‖`∞/10 for the SC method. Cost in
matrix-vector products for SG-TD method is given by (3.20) and for SC-CC is given
by (5.9) normalized by the cost of a finite element matrix vector product.

subspace dimension. For such coefficients, we are able to provide bounds on the
complexity that depend on the truncation order of the coefficient. These estimates
imply that a truncation of the expansion should be used, when possible, though
attention must be paid to the well-posedness of the resulting PDE.

The analysis conducted herein motivates the study of the total computational
complexity of obtaining fully discrete approximations with such methods. We have
seen that, despite the fact that the SG method yields an approximation that is optimal
in the L2 sense for a given polynomial subspace, the associated computational costs
of obtaining SG approximations are not optimal for all problems. Moreover, we
have observed, both through theoretical comparisons and numerical examples, that
changing the underlying polynomial subspace and method used for obtaining the fully
discrete approximation can often yield a solution that requires far less work to obtain,
but has the same error.
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[3] J. Bäck, F. Nobile, L. Tamellini, and R. Tempone, Stochastic Spectral Galerkin
and Collocation Methods for PDEs with Random Coefficients: A Numerical Com-
parison, in Spectral and High Order Methods for Partial Differential Equations,
J. S. Hesthaven and E. M. Rønquist, eds., vol. 76 of Lecture Notes in Computa-
tional Science and Engineering, Springer Berlin Heidelberg, 2011, pp. 43–62.

[4] A. Chkifa, A. Cohen, and C. Schwab, Breaking the curse of dimensionality in
sparse polynomial approximation of parametric PDEs, Journal de Mathématiques
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