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ABSTRACT

The objective of this work is the development of novel, e�cient and reliable sparse grid

stochastic collocation methods for solving linear and nonlinear partial di↵erential equations

(PDEs) with random coe�cients and forcing terms (input data of the model). These

techniques consist of a Galerkin approximation in the physical domain and a collocation,

in probability space, on sparse tensor product grids utilizing either Clenshaw-Curtis or

Gaussian abscissas. Even in the presence of nonlinearities, the collocation approach leads to

the solution of uncoupled deterministic problems, just as in the Monte Carlo method.

The full tensor product spaces su↵er from the curse of dimensionality since the dimension

of the approximating space grows exponentially in the number of random variables. When

this number is moderately large, we combine the advantages of isotropic sparse collocation

with those of anisotropic full tensor product collocation: the first approach is e↵ective for

problems depending on random variables which weigh equally in the solution; the latter

approach is ideal when solving highly anisotropic problems depending on a relatively small

number of random variables. We also include a priori and a posteriori procedures to adapt

the anisotropy of the sparse grids to each problem. These procedures are very e↵ective for

the problems under study.

This work also provides a rigorous convergence analysis of the fully discrete problem

and demonstrates: (sub)-exponential convergence in the asymptotic regime and algebraic

convergence in the pre-asymptotic regime, with respect to the total number of collocation

points. Numerical examples illustrate the theoretical results and compare this approach

with several others, including the standard Monte Carlo. For moderately large dimensional

problems, the sparse grid approach with a properly chosen anisotropy is very e�cient and

superior to all examined methods.
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Due to the high cost of e↵ecting each realization of the PDE this work also proposes

the use of reduced-order models (ROMs) that assist in minimizing the cost of determining

accurate statistical information about outputs from ensembles of realizations. We explore

the use of ROMs, that greatly reduce the cost of determining approximate solutions, for

determining outputs that depend on solutions of stochastic PDEs. One is then able to

cheaply determine much larger ensembles, but this increase in sample size is countered

by the lower fidelity of the ROM used to approximate the state. In the contexts of

proper orthogonal decomposition-based ROMs, we explore these counteracting e↵ects on the

accuracy of statistical information about outputs determined from ensembles of solutions.

xv



INTRODUCTION

Uncertainty quantification

Mathematical modeling and computer simulations are nowadays widely used tools to predict

the behavior of physical and engineering problems. All such predictions are obtained

by formulating mathematical models and solving corresponding problems. Therefore,

mathematical models can be regarded as a transformation of available input information

onto desired quantities of interest, and the predictions are the images of specific inputs. The

problem that arises with these models is that, to date, most scientists ignore certain critical

issues that should be addressed.

Some sources of errors arising in computer simulations can be controlled and reduced,

by now, using sophisticated techniques such as a posteriori error estimation (Ainsworth and

Oden, 2000; Babuška and Strouboulis, 2001; Eriksson et al., 1995; Verfürth, 1996; Johnson,

2000), mesh adaptivity Moon et al. (2006) and the more recent modeling error analysis

(Oden and Vemaganti, 2000; Oden et al., 2001; Oden and Prudhomme, 2002; Braack and

Ern, 2003; Romkes and Oden, 2004; Oden et al., 2005a,b). All this has increased the accuracy

of numerical predictions as well as our confidence in them.

Yet, many engineering applications are a↵ected by a relatively large amount of uncer-

tainty in the input data such as model coe�cients, forcing terms, boundary conditions,

geometry, etc (Babuška and Chleboun, 2002, 2003). This can be due to an intrinsic variability

in the physical system as, for instance, in the mechanical properties of many bio-materials,

polymeric fluids, or composite materials, the action of wind or seismic vibrations on civil

structures, etc. These types of uncertainties are known as epistemic since they can be reduced

via additional experimentation, improvements in measuring devices, etc. For example, one

can reduce uncertainties associated with characterization of material properties by carrying

out a more exhaustive experimental program and/or using better measuring devices.

In other situations, uncertainty may come from our di�culty in characterizing accurately
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the physical system under investigation as in the study of groundwater flows, where the

subsurface properties such as porosity and permeability in an aquifer have to be extrapolated

from measurements taken only in few spatial locations. In this case the uncertainties are

known as aleatoric since one cannot reduce the associated uncertainties. In practice, it is

necessary to address both types of uncertainties. This problem has been addressed in a

general setting in Cullen and Frey (1999) and some applications to solid mechanics in Ben-

Haim (1996); Mrczyk (1997); Elishako↵ (1999); Melchers (1999); Elisako↵ and Ren (2003).

The goal of this work is to advance key enabling mathematical and computational

methods for Uncertainty Quantification, focusing on stochastic models and their numerical

simulations.

Although such methods are essential for dealing with realistic experimental data and

assessing reliability of predictions based on numerical simulations, their current understand-

ing and use in the engineering community is quite limited. Additionally, their development

within the computational mathematics community is very much ongoing. See for instance

the cited works below. Uncertainties can be quantified in several ways, for instance:

Worst-case-scenario (or anti-optimization) are useful in cases where we only know little

information on the uncertainty in the input data, namely that the input data lie

in a functional set (that might well be infinite dimensional). These methods have

been treated comprehensively in Hlaváček et al. (2004). It covers mathematical

fundamentals, provides a survey of the pertinent literature, and discusses many

applications. See also the recent work Babuška et al. (2005).

Probabilistic methods characterize uncertainties using stochastic di↵erential equations.

Significant literature is devoted to this subject in both mathematics and engineering

(Ghanem and Spanos, 1991; Kleiber and Hien, 1992; Benth and Gjerde, 1998a,b;

Ghanem and Red-Horse, 1999; Glimm et al., 2003; Xiu and Karniadakis, 2002a; Schwab

and Todor, 2003b,a; Xiu and Karniadakis, 2003; Soize, 2003; Lucor et al., 2003; Lucor

and Karniadakis, 2004; Le Mâıtre et al., 2004a,c; Soize and Ghanem, 2004; Babuška

et al., 2004b; Badri Narayanan and Zabaras, 2004; Zabaras and Samanta, 2004; Lu and

Zhang, 2004; Xiu and Tartakovsky, 2004; Regan et al., 2004; Babuška et al., 2005d;

Schueller, 2004; Keese and Matthies, 2005; Matthies and Keese, 2005; Frauenfelder

et al., 2005a; Soize, 2005; Rubinstein and Choudhari, 2005; Velamur Asokan and

2



Zabaras, 2005; Asokan Badri Narayanan and Zabaras, 2005; Mathelin et al., 2005;

Roman and Sarkis, 2006).

Knowledge-based methods characterize uncertainties using fuzzy sets (Bernardini, 1999;

Dubois and Prade, 2000), evidence theory (Dempster-Shafer theory) (Oberkampf et al.,

2001; Kramosil, 2001; Ferson et al., 2003), subjective probability (Vick, 2002; Helton,

1997), Bayesian inference (Box, 1973; Lemm, 2003; Beck and Au, 2002; Yuen and Beck,

2003; Beck and Ching, 2004; Wang and Zabaras, 2005), and other means of including

expert opinions.

It is widely recognized that new methods for treating uncertainty will become important

in virtually all branches of computational mechanics, see Oden et al. (2003); Babuška and

Oden (2005). Above, we mentioned a few approaches that can be applied to solve problems

with uncertainties. All of them can be applied directly and indirectly to a partial di↵erential

equation problem with uncertain input data. The major problem in all these approaches is

the description of the uncertainty in the input set. Attending to this trend, we concentrate

on the probabilistic characterization of uncertainties in mathematical models described by

both linear and nonlinear Stochastic Partial Di↵erential Equations (SPDEs). In particular,

we will focus on the development of mathematical theory and e�cient numerical algorithms

to produce reliable numerical approximations for a wide variety of applied problems.

Such uncertainties can be included in the mathematical model adopting a probabilistic

setting, provided enough information is available for a complete statistical characterization

of the physical system. In this framework, the input data are modeled as random variables,

like in the case where the input coe�cients are piecewise constant and random over fixed

subdomains, or more generally, as random fields with a given spatial (or temporal) correlation

structure.

Therefore, the goal of the mathematical and computational analysis becomes the pre-

diction of statistical moments (mean value, variance, covariance, etc.) or even the whole

probability distribution of some responses of the system (quantities of physical interest),

given the probability distribution of the input random data.

3



The stochastic formulation of uncertainty

In many applications the mathematical model depends on a set of parameters, which may be

a↵ected by uncertainty and be represented as random variables with a given joint probability

distribution. For instance, we might think of the deformation of an elastic homogeneous

material in which the Young’s modulus and the Poisson’s ratio (parameters that characterize

the material properties) are random variables, either independent or not.

In other situations, the input data may vary randomly from one point of the physical

domain D to another and their uncertainty should rather be described in terms of random

fields with a given covariance structure (i.e. each point of the domain is a random variable

and the correlation between two distinct points in the domain is known and non-zero, in

general; this case is sometimes referred to as colored noise ). Examples of this situation

are, for instance, the deformation of inhomogeneous materials such as wood, foams, or bio-

materials such arteries, bones, etc.; groundwater flow problems where the permeability in

each layer of sediments (rocks, sand, etc.) should not be assumed constant; the action of

wind (direction and point intensity) on structures; etc.

A possible way to describe such random fields consists of using a Karhunen-Loève

expansion (Loève, 1977), a Polynomial Chaos (PC) expansion (Wiener, 1938; Ghanem and

Spanos, 1991) or its generalized version (Xiu and Karniadakis, 2002b). The former represents

the random field as a linear combination of an infinite number of uncorrelated random

variables, while the latter uses polynomial expansions in terms of independent random

variables. Both expansions exist provided that the given random field a : ⌦ ! W , as

a mapping from the probability space into a functional space W , has a bounded second

moment. Other nonlinear expansions can be considered. See, e.g. Grigoriu (2002), for

a technique to express a stationary random field with given covariance structure and

marginal distribution as a function of (infinite) independent random variables; nonlinear

transformations have been used also in Matthies and Keese (2005); Winter and Tartakovsky

(2002). The use of non-polynomial expansions may be advantageous in some situations,

for instance, in groundwater flow problems, the permeability coe�cient within each layer

of sediments can feature huge variability, which is often expressed in a logarithmic scale.

In this case, one might want to use a Karhunen-Loève (or Polynomial Chaos) expansion

for the logarithm of the permeability, instead of the permeability field itself. This leads to
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an exponential dependence of the permeability on the random variables and the resulting

random field might even have unbounded second moments. An advantage of such a nonlinear

expansion is that it guarantees a positive permeability almost surely (a condition which is

di�cult to enforce with a standard truncated Karhunen-Loève or PC expansion).

In general, such random fields are properly described only by means of an infinite

number of random variables, whenever the realizations are slowly varying in space, with

a correlation length comparable to the size of the domain, only a few terms in the above

mentioned expansion are typically needed to describe the random field with su�cient

accuracy. Therefore, for these applications, it is reasonable to limit the analysis to just

a few random variables in the expansion, see e.g. Babuška et al. (2003); Frauenfelder et al.

(2005b).

In this work we focus on elliptic partial di↵erential equations whose coe�cients and

forcing terms are described by a finite dimensional random vector (finite dimensional noise

assumption, cf. Section 1.2), either because the problem itself can be described by a finite

number of random variables or because the input coe�cients are modeled as truncated

random fields. We especially address the situation where the input data are assumed to

depend on a moderately large number of random variables.

The method proposed here, namely an anisotropic Sparse Grid Stochastic Collocation,

extends the isotropic method (Nobile et al., 2006) described in Section 4.4.2 and analyzed

in Section 6.1, which consists of a Galerkin approximation in the space variables and a

collocation, in probability space, on sparse tensor product grids utilizing either Clenshaw-

Curtis or Gaussian abscissas. As a consequence of the collocation approach our technique

naturally lead to the solution of uncoupled deterministic problems, just as in the Monte

Carlo method.

The work Nobile et al. (2006) revealed that the isotropic sparse collocation algorithm

is very e↵ective for problems whose input data depend on a moderate number of random

variables, which “weigh equally” in the solution. For such isotropic situations the displayed

convergence is faster than standard collocation techniques built upon full tensor product

spaces. On the other hand, the convergence rate of the isotropic sparse collocation algorithm

(see Nobile et al. (2006) and Section 6.1) deteriorates for highly anisotropic problems, such

as those appearing when the input random variables come e.g. from Karhunen-Loève -type

truncations of “smooth” random fields. In such cases, a full anisotropic tensor product
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approximation may still be more e↵ective for a small or modest number of random variables.

However, if the number of random variables is large, the construction of the full tensor

product spaces becomes infeasible, since the dimension of the approximating space grows

exponentially fast with respect to the number of random variables in the problem.

The main contribution of this work is to propose and analyze the use of anisotropic

sparse tensor product spaces constructed from a weighted Smolyak interpolant with suitable

abscissas. This approach is particularly attractive in the case of truncated expansions of

random fields, since the anisotropy can be tuned to the decay properties of the expansion.

We will present a priori and a posteriori procedures for choosing the anisotropy of the sparse

grids which are extremely e↵ective for the problems under study.

This work provides a rigorous convergence analysis of the fully discrete problem and

demonstrates: (sub)-exponential convergence in the asymptotic regime and algebraic con-

vergence in the pre-asymptotic regime, with respect to the total number of collocation points.

Numerical examples illustrate the theoretical results and are used to compare this approach

with several others, including the standard Monte Carlo. In particular, for moderately large

dimensional problems, the sparse grid approach with properly chosen anisotropy seems to

be very e�cient and superior to all examined methods.

The Monte Carlo method described in Fishman (1996a) is the classical and most popular

approach for approximating expected values of quantities of interest depending on the

solution of a partial di↵erential equations with random inputs. The algorithm approximates

the desired expectation by a sample average of independent identically distributed (iid)

realizations. When solving partial di↵erential equations with random inputs, this method

implies the solution on one deterministic di↵erential equation for each realization of the

input parameters. This makes the method simple to implement, allows for maximal code

reusability and it is straightforward to parallelize. Its numerical error is approximately

O(1/
p

M), where M is the number of realizations. The advantage of utilizing this approach

is that the rate does not deteriorate with respect to the number of random variables in the

problem, making the method very attractive for problems with large dimensional random

inputs. On the other hand, when solving large-scale applications, the exponent 1/2 in the rate

of convergence generates a tremendous amount of computational work required to achieve

accurate solutions. Other ensemble based methods like Quasi Monte Carlo, Latin Hypercube

Sampling, etc. (see e.g. Niederreiter (1992); Helton and Davis (2003) and references therein),
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have been devised to produce faster convergence, O(log(M)r/M), where the coe�cient r > 0

becomes larger with the dimension of the random input. We explore alternative methods that

obtain faster convergence rates, exploiting the high regularity that the solution of elliptic

PDEs may have with respect to the random input, while preserving the implementation

advantages of ensemble-based methods.

In the last few years, other approaches have been proposed, which in certain situations

feature a much faster convergence rate. We mention, among others, the Spectral Galerkin

method (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002a; Babuška et al., 2004b,

2005d; Frauenfelder et al., 2005b; Matthies and Keese, 2005; Le Mâıtre et al., 2004b;

Roman and Sarkis, 2006), Stochastic Collocation (Babuška et al., 2005c; Tatang, 1995;

Mathelin et al., 2005; Xiu and Hesthaven, 2005), perturbation methods or Neumann

expansions (Gaudagnini and Neumann, 1999; Winter and Tartakovsky, 2002; Babuška and

Chatzipantelidis, 2002a; Karniadakis et al., 2005; Todor, 2005).

A non-ensemble-based substitute for the Monte Carlo method is the so called Spectral

Galerkin method, see e.g. Ghanem and Spanos (1991). It employs standard approximations

in space (finite elements, finite volumes, spectral or h-p finite elements, etc.) and polynomial

approximation in the probability domain, either by full polynomial spaces, see Xiu and

Karniadakis (2002a); Matthies and Keese (2005); Ghanem (1999), tensor product polynomial

spaces, see Babuška et al. (2004b); Frauenfelder et al. (2005b); Roman and Sarkis (2006)

or piecewise polynomial spaces, see Babuška et al. (2004b); Le Mâıtre et al. (2004b). This

family of methods exploit the regularity of the solution to acquire faster convergence rates.

However, in general, this technique requires solving a system of equations that couples all

degrees of freedom in the approximation to the stochastic solution.

A new numerical technique, which has gained much attention recently by the computa-

tional community is Stochastic Collocation, which can be based either on full or sparse tensor

product approximation spaces (Babuška et al., 2005c; Ganapathysubramanian and Zabaras,

2006; Nobile et al., 2006; Mathelin et al., 2005; Xiu and Hesthaven, 2005). As shown in

Babuška et al. (2005c), Stochastic Collocation essentially preserves the fast convergence of

the Spectral Galerkin method, even coinciding in particular cases, while maintaining an

ensemble-based approach, just as Monte Carlo. In particular, in the work Babuška et al.

(2005c) proposed a Stochastic Collocation/Finite Element method based on standard finite

element approximations in space and a collocation on a tensor grid built upon the zeros of
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orthogonal polynomials with respect to the joint probability density function of the input

random variables. It was shown that for an elliptic PDE the error converges exponentially fast

with respect to the number of points employed in each probability direction. Furthermore,

even in presence of input data which depend nonlinearly on the driving random variables,

the Stochastic Collocation can be easily implemented and leads naturally to the solution of

uncoupled deterministic problems as for the Monte Carlo method. It can also treat e�ciently

the case of non independent random variables with the introduction of an auxiliary density

and handle for instance cases with lognormal di↵usivity coe�cient, which is not bounded in

⌦⇥D but that has bounded realizations.

Hence, Stochastic collocation seems to be an ideal method for computing realistic

statistics from solutions of PDEs with random input data, but the challenge comes when

solving problems with a relatively large number of input random variables. Therefore,

our goal is investigating variants of this procedure to attain highly accurate solutions

while reducing the curse of dimensionality. To extend the applicability of the collocation

method to cases with large dimensional random inputs, several sparse-approximation-based

methods have been recently explored (Xiu and Hesthaven, 2005; Nobile et al., 2006, 2007;

Ganapathysubramanian and Zabaras, 2006). Aligned with this research e↵ort, the main

contribution of this work is to propose and analyze a novel anisotropic stochastic collocation

method that is based on a weighted version of the Smolyak algorithm. As our numerical

and theoretical results indicate that this method seems very promising and worth exploring

further, both from the implementation and the theoretical point of view.

The outline of this work is the following: in Chapter 1 we introduce the mathematical

problem and the main notation used throughout. Here we also state assumptions on the

parameterization of the random inputs, which is useful when later transforming the original

stochastic problem into a deterministic parametric one, and on the problem solution’s

regularity, which is used to later prove the error estimates in Chapter 6.

In Chapters 2 and 3 we focus on applications to both linear and nonlinear elliptic PDEs

with random input data respectively. The main ideas here are to exhibit the well-posedness of

the PDEs under study and to verify the assumptions from Chapter 1 in a particular setting,

showing that they are justified and that one can extend them to a variety of problems.

In Chapter 4 we introduce the approximation spaces and provide an overview of the

before mentioned numerical procedures used to solve such problems. If the number of random
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variables is moderately large, we motivate the consideration of sparse tensor product spaces

as first proposed in Smolyak (1963) and further investigated by, e.g. Gerstner and Griebel

(1998a); Barthelmann et al. (2000a); Frauenfelder et al. (2005b); Xiu and Hesthaven (2005),

which will be the primary focus of this chapter. The use of sparse grids allows one to reduce

dramatically the number of collocation points, while preserving a high level of accuracy. We

also describe the anisotropic sparse approximation method to be considered as well as the

di↵erent interpolation techniques to be employed.

The Karhunen-Loève representation of the input random fields naturally requires

anisotropic refinements in the probability direction. The most important random variables in

the expansion have the largest influence on the solutions, hence demanding higher polynomial

degrees in those directions. In Chapter 5, we provide a priori and a posteriori procedures

for tuning the anisotropy of our sparse grid method to the problem at hand.

In Chapter 6 we provide a complete error analysis for both the isotropic and anisotropic

sparse grid Stochastic Collocation methods considered, including cases where the sparse

interpolant uses both Clenshaw-Curtis and Gaussian abscissas. This analysis relies on

the regularity of the solution and exploits the behavior of sparse approximations from the

anisotropic Smolyak method. We also address the case where the input random variables

come from suitably truncated expansions of random fields and discuss how the size of the

sparse grid can be algebraically related to the number of random variables retained in the

expansion in order to have a discretization error of the same order as that of the error due

to the truncation of the input random fields.

To demonstrate the e↵ectiveness of the proposed methods in Chapter 7 we present

some numerical results validating our theoretical results. We also include a comparison

of our proposed methods with other ensemble-based approaches, including Monte Carlo. In

Chapter 8 we summarize the significance and achievements of our work.

The complexity of such problems may be decreased further by means of reduced order

modeling (ROM) in physical space. In Chapter 9 we introduce the concept of a reduced

order model for solving related nonlinear SPDEs. It is in this area that we hope to devote

much future research. In particular, the coupling of this technique with beforementioned

sparse approximation techniques is an important approach which is expected to also be a

breakthrough in the area. Finally, in Chapter 10 we o↵er some concluding remarks and

immediate and future directions we intend to investigate.
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CHAPTER 1

PROBLEM SETTING

In this chapter we introduce the mathematical problem and the main notation used

throughout. Here we also state assumptions on the parameterization of the random inputs,

which is useful when later transforming the original stochastic problem into a deterministic

parametric one, and on the problem solution’s regularity, which is used to later prove the

error estimates in Chapter 6.

1.1 Notation and function spaces

We begin by letting Y = (Y
1

(!), Y
2

(!), . . . , YN(!)) be an RN -valued random variable in a

complete probability space (⌦,F , P ). Here ⌦ is the set of outcomes, F ⇢ 2⌦ is the �-algebra

of events and P : F ! [0, 1] is a probability measure. For q 2 [1,1), let (Lq
P (⌦))N be the

set comprising those random variables Y with
NX

i=1

Z
⌦

|Yi(!)|q dP (!) < +1. If Y 2 L1

P (⌦)

we denote its expected value by

E[Y ] =

Z
⌦

Y (!) dP (!) =

Z
RN

y dµY (y),

where µY (y) is the distribution measure for Y , defined for the Borel sets eb 2 B(RN), by

µY (eb) ⌘ P
⇣
Y �1(eb)⌘. If µY is absolutely continuous with respect to the Lebesgue measure

then there exists a density function ⇢ : R ! [0,1) such thatZ
RN

y⇢(y) dy.

Analogously, whenever Y 2 (L2

P (⌦))N , the positive semi-definite covariance matrix of Y,

cov[Y] 2 RN⇥N , is defined by cov[Y](i, j) = cov(Yi, Yj) = E [(Yi � E[Yi]) (Yj � E[Yj])] for

i, j = 1, 2, . . . , N . Moreover, whenever u = u(!, x) is a stochastic function with ! 2 ⌦
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and x 2 D, its covariance function is defined by cov[u]⇥ (x
1

, x
2

) = cov (u(·, x
1

), u(·, x
2

)) for

x
1

, x
2

2 D.

Here, N will denote the set of the nonnegative integer numbers and N
+

will be used for

the set of the positive integer numbers. Let d 2 N
+

and D be a bounded domain of Rd.

with polygonal boundary @D. Denote by |D| =
R

D
1 dx the volume of D, i.e. the Lebesgue

measure of D. For s 2 N and q 2 [1,1], let W s,q(D) be the Sobolev space of functions

having generalized derivatives up to order s in the space Lq(D). Using the standard multi-

index notation, � = (�
1

, . . . , �d) is a d-tuple of non-negative integers, i.e. � 2 Nd, and its

length is given by |�| :=
Pd

i=1

�i. The Sobolev norm of v 2 W s,q(D) will be denoted by

kvkW s,q
(D)

⌘
8<:X

|�|s

Z
D

|@�v|q dx

9=;
1/q

, 1  q < 1

and

kvkW s,1
(D)

⌘ max
|�|s

✓
ess sup

D
|@�v|

◆
.

We note that the space W s,2(D) is a Hilbert space, with inner product (·, ·)W s,2
(D)

defined

by

(v, w)W s,2
(D)

⌘
X
|�|s

(@�v, @�w)L2(D) .

We will write Hs(D) ⌘ W s,2(D), and hence k·kHs
(D)

= k·kW s,2
(D)

and (·, ·)Hs
(D)

=

(·, ·)W s,2
(D)

. We will use the function space H1

0

(D) which is a subspace of H1(D), consisting

of functions which vanish at the boundary of D in the trace sense, and equipped with the

norm kvkH1
0 (D)

=

⇢Z
D

|rv|2 dx

�
1/2

. Whenever s = 0 we will keep the notation Lq(D)

instead of W 0,q(D).

Since stochastic functions have intrinsically di↵erent structure with respect to ! and

with respect to x, the analysis of numerical approximations requires the definition of new

functional spaces. For s 2 N and q 2 [1,1] we define the stochastic Sobolev spaces

L q
P ⌘ Lq

P (⌦; W s,q(D)) and L1
P ⌘ L1P (⌦; W s,q(D)) by:

L q
P :=

⇢
v : ⌦⇥D ! R | v is strongly measurable and

Z
⌦

kv(!, ·)kq
W s,q

(D)

dP (!) < +1
�

and

L1
P :=

⇢
v : ⌦⇥D ! R | v is strongly measurable and P � ess sup

!2⌦

kv(!, ·)k2

W s,q
(D)

< +1
�

.
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We now focus our attention on an elliptic operator L, linear or nonlinear, on a domain

D ⇢ Rd, which depends on some coe�cients a = a(!, x) with x 2 D, ! 2 ⌦. Similarly, the

forcing term f = f(!, x) can be assumed random as well.

Consider the stochastic elliptic boundary value problem: find a random function,

u : ⌦ ⇥ D ! R, such that P -almost everywhere in ⌦, or in other words almost surely

(a.s.), the following equation holds:

L(a)(u) = f in D (1.1.1)

equipped with suitable boundary conditions. Before introducing some assumptions we

denote by W (D) a Banach space of functions v : D ! R and analogously to the above

construction we define, for q 2 [1,1], the stochastic Banach spaces Lq
P ⌘ Lq

P (⌦; W (D)) and

L1P ⌘ L1P (⌦; W (D)) by:

Lq
P :=

⇢
v : ⌦! W (D) | v is strongly measurable and

Z
⌦

kv(!, ·)kq
W (D)

dP (!) < +1
�

and

L1P :=

⇢
v : ⌦! W (D) | v is strongly measurable and P � ess sup

!2⌦

kv(!, ·)k2

W (D)

< +1
�

.

Of particular interest is the space L2

P (⌦; W (D)), consisting of Banach valued functions that

have finite second moments.

We will now make the following assumptions:

A
1

) the solution to (1.1.1) has realizations in the Banach space W (D), i.e. u(·,!) 2 W (D)

almost surely and 8! 2 ⌦

ku(·,!)kW (D)

 Ckf(·,!)kW ⇤
(D)

,

where we denote W ⇤(D) to be the dual space of W (D), and C is a constant independent

of the realization ! 2 ⌦.

A
2

) the forcing term f 2 L2

P (⌦; W ⇤(D)) is such that the solution u is unique and bounded

in L2

P (⌦; W (D)).

Here we give two example problems that are posed in this setting:

12



Example 1.1.1 The linear problem⇢ �r · (a(!, ·)ru(!, ·)) = f(!, ·) in ⌦⇥D,
u(!, ·) = 0 on ⌦⇥ @D,

(1.1.2)

with a(!, ·) uniformly bounded and coercive, i.e.

there exists amin, amax 2 (0, +1) such that P (! 2 ⌦ : a(!, x) 2 [amin, amax]8x 2 D) = 1

and f(!, ·) square integrable with respect to P , i.e.Z
D

E
⇥
f 2

⇤
dx < +1,

satisfies assumptions A
1

and A
2

with W (D) = H1

0

(D) (see Chapter 2 and Babuška et al.

(2005c)).

Example 1.1.2 Similarly, for k 2 N+, the nonlinear problem⇢ �r · (a(!, ·)ru(!, ·)) + u(!, ·)|u(!, ·)|k = f(!, ·) in ⌦⇥D,
u(!, ·) = 0 on ⌦⇥ @D,

(1.1.3)

with a(!, ·) uniformly bounded and coercive and f(!, ·) square integrable with respect to P ,

satisfies assumptions A
1

and A
2

with W (D) = H1

0

(D)\Lk+2(D) (see Chapter 3 and Babuška

et al. (2007)).

1.2 On finite dimensional noise

In some applications, the coe�cient a and the forcing term f appearing in (1.1.1) can be

described by a random vector Y = [Y
1

, . . . , YN ] : ⌦! RN , as in the following examples. In

such cases, we will emphasize such dependence by writing aN and fN .

Example 1.2.1 (Piecewise constant random fields) Let us consider again problem (1.1.2)

where the physical domain D is the union of non-overlapping subdomains Di, i = 1, . . . , N .

We consider a di↵usion coe�cient that is piecewise constant and random on each subdomain,

i.e.

aN(!, x) = amin +
NX

i=1

�i Yi(!)1Di(x).

Here 1Di is the indicator function of the set Di, �i, amin are positive constants, and the

random variables Yi are nonnegative with unit variance.
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In other applications the coe�cients and forcing terms in (1.1.1) may have other types of

spatial variation that is amenable to describe by an expansion. Depending on the decay of

such expansion and the desired accuracy in our computations we may retain just the first N

terms.

Example 1.2.2 (Karhunen-Loève expansion) We recall that any second order random

field g(!, x), with continuous covariance function cov[g] : D ⇥D ! R, can be represented

as an infinite sum of random variables, by means, for instance, of a Karhunen-Loève

expansion (Loève, 1977). To this end, introduce the compact and self-adjoint operator

Tg : L2(D) ! L2(D), which is defined by

Tgv(·) :=

Z
D

cov[g](x, ·) v(x) dx 8v 2 L2(D).

Then, for mutually uncorrelated real random variables {Yi(!)}1i=1

with zero mean and unit

variance, i.e. E[Yi] = 0 and E[YiYj] = �ij for i, j 2 N
+

, the expansion is given by

g(!, x) = E[g](x) +
1X
i=1

p
�i bi(x) Yi(!)

where {�i}1i=1

is a sequence of non-negative decreasing eigenvalues of Tg and {bi}1i=1

the

corresponding sequence of orthonormal eigenfunctions satisfying

Tgbi = �ibi, (bi, bj)L2
(D)

= �ij for i, j 2 N
+

.

In addition, for i = 1, . . ., the mutually uncorrelated real random variables are uniquely

determined by

Yi(!) :=
1p
�i

Z
D

(g(!, x)� E[g](x)) bi(x)dx.

The truncated Karhunen-Loève expansion gN , of the stochastic function g, is defined by

gN(!, x) = E[g](x) +
NX

i=1

p
�i bi(x) Yi(!) 8N 2 N

+

.

Then by Mercer’s theorem (cf. (Riesz and Sz-Nagy, 1990, p. 245)) it follows that

lim
N!1

⇢
sup
D

E
⇥
(g � gN)2

⇤�
= lim

N!1

(
sup
D

 1X
i=N+1

�ib
2

i

!)
= 0.

Observe that the N random variables in (1.2.2), describing the random data, are then

weighted di↵erently due to the decay of the eigen-pairs of the Karhunen-Loève expansion.
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The decay of eigenvalues and eigenvectors has been investigated e.g. in the works Frauenfelder

et al. (2005b) and Todor (2005).

The above examples motivate us to consider problems whose coe�cients are described by

finitely many random variables. Thus, we will seek a random field uN : ⌦ ⇥ D ! R, such

that a.s., the following equation holds:

L(aN)(uN) = fN in D, (1.2.1)

We assume that equation (1.2.1) admits a unique solution uN 2 L2

P (⌦; W (D)). We

then have, by the Doob–Dynkin’s lemma (cf. Øksendal (2003)), that the solution uN of the

stochastic elliptic boundary value problem (1.2.1) can be described by uN = uN(!, x) =

uN(Y
1

(!), . . . , YN(!), x). We underline that the coe�cients aN and fN in (1.2.1) may be

an exact representation of the input data as in Example 1.2.1 or a suitable truncation of

the input data as in Example 1.2.2. In the latter case, the solution uN will also be an

approximation of the exact solution u in (1.1.1) and the truncation error u � uN has to be

properly estimated, see for instance section 6.1.3 and the work (Nobile et al., 2006, Section

4.2).

Remark 1.2.3 (Nonlinear coe�cients) In certain cases, one may need to ensure quali-

tative properties on the coe�cients aN and fN and it may be worth while to describe them

as nonlinear functions of Y. For instance, in Example 1.1.1 one is required to enforce

positiveness on the coe�cient aN(!, x), say aN(!, x) � amin for all x 2 D, a.s. in ⌦. Then

a better choice is to expand log(aN�amin). The following standard transformation guarantees

that the di↵usivity coe�cient is bounded away from zero almost surely

log(aN � amin)(!, x) = b
0

(x) +
X

1nN

p
�nbn(x)Yn(!), (1.2.2)

i.e. one performs a Karhunen-Loève expansion for log(aN �amin), assuming that aN > amin

almost surely. On the other hand, the right hand side of (1.2.1) can be represented as a

truncated Karhunen-Loève expansion

fN(!, x) = c
0

(x) +
X

1nN

p
µncn(x)Yn(!).
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Remark 1.2.4 It is usual to have fN and aN independent, because the forcing terms

and the parameters in the operator L are seldom related. In such a situation we have

aN(Y(!), x) = aN(Ya(!), x) and fN(Y(!), x) = fN(Yf (!), x), with Y = [Ya,Yf ] and

the vectors Ya, Yf are independent.

For this work we denote �n ⌘ Yn(⌦) the image of Yn, where we assume Yn(!) to be

bounded. Without loss of generality we can assume �n = [�1, 1]. We also let �N =
QN

n=1

�n

and assume that the random variables [Y
1

, Y
2

, . . . , Yn] have a joint probability density

function ⇢ : �N ! R
+

, with ⇢ 2 L1(�N). Thus, the goal is to approximate the function

uN = uN(y, x), for any y 2 �N and x 2 D. See also the works Babuška et al. (2005c) and

Babuška et al. (2004b).

Remark 1.2.5 (Unbounded Random Variables) By using a similar approach to the

work Babuška et al. (2005c) we can easily deal with unbounded random variables, such as

Gaussian or exponential ones. For the sake of simplicity in the presentation we focus our

study on bounded random variables only.

1.3 Regularity

Before discussing various collocation techniques and going through the convergence analysis

of such methods, we need to state some regularity assumptions on the data of the problem and

consequent regularity results for the exact solution uN . We will perform a one-dimensional

analysis in each direction yn, n = 1, . . . , N . For this, we introduce the following notation:

�⇤n =
QN

j=1
j 6=n
�j, y⇤n will denote an arbitrary element of �⇤n. We require the solution to problem

(1.1.1) to satisfy the following estimate:

Assumption 1.3.1 For each yn 2 �n, there exists ⌧n > 0 such that the function

uN(yn,y⇤n, x) as a function of yn, uN : �n ! C0(�⇤n; W (D)) admits an analytic extension

u(z,y⇤n, x), z 2 C, in the region of the complex plane

⌃(�n; ⌧n) ⌘ {z 2 C, dist(z,�n)  ⌧n}. (1.3.1)

Moreover, 8z 2 ⌃(�n; ⌧n),

kuN(z)kC0
(�

⇤
n;W (D))

 � (1.3.2)

with � a constant independent of n.
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The previous assumption should be verified for each particular application. In particular,

this has implications on the allowed regularity of the input data, e.g. coe�cients, loads, etc.,

with respect to yn, n = 1, 2, . . . , N , of the SPDE under study. In the next Chapter we recall

some theoretical results and validate Assumption 1.3.1, which was shown in (Babuška et al.,

2005c, Section 3), for the linear problem introduced in Example 1.1.1. The more di�cult

SPDE is analyzed in Chapter 3 where we describe similar theoretical results for the nonlinear

problem described in Example 1.1.3.
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CHAPTER 2

LINEAR ELLIPTIC PDES WITH RANDOM INPUT
DATA

In this chapter we give more details concerning the linear problem described in Example

1.1.1. The main ideas here are to exhibit the well-posedness of the PDEs under study and to

verify the assumptions from Chapter 1 in a particular setting, showing that they are justified

and that one can extend them to a variety of problems. To begin, we describe the following

stochastic Hilbert spaces which were defined in Chapter 1:

• VP = L2

P (⌦; H1

0

(D)) equipped with the norm

kvk2

P =

Z
D

E
⇥|rv|2⇤ dx = E

h
krvk2

L2
(D)

i
= E

h
kvk2

H1
0 (D)

i
• VP,a :=

�
v 2 VP :

R
D

E [a|rv|2] dx < +1 
, equipped with the norm

kvk2

P,a =

Z
D

E
⇥
a|rv|2⇤ dx.

Observe that under the assumptions of Example 1.1.1., the space VP,a is continuously

embedded in VP and

kvkP  1p
amin

kvkP,a.

Moreover, this embedding allows us to control the solution u of problem (1.1.2) in the space

VP .

Problem (1.1.2) can be written in a weak form as: find u 2 VP,a such thatZ
D

E[aru ·rv] dx =

Z
D

E[fv] dx 8 v 2 VP,a. (2.0.1)

A straightforward application of the Lax-Milgram theorem allows one to state the well

posedness of problem (2.0.1); precisely:
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Lemma 2.0.2 Under the assumptions defined in Example 1.1.1, problem (2.0.1) admits an

unique solution u 2 VP,a. Moreover, the following a priori estimates hold

kukH1
0 (D)

 CP

amin

kf(!, ·)kL2
(D)

a.s. (2.0.2)

and

kukL2
P (⌦;H1

0 (D))

 CP

amin

✓Z
D

E[f 2] dx

◆
1/2

. (2.0.3)

In the previous Lemma CP denotes the constant appearing in the Poincaré inequality:

kwkL2
(D)

 CPkrwkL2
(D)

8w 2 H1

0

(D).

Once we have the input random fields described by a finite set of random variables, i.e.

a(!, x) = aN(Y
1

(!), . . . , YN(!), x), and similarly for f(!, x), the “finite dimensional” version

of the stochastic variational formulation (2.0.1) has a “deterministic” equivalent which is the

following: find uN 2 L2

⇢(�
N ; H1

0

(D)) such thatZ
�

N

⇢ (aNruN ,rv)L2
(D)

dy =

Z
�

N

⇢ (fN , v)L2
(D)

dy, 8 v 2 L2

⇢(�
N ; H1

0

(D)). (2.0.4)

Observe that in this work the gradient notation, r, always means di↵erentiation with respect

to x 2 D only, unless otherwise stated. The stochastic boundary value problem (2.0.1) now

becomes a deterministic Dirichlet boundary value problem for an elliptic partial di↵erential

equation with an N�dimensional parameter. For convenience, we consider the solution uN

as a function uN : �N ! H1

0

(D) and we use the notation uN(y) whenever we want to

highlight the dependence on the parameter y. We use similar notations for the coe�cient

aN and the forcing term fN . Then, it can be shown that problem (2.0.1) is equivalent toZ
D

aN(y)ruN(y) ·r� dx =

Z
D

fN(y)� dx, 8� 2 H1

0

(D), ⇢-a.e. in �N . (2.0.5)

For our convenience, we will suppose that the coe�cient aN and the forcing term fN admit

a smooth extension on the ⇢-zero measure sets. Then, equation (2.0.5) can be extended a.e.

in �N with respect to the Lebesgue measure (instead of the measure ⇢dy).

It has been proved in Babuška et al. (2005c) that problem (2.0.5) satisfies the analyticity

result stated in Assumption 1.3.1. For instance, if we take the di↵usivity coe�cient as in

Example 1.2.1 and a deterministic load, the size of the analyticity region is given by

⌧n =
amin

4�n

. (2.0.6)
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On the other hand, if we take the di↵usivity coe�cient as a truncated expansion like in

Remark 1.2.3, then the analyticity region ⌃(�n; ⌧n) is given by

⌧n =
1

4
p
�nkbnkL1(D)

(2.0.7)

Observe that, in the latter case, as
p
�nkbnkL1(D)

! 0 for a regular enough covariance

function, see Frauenfelder et al. (2005b), the analyticity region increases as n increases. This

fact introduces, naturally, an anisotropic behavior with respect to the “direction” n. This

e↵ect will be exploited in the numerical methods proposed in the next sections and is the

subject of ongoing research. In the next Chapter we will extend the theoretical results for the

nonlinear elliptic SPDE described by Example 1.1.2 and explore the complications arising

when analyzing such problems.
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CHAPTER 3

NONLINEAR ELLIPTIC PDES WITH RANDOM
INPUT DATA

In this Chapter we focus our attention to the nonlinear problem described in Example 1.1.2.

Similar to the previous Chapter, the goal here is to first thoroughly examine the theoretical

aspects of the continuous problem, where we exhibit the well-posedness of the nonlinear

SPDE, and to second, verify the assumptions from Chapter 1. Similar to the linear problem

described by Example 1.1.1 and analyzed in Chapter 2 we extend otherwise deterministic

techniques to assist in analyzing these complicated SPDEs.

We open this chapter introducing the following Banach spaces whose definitions can be

found in Chapter 1, where we recall the stochastic Hilbert spaces defined in Chapter 2:

• eVP = VP

T
Lk+2

P

�
⌦; Lk+2(D)

�
equipped with the norm

kvk eP =

✓Z
D

E
⇥|rv|2⇤ dx

◆
1/2

+

✓Z
D

E
⇥|v|k+2

⇤
dx

◆
1/(k+2)

= kvkP +
⇣
E
h
kvkk+2

Lk+2
(D)

i⌘
1/(k+2)

• eVP,a :=
n

v 2 eVP : kvkP,a + E
h
kvkk+2

Lk+2
(D)

i
< +1

o
, equipped with the norm

kvk eP ,a = kvkP,a +
⇣
E
h
kvkk+2

Lk+2
(D)

i⌘
1/(k+2)

.

Similarly to Chapter 2, observe that under the assumptions of Example 1.1.3 the space eVP,a

is continuously embedded in eVP . Finally, we also acquire the embedding eVP in VP . Again,

this allows us to control the solution u of problem (1.1.3) in the space VP .

We begin the analysis with a simple lemma deduced from Young’s inequality:
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Lemma 3.0.3 For some constant C(k) > 0 and v 2 eVP , the norm kvk eP satisfies the

following inequality:

kvk2

eP  2
h
E
⇣
krvk2

L2
(D)

⌘
+ E

⇣
k vkk+2

Lk+2
(D)

⌘
+ C(k)

i
.

Proof. The proof follows as a direct application of Young’s inequality:

kvk2

eP =

"✓Z
D

E
⇥|rv|2⇤ dx

◆
1/2

+

✓Z
D

E
⇥|v|k+2

⇤
dx

◆
1/(k+2)

#
2

 2


E
h
krvk2

L2
(D)

i
+
⇣
E
h
k vkk+2

Lk+2
(D)

i⌘
2/(k+1)

�
 2

h
E
h
krvk2

L2
(D)

i
+ E

h
k vkk+2

Lk+2
(D)

i
+ C(k)

i
where we define

C(k) =
k

k + 2

✓
2

k + 2

◆
1/k

(3.0.1)

for k 2 N+. ⇤
Similarly to Evans (1998) we establish the global existence and uniqueness of a weak

solution to the nonlinear elliptic stochastic partial di↵erential equation (1.1.3). To begin, we

consider the Lagrangian function

L : Rd ⇥ R ⇥ D ! R,

defined by

L (ru, u, x) = E [L(ru(!, ·), u(!, ·), x,!)] , (3.0.2)

where

L(ru(!, x), u(!, x), x,!) =
1

2
a|ru(!, x)|2 +

1

k + 2
|u(!, x)|k+2 � f(!, x) u(!, x), (3.0.3)

and F : eVP,a ! R by

F (u) =

Z
D

L (ru, u, x) dx. (3.0.4)

In what follows we identify conditions on the Lagrangian L which ensure that the functional

F does indeed have a minimizer, at least within the appropriate Banach space eVP,a.
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3.1 Coercivity, lower semicontinuity

In general we will require some hypothesis controlling F (u) for “large” functions u. Certainly

the most e↵ective way to ensure this would be to hypothesize that F (u) “grows rapidly as

|u|!1”. More specifically we have the following lemma:

Lemma 3.1.1 (Coercivity Condition) Assume that L is defined by (3.0.2). Then there

exists constants ✏, � > 0 such that

F (u) � ✏ kuk2

eP � �. (3.1.1)

Futhermore, F (u) ! 1 as kuk eP ! 1. It is customary to call (3.1.1) a coercivity

condition on F (u).

Proof. The proof of the coercivity condition (3.1.1) follows from Lemma 3.0.3 and the

Cauchy-Schwarz, Poincaré and Young inequalities. First we define the constant

eC(k) = min

⇢
amin

4
,

1

k + 2

�
then from (3.0.4) we get

F (u) � amin E
⇣
kruk2

L2
(D)

⌘
+

1

k + 2
E
⇣
k ukk+2

Lk+2
(D)

⌘
� E

⇣
kukL2

(D)

kfkL2
(D)

⌘
� amin

2
E
⇣
kruk2

L2
(D)

⌘
+

1

k + 2
E
⇣
k ukk+2

Lk+2
(D)

⌘
� CP

amin

E
⇣
kfk2

L2
(D)

⌘
� amin

4CP

E
⇣
kuk2

L2
(D)

⌘
� amin

2
E
⇣
kruk2

L2
(D)

⌘
+

1

k + 2
E
⇣
k ukk+2

Lk+2
(D)

⌘
� CP

amin

E
⇣
kfk2

L2
(D)

⌘
� amin

4
E
⇣
kruk2

L2
(D)

⌘
=

amin

4
E
⇣
kruk2

L2
(D)

⌘
+

1

k + 2
E
⇣
k ukk+2

Lk+2
(D)

⌘
� CP

amin

E
⇣
kfk2

L2
(D)

⌘
� eC(k)

h
E
⇣
kruk2

L2
(D)

⌘
+ E

⇣
k ukk+2

Lk+2
(D)

⌘i
� CP

amin

E
⇣
kfk2

L2
(D)

⌘
�

eC(k)

2
kuk2

eP �
CP

amin

E
⇣
kfk2

L2
(D)

⌘
+ 2 C(k)

� ✏ kuk2

eP � �,

where we take

✏ =
eC(k)

2
and � =

CP

amin

E
⇣
kfk2

L2
(D)

⌘
� 2 C(k)
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and C(k) is defined by (3.0.1). ⇤
We next turn our attention to the basic task of finding minimizers for the functional F .

First let us remind the reader of some useful definitions and quote a few theorems that will

prove to be very beneficial to our discussion. We begin with the notion of a function being

weakly lower semicontinuous.

Definition 3.1.2 We say that a function F is (sequentially) weakly lower semicontin-

uous on eVP,a, provided

F (u)  lim inf
k!1

F (uk)

whenever

uk * u weakly in eVP,a

Our goal therefore is to now identify reasonable conditions on the nonlinearity L that ensure

F (·) is weakly lower semicontinuous. It is important to have a large supply of weakly lower

semicontinuous functions. The following is often convenient:

Definition 3.1.3 A function F on eVP,a is called convex if

F (�x + (1� �)y)  �F (x) + (1� �)F (y)

for all x, y 2 eVP,a and � 2 [0, 1].

We then have the following Lemma which will aid in showing F (·) is weakly lower

semicontinuous on eVP,a.

Lemma 3.1.4 The Lagrangian L , defined by (3.0.2), is smooth, bounded below, and in

addition

the mapping (p, u) 7! L (p, u, x) is strictly convex,

for each x 2 D. Therefore, F is strictly convex on eVP,a.

Proof. The fact the L is smooth is trivial to see and the boundedness follows directly from

Lemma 3.1.1. To see the mapping (p, u) 7! L (p, u, x) is strictly convex recall that the sum

of convex functions is also convex and thus, only one term is required to be strictly convex

to enforce the same in the resulting function. It follows immediately from (3.0.2) and (3.0.3)

that the second and final terms of L are convex, but not “strictly so”. Therefore, one is only
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required to show that the mapping p 7! L (p, u, x) is strictly convex to achieve the desired

result. To do so simply define the function f : R ! R by f(p) = p2. Taking � 2 [0, 1] and

following Definition (3.1.3) we get that

f(�x + (1� �)y)� � f(x)� (1� �) f(y) = (�2 � �)x2 + 2�(1� �)xy

+ ((1� �)2 � (1� �))y2

= �(�� 1)(x2 + 2xy + y2)

= �(�� 1)(x + y)2 > 0.

Then replacing p with ru and taking expectations the result follows. ⇤
The convexity in the first argument is fundamental when trying to exhibit the existence

of a minimizer. First we will require F to be weakly lower semicontinuous on eVP,a which

leads us to the following general result, whose proof can be found in (Reed and Simon, 1990,

p.356), pertaining to weakly lower semicontinuous functions on Banach spaces:

Proposition 3.1.5 Let F be a function from a Banach space B to R. Suppose that F
is convex on B, and that F is norm lower semicontinuous. Then F is weakly lower

semicontinuous.

Since our goal is to demonstrate that there exists a minimizer of F in eVP,a, then the

prerequisite will be that F is weakly lower semicontinuous. With Proposition 3.1.5 we

proceed and arrive at the following theorem.

Theorem 3.1.6 Assuming that L satisfies the conditions of Lemma 3.1.4, then the function

F defined by (3.0.4) is weakly lower semicontinuous on eVP,a.

Proof. The last term is obviously weakly continuous and the second term is weakly lower

semicontinuous by Proposition 3.1.5. As for the first term, let un * u weakly; thenZ
D

a|ru|2 dx = sup
n��(f, aru)L2

(D)

�� : f 2 C1
0

(D), kfkL2
(D)

= 1
o

= sup
n��(r · (af), u)L2

(D)

�� : f 2 C1
0

(D), kfkL2
(D)

= 1
o

 sup
n

lim
n!1

��(r · (af), un)L2
(D)

�� : f 2 C1
0

(D), kfkL2
(D)

= 1
o

= sup
n

lim
n!1

��(f, arun)L2
(D)

�� : f 2 C1
0

(D), kfkL2
(D)

= 1
o

 lim
n!1

inf

Z
D

a|run|2 dx.
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Then taking the expected value yieldsZ
D

E
⇥
a|ru|2⇤ dx  lim

n!1
inf

Z
D

E
⇥
a|run|2

⇤
dx.

We can now conclude that F (·) is weakly lower semicontinuous. ⇤

3.2 Existence and uniqueness of minimizers

We can at last establish that F has a minimizer among all possible functions in eVP,a.

Theorem 3.2.1 (Existence of a minimizer) Assume that L satisfies the conditions of

Lemma 3.1.4 and the coercivity condition (3.1.1), then there exists at least one function

u 2 eVP,a satisfying

F (u) = min
w2eVP,a

F (w).

Proof. Set m := infw2eVP,a
F (w). If m = +1 we are done, and so we henceforth assume m

is finite. Select a minimizing sequence {uk}1k=1

. Then

F (uk) ! m as k !1. (3.2.1)

We would like to show that some subsequence of {uk}1k=1

converges to an actual minimizer.

From (3.2.1) we know that, for all k

m  F (uk) < m +
1

k
 m + 1.

The coercivity condition (3.1.1) guarantees that

F (uk) � ✏ kukk2

eP � �,

and hence, we arrive at the following inequality

kukk2

eP 
1

✏
(m + 1 + �) . (3.2.2)

Since m is finite, we conclude from (3.2.1) and (3.2.2) that

sup
k
kukk eP < 1.

This estimate ensures that {uk}1k=1

is bounded in eVP . Consequently there exists a subse-

quence {ukj}1k=1

⇢ {uk}1k=1

and a function u 2 eVP such that

ukj * u weakly in eVP .
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We assert next that u 2 eVP,a. In view of Theorem 3.1.6 and the coercivity condition (3.1.1)

we have for some constant Ca > 0,

m = lim inf
j!1

F (ukj) � F (u) � Cakuk eP ,a � E
⇣
kukL2

(D)

kfkL2
(D)

⌘
� Cakuk eP ,a �

CP

amin

E
⇣
kfk2

L2
(D)

⌘
� amin

4CP

E
⇣
kuk2

L2
(D)

⌘
.

Therfore, it is easy to see that

kuk eP ,a 
1

Ca

✓
m +

CP

amin

E
⇣
kfk2

L2
(D)

⌘
+

amin

4CP

E
⇣
kuk2

L2
(D)

⌘◆
< +1.

Since u 2 eVP,a then it follows that

F (u) = m = min
w2eVP,a

F (w).

⇤
We turn next to the problem of uniqueness. In general there can be many minimizers,

but Lemma 3.1.4 ensures that this does not happen here, as will be shown next.

Theorem 3.2.2 (Uniqueness of minimizer) Assume that L satisfies the conditions of

Lemma 3.1.4. Then a minimizer u 2 eVP,a of F (·) is unique.

Proof. Assume u, eu 2 eVP,a are both minimizers of F (·) over eVP,a. Then v := u+eu
2

2 eVP,a.

Following from the strict convexity proved in Lemma 3.1.4

F (v) = F

✓
u + eu

2

◆
<

1

2
F (u) +

1

2
F (eu).

Hence, from Theorem 3.2.1 we get that m = infw2eVP,a
F (w) = F (u) = F (eu) which implies

F (v) <
m

2
+

m

2
= m.

Therefore, u = eu for a.e. x 2 D and for a.s. ! 2 ⌦. ⇤

3.3 Weak solutions of a nonlinear stochastic PDE

We wish next to demonstrate that any minimizer u 2 eVP,a of F solves the nonlinear SPDE

(1.1.3) in some suitable sense. Conversely, since the joint map (p, u) 7! L (p, u, x) is convex

for each x then each such solution of (1.1.3) is in fact a minimizer. This does not follow from
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direct calculations since we only know that u 2 eVP,a. We do know that L and its derivatives

satisfy the following growth conditions:

|L (ru, u, x)|  C
�
amax E

⇥|ru|2⇤+ E
⇥|u|k+2

⇤
+ 1

�
(3.3.1)

and also 8<:
|DruL (ru, u, x)|  C (amax E [|ru|])

|DuL (ru, u, x)|  C
�
E
⇥|u|k+1

⇤
+ 1

� (3.3.2)

for some constant C = max
�

1

k+2

, E[f ]
 
. This motivates the following.

Definition 3.3.1 We say u 2 eVP,a is a weak solution of the boundary-value problem (1.1.3)

for the nonlinear stochastic PDE providedZ
D

E [aru ·rv] dx +

Z
D

E
⇥
u |u|kv⇤ dx�

Z
D

E [fv] dx = 0 (3.3.3)

for all v 2 eVP,a.

Theorem 3.3.2 (Solution of the nonlinear stochastic PDE) A solution u 2 eVP,a sat-

isfies

F (u) = min
w2eVP,a

F (w)

if and only if u is a weak solution of the nonlinear stochastic PDE (1.1.3).

Proof. ()). First we assume that u 2 eVP,a satisfies

F (u) = min
w2eVP,a

F (w)

and show that u is a weak solution (1.1.3). We proceed by first di↵erentiating inside the

integrals. Fix v 2 eVP,a and set

i(⌧) := F (u + ⌧v), ⌧ 2 R.

In view of (3.3.1) we see that i(⌧) is finite for all ⌧ . Let ⌧ 6= 0 and write the di↵erence

quotient

i(⌧)� i(0)

⌧
=

Z
D

L (ru + ⌧rv, u + ⌧v, x)�L (ru, u, x)

⌧
dx

=

Z
D

E [L(ru(!, x) + ⌧rv(!, x), u(!, x) + ⌧v(!, x), x,!)]

⌧
dx

�
Z

D

E [L(ru(!, x), u(!, x), x,!)]

⌧
dx

=

Z
D

L⌧ (·, x) dx

(3.3.4)
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where

L⌧ (·, x) =
1

⌧
E [L(ru(·, x) + ⌧rv(·, x), u(·, x) + ⌧v(·, x), x,!)]� E [L(ru(·, x), u(·, x), x,!)]

for a.e. x 2 D. Clearly, when ⌧ ! 0

L⌧ (·, x) ! E [aru(·, x) ·rv(·, x)] + E
⇥
u(·, x) |u(!, ·)|kv(·, x)

⇤� E [f(·, x)v(·, x)] (3.3.5)

for a.e. x 2 D. Furthermore,

L⌧ (·, x) =
1

⌧

Z ⌧

0

d

ds
E [L(ru(·, x) + srv(·, x), u(·, x) + sv(·, x), x,!)] ds

=
1

⌧

Z ⌧

0

�
E [aru(·, x) ·rv(·, x)] + E

⇥
u(·, x) |u(·, x)|kv(·, x)

⇤� E [f(·, x)v(·, x)]
 

ds.

Then since u, v 2 eVP,a, inequalities (3.3.1) and Young’s inequality imply after some

elementary calculations that

|L⌧ (·, x)|  C
�
amax

�
E
⇥|ru|2⇤+ E

⇥|rv|2⇤�+ E
⇥|u|k+2

⇤
+ E

⇥|v|k+2

⇤
+ 1

� 2 L1(D)

for each ⌧ 6= 0. Consequently we may invoke the Dominated Convergence Theorem to

conclude from (3.3.4), (3.3.5) that i0(0) exists and equalsZ
D

E [aru ·rv] dx +

Z
D

E
⇥
u |u|kv⇤ dx�

Z
D

E [fv] dx.

But then since i(·) has a minimum for ⌧ = 0, we know that i0(0) = 0; and thus u is a weak

solution.

((). Now suppose that u 2 eVP,a solves (1.1.3) in the weak sense, i.e.,Z
D

E [aru ·rv] dx +

Z
D

E
⇥
u |u|kv⇤ dx�

Z
D

E [fv] dx = 0 (3.3.6)

for k 2 N+. Select any w 2 eVP,a. Utilizing the convexity of the mapping (p, u) 7! L (p, u, x),

we have

L (ru, u, x) + E [DpL(p, u, x)(q � p)] + E [DuL(p, u, x)(w � u)]  L (q, w, x).

Let p = ru, q = rw and integrate over D:

F (u) +

Z
D

{E [DpL(p, u, x)(rw �ru)] + E [DuL(p, u, x)(w � u)]} dx  F (w)
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which implies

F (u) +

Z
D

�
E [aru ·r(w � u)] + E

⇥
(u|u|k � f)(w � u)

⇤ 
dx  F (w).

Therefore, in view of (1.1.3) the second term on the left is zero, and therefore F (u)  F (w)

for each w 2 eVP,a. ⇤
We finally have enough tools to state the well-posedness of (3.3.3); precisely:

Corollary 3.3.3 The weak form of (1.1.3) defined by (3.3.3) admits a unique solution

u 2 eVP,a, which satisfies the estimates:

kuk2

P 
4CP

a2

min

E
h
kfk2

L2
(D)

i
(3.3.7)

and

E
h
kvkk+2

Lk+2
(D)

i
 (k + 2)

2CP

amin

E
h
kfk2

L2
(D)

i
. (3.3.8)

Furthermore, as before, define

eC(k) = min

⇢
amin

4
,

1

k + 2

�
then u 2 eVP,a satisfies the following:

kuk2

eP 
2eC(k)

✓
CP

amin

E
h
kfk2

L2
(D)

i◆
. (3.3.9)

Proof. The proof of the existence and uniqueness of a solution u 2 eVP,a follows directly from

Theorems (3.2.1), (3.2.2) and (3.3.2). The estimates (3.3.7), (3.3.8) and (3.3.9) follow from

the coercivity condition (3.1.1) derived in Section 3.1. To see this first notice that 0 2 eVP,a

and therefore since u 2 eVP,a is a unique minimizer then

0 = F (0) � F (u) �
eC(k)

2
kuk2

eP �
CP

amin

E
h
kfk2

L2
(D)

i
+ 2 C(k)

�
eC(k)

2
kuk2

eP �
CP

amin

E
h
kfk2

L2
(D)

i
and (3.3.9) follows directly. Also from the coercivity condition (3.1.1) we get that

F (u) � amin

4
E
h
kruk2
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(D)

i
+

1
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E
h
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(D)

i
� CP

amin
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i
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i
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i
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and then (3.3.7) follows. Similarly, from (3.1.1) and using the estimate (3.3.7) we observe

that

F (u) � amin

2
E
h
kruk2

L2
(D)

i
+

1

k + 2
E
h
k ukk+2

Lk+2
(D)

i
� CP

amin

E
h
kfk2

L2
(D)

i
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4CP

E
h
kuk2

L2
(D)

i
� 1

k + 2
E
h
k ukk+2

Lk+2
(D)

i
� CP

amin

E
h
kfk2

L2
(D)

i
� amin

4CP

E
h
kuk2

L2
(D)

i
� 1

k + 2
E
h
k ukk+2

Lk+2
(D)

i
� 2

CP

amin

E
h
kfk2

L2
(D)

i
which implies the estimate (3.3.8) and completes the proof. ⇤

3.4 Analyticity and the deterministic problem

Similarly to Chapter 2, once we have the input random fields described by a finite set of

random variables, i.e. a(!, x) = aN(Y
1

(!), . . . , YN(!), x), and similarly for f(!, x), the “finite

dimensional” version of the stochastic variational formulation (3.3.3) has a “deterministic”

equivalent which is the following: find uN 2 L2

⇢(�
N ; Lk+2(D) \H1

0

(D)) such thatZ
�

N

⇢ (aNruN ,rv)L2
(D)

dy +

Z
�

N

⇢ (uN |uN |k, v)L2
(D)

dy =

Z
�

N

⇢ (fN , v)L2
(D)

dy, (3.4.1)

for all v 2 L2

⇢(�
N ; Lk+2(D)\H1

0

(D)). Furthermore, as in Chapter 2 the nonlinear stochastic

boundary value problem (3.3.3) now becomes a deterministic Dirichlet boundary value prob-

lem for a nonlinear elliptic partial di↵erential equation with an N�dimensional parameter.

Also, we use the notation uN(y) whenever we want to highlight the dependence on the

parameter y and define uN : �N ! Lk+2(D) \ H1

0

(D). Then, problem (3.3.3) is equivalent

to Z
D

aN(y)ruN(y) ·r� dx +

Z
D

uN(y) |uN(y)|k� dx =

Z
D

fN(y)� dx, (3.4.2)

for all � 2 Lk+2(D) \ H1

0

(D), ⇢-a.e. in �N . Recall that we assume that the coe�cient

aN and the forcing term fN admit a smooth extension on the ⇢-zero measure sets. Then,

equation (2.0.5) can be extended a.e. in �N with respect to the Lebesgue measure (instead

of the measure ⇢dy).

As discussed in Section 1.3 Assumption 1.3.1 must be verified for each application. In

particular Assumption 1.3.1 was verified for the linear problem (2.0.5) by Babuška et al.

(2005c) and described in Chapter 2.
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It remains to be shown that the nonlinear problem (3.4.2) also satisfies the regularity

restriction defined by Assumtion 1.3.1. As an initial approach we take k = 1 and restrict our

analysis to the region u � umin > 0 and a2

min � 4C4

P

�
✏�1

✏�5

�
, where ✏ > 5 and CP is defined

by (3.3.7).

With this in mind, problem (3.4.2) is equivalent to the the following: find uN : �N !
W (D) such thatZ

D

aN(y)ruN(y) ·r� dx +

Z
D

(uN(y))2� dx =

Z
D

fN(y)� dx, (3.4.3)

for all � 2 W (D), ⇢-a.e. in �N , where we now take W (D) = L3(D) \ H1

0

(D). The next

result concerns the analyticity of the solution u = uN of (3.4.3) whenever the di↵usivity

coe�cient a = aN and the forcing term f = fN are infinitely di↵erentiable w.r.t. y, under

mild assumptions on the growth of their derivatives in y. With this in mind, we require

several derivatives of the nonlinear function N (u) := u2. The Faá di Bruno’s formula

(di Bruno, 1855) gives an explicit equation for the `-th derivative of the composition N (u).

Namely:

@`
yn

N (u) =
X `!

j
1

! . . . j`!
N (k)(u)

✓
@ynu

1!

◆j1

. . .

 
@`

yn
u

`!

!j`

(3.4.4)

where

j = j
1

+ . . . + j`

and the sum is over all partitions of `, i.e., values of k
1

, . . . , k` such that

j
1

+ 2j
2

+ . . . + `j` = `.

We will perform a one-dimensional analysis in each direction yn, n = 1, . . . , N . For this,

we recall the following notation: �⇤n =
QN

j=1
j 6=n
�j and y⇤n will denote an arbitrary element of

�⇤n. The analyticity result is presented next:
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Theorem 3.4.1 Assume that, for every y = (yn,y⇤n) 2 �N , there exists �n < +1 such that�����@`
yn

a(y)

a(y)

�����
L1(D)

 �`
n`! and

k@`
yn

f(y)kL2
(D)

1 + kf(y)kL2
(D)

 r` �
`
n`!, (3.4.5)

where the constant r` is defined by:

r` =

(
1 if 0  `  2,

M if ` � 3,

and
C2

P
amin

 M  �
✏�5

✏�1

�
amin

2C2
P

, with ✏ > 5 and the constant Cp as in (3.3.7). Then the solution

u(yn,y⇤n, x) to problem (3.4.3), as a function of yn, u : �n ! C0(�⇤n; W (D)), admits an

analytic extension u(z,y⇤n, x), z 2 C, in the region of the complex plane

⌃(�n; ⌧n) ⌘ {z 2 C, dist(z,�n)  ⌧n}. (3.4.6)

with 0 < ⌧n < 1/(✏�n). Moreover, 8z 2 ⌃(�n; ⌧n),

kRe(z) u(z)kC0
(�

⇤
n;W (D))

 e M1/2

p
amin(1� ✏⌧n�n)

�
1 + kfkC0

(�

N
;L2

(D))

�
. (3.4.7)

where the constant e > 1.

Proof. From (3.4.3), in every point y 2 �N , the `-th derivative of u w.r.t yn satisfies the

following:

@`
yn

B(y; u, v) + h@`
yn

N (u), vi = h@`
yn

f(y), vi, 8v 2 L3(D) \H1

0

(D) (3.4.8)

where B is the parametric bilinear form defined by B(y; u, v) =

Z
D

a(y)ru · rv dx and

h·, ·i ⌘ (·, ·)L2
(D)

. Then, for ` � 2, we define

p =

(
`
2

for ` even,
`�1

2

for ` odd,
�k =

(
1

2

for k = `
2

,

1 otherwise,

and from (3.4.4) we get that

h@`
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f, vi =
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v dx.
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This implies thatZ
D
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Z
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and therefore, we conclude that
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By setting the general term R` =
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using the bounds on the derivatives a and f , we will prove that
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)2, 8` � 0. (3.4.10)

First, we will verify the bound (3.4.10) for ` = 0 and ` = 1 since (3.4.9) is only valid for

` � 2 and, hence, these cases must been shown directly. We will prove (3.4.10) for all ` � 2

by induction.

For the case ` = 0, take v := u in (3.4.8) and we arrive at the following:���pa(y)ru
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For the case ` = 1, we utilize (3.4.8) which yields:

h@yna(y)ru,rvi+ ha(y)r@ynu,rvi+ 2hu @ynu, vi = h@ynf(y), vi, (3.4.12)
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and by setting v := @ynu in (3.4.12) we conclude that���pa(y)r@ynu
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which can be equivalently written as
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Hence (3.4.15) holds under that assumption that M � C2
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or equivalently,
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with constant eC > 0. This completes the induction step and therefore, the generic term R`

admits the bound given by (3.4.10). We now get the final estimate on the growth of the

derivatives of u:
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where the series converges for all z 2 C such that |z � yn|  ⌧n < 1/(✏�n). Moreover, in the

ball |z � yn|  ⌧n, we have
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The power series converges for every yn 2 �n, hence, by a continuation argument, the

function u can be extended analytically on the whole region ⌃(�n; ⌧n) and estimate (3.4.7)

follows. ⇤
The following example illustrates the validity of assumption (3.4.5) (Babuška et al.,

2005c).

Example 3.4.2 Let us consider the case where the di↵usivity coe�cient a is expanded in a

linear truncated Karhunen-Loève expansion

a(!, x) = b
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(x) +
NX
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p
�nbn(x)Yn(!),

provided that such expansion guarantees a(!, x) � amin for almost every ! 2 ⌦ and x 2 D

(Schwab and Todor, 2007). In this case we have�����@k
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If we consider, instead, a truncated exponential expansion
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. Hence, both choices fulfill the assumption in Lemma

3.4.1.
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Example 3.4.3 Similarly to the previous case, let us consider a forcing term f of the form

f(!, x) = c
0

(x) +
NX

n=1

cn(x)Yn(!)

where the random variables Yn are Gaussian (either independent or not), and the functions

cn(x) are square integrable for any n = 1, . . . , N . Then, the function f belongs to the space

C0

�(�N ; L2(D)), with weight � defined in (Babuška et al., 2005c, Section 3). Moreover,

k@k
yn

f(y)kL2
(D)

1 + kf(y)kL2
(D)


(
kcnkL2

(D)

for k = 1

0 for k > 1

and we can safely take �n = kcnkL2
(D)

in (3.4.5). Hence, such a forcing term satisfies the

assumptions of Lemma 3.4.1. In this case, though, the solution u is linear with respect to

the random variables Yn (hence, clearly analytic) and our theory is not needed.

As we previously mentioned, Theorem 3.4.1 only discusses the nonlinear case when k = 1.

Moreover, assuming that u � umin > 0 may be di�cult to show in general. This is an area

of extreme interest to us and we intend to pursue several varying approaches in the future,

to prove this result in general. In particular, we are optimistic that borrowing techniques

from abstract nonlinear parabolic theory will assist in validating this result. For example,

the works Lunardi (1987, 2004); Escher and Simonett (2003) prove that the solution to a

fully nonlinear parabolic problem admits an analytic extension in some region of the complex

plane with respect to the parameter t (time). In this setting we can think of the parameter

t as the noise parameter yn 2 �n = [�1, 1] and we can attempt to extend these analyticity

results to our particular problem, described by 3.4.2.

Broadening these abstract theoretical results will open the door to many new appli-

cations. In particular the work of Takáč et al. (1996) proved the analyticity of essentially

bounded solutions to semilinear parabolic systems with applications to the Ginzburg-Landau

equations. It is this direction that we predict this area of study to be headed. This thesis is

just a beginning to many realistic engineering applications which we intend to devote much

future research.

In the next chapter we provide an overview of several numerical methods used to solve

the problems described in this chapter and Chapter 2 and introduce the approximation

spaces used by such techniques. If the number of random variables is moderately large, we
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motivate the consideration of sparse tensor product spaces as first proposed by Smolyak

Smolyak (1963) and further investigated by e.g. Gerstner and Griebel (1998a); Barthelmann

et al. (2000a); Frauenfelder et al. (2005b); Xiu and Hesthaven (2005), which will be the

primary focus of this chapter. The use of sparse grids allows one to reduce dramatically the

number of collocation points, while preserving a high level of accuracy. We also describe

the anisotropic sparse approximation method to be considered as well as the di↵erent

interpolation techniques to be employed.
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CHAPTER 4

AN OVERVIEW OF NUMERICAL METHODS

Depending on the structure of the noise that drives an elliptic SPDE, there are di↵erent

numerical approximations. For example, when the size of the noise is relatively small, a

Neumann expansion around the mean value of the operator of the equation is a popular ap-

proach. It requires only the solution of standard deterministic partial di↵erential equations,

whose number is equal to the number of terms in the expansion. Equivalently, a Taylor

expansion of the solution around its mean value with respect to the noise yields the same

result. Similarly, the work Kleiber and Hien (1992) uses formal Taylor expansions up to

second order of the solution but does not study their convergence properties. Recently, the

work Babuška and Chatzipantelidis (2002b) proposed a perturbation method with successive

approximations. They show that uniform coercivity of the di↵usion coe�cient is su�cient

for the convergence of the method. Other perturbation approaches are discussed in Winter

et al. (2002); Lu and Zhang (2004). The drawback of perturbation methods is their necessary

conditions for convergence. In most of the cases the expansions are formal or, as in Babuška

and Chatzipantelidis (2002b), they rely on rather stringent conditions on the allowed noise

size.

Monte Carlo methods (Fishman, 1996b; Sobol0, 1994) are not restricted to small noise

size. They are both general and simple to code and naturally suited for parallelization.

They generate a set of independent identically distributed (iid) approximations of the

solution by sampling the coe�cients of the equation, using a spatial discretization of the

partial di↵erential equation, e.g. by a Galerkin finite element method. Then, using these

approximations we can compute corresponding sample averages of the desired statistics.

Monte Carlo methods have a rate of convergence that may be considered slow, but the

required computational e↵ort grows only like a polynomial with respect to the number of
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random variables present in the problem. It is worth mentioning that in particular cases

their convergence can be accelerated by variance reduction techniques (Jouini et al., 2001).

The convergence rate of the Monte Carlo method is interpreted in the probabilistic sense

and a practical estimate of its error needs an a posteriori estimate of the variance of the

sampled random variable, which in turn requires an a priori bound on higher statistical

moments, cf. the Berry-Esseen Theorem in Durrett (1996). Moreover, if the probability

density of a random variable is smooth, the convergence rate of the Monte Carlo method for

the approximation of its expected value can be improved (Novak, 1988; Traub and Werschulz,

1998). Quasi Monte Carlo methods (Caflisch, 1-49, Cambridge Univ. Press, 1998; Sobol0,

1998) o↵er a way to get a better convergence rate than the Monte Carlo method, although

this advantage seems to deteriorate in general when the number of random variables present

in the problem becomes too large.

When only the load fN is stochastic, it is also possible to derive deterministic equations

for the statistical moments of the solution. This linear elliptic case was analyzed in Babuška

(1961); Larsen (1986) and more recently in the work Schwab and Todor (2002), where a new

method to solve these equations with optimal complexity is presented.

On the other hand, the works of Deb (2000); Deb et al. (2001b), Ghanem and Red-

Horse (1999); Ghanem and Spanos (1991) and (Xiu and Karniadakis, 2002a) address the

general case where all the coe�cients are stochastic. These approaches transform the

original stochastic problem into a deterministic one with a large dimensional parameter

and they di↵er in the choice of the approximating functional spaces. We refer to them

here as Stochastic Galerkin approaches. The works Deb (2000); Deb et al. (2001b) use finite

elements to approximate the noise dependence of the solution, while Ghanem and Red-Horse

(1999); Ghanem and Spanos (1991) use a formal expansion in terms of Hermite polynomials.

A similar approach with a generalized basis is followed by Xiu and Karniadakis (2002a).

The approximation error in the approach of Deb (2000); Deb et al. (2001b) can be

then bounded in terms of deterministic quantities, as described in Babuška et al. (2004b);

Frauenfelder et al. (2005a). Moreover, this approach combined with the use of double

orthogonal polynomials yields a set of uncoupled “deterministic” problems for its solution,

just as in the Monte Carlo method.

The work Benth and Gjerde (1998a), which developed a related error analysis for elliptic

stochastic di↵erential equations, gives approximation error estimates for functionals of the
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solution. On the other hand, the analysis in Benth and Gjerde (1998a) uses the regularity of

the computed functional together with estimates in negative spaces for the approximation

error in the solution of the SPDE. These negative estimates can, in principle, accommodate

rough solutions; however, they require H2 spatial regularity, an assumption that is not clearly

fulfilled by rough solutions.

Recently, the work Matthies and Keese (2005) proposed Wiener Chaos approximations

for linear and nonlinear elliptic SPDEs. In particular, the convergence of the Wiener Chaos

approximations for linear elliptic SPDEs is addressed. Thanks to Galerkin orthogonality,

such convergence can be achieved by taking su�ciently many terms in the expansion of

the di↵usion coe�cient. Moreover, once this is done the convergence results in Benth

and Gjerde (1998a) apply to the linear case in Matthies and Keese (2005), because the

bilinear form in (2.0.1) is computed exactly. However, the nonlinear case remains without

convergence analysis. Moreover, the proposed numerical methodology by Matthies and

Keese (2005); Xiu and Karniadakis (2002a); Ghanem and Red-Horse (1999); Ghanem and

Spanos (1991) leads to a large system of coupled equations. For such nonlinear problems a

Stochastic Collocation approach will outperform these methods; in terms of both the analytic

convergence results and their numerical implementation. The new resulting methods preserve

the convergence properties of Stochastic Galerkin and at the same time be computationally

e�cient and nonintrusive: they should allow maximum code reusability by relying on

appropriate “samples” of the solution, similarly as in the Monte Carlo method.

The works Babuška et al. (2004b, 2005d); Frauenfelder et al. (2005a) base their analysis

on the Karhunen-Loève expansion of the data. In addition, they assume that the mentioned

expansion for the di↵usivity coe�cient has independent random variables with uniformly

bounded support, an assumption that is not valid in general. In other words, if we proceed

to fit a di↵usion coe�cient by means of a truncated Karhunen-Loève expansion there is no

guarantee that the resulting fit will be coercive. On the other hand, if one fits the log of the

coe�cient then there is no such di�culty.

Even in the case of linear equations, when the di↵usion coe�cient aN(Y
1

(!), . . . , YN(!), x)

is not linear with respect to Yn, for n = 1, . . . , N , the system of linear equations that

defines the stochastic Galerkin approximate solution cannot be decoupled by means of

double orthogonal polynomials (Babuška et al., 2004b). This same phenomena occurs in

the presence of nonlinearities in the elliptic PDE such as problem 1.1.3. It is clear that
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nonlinear Yn-dependence o↵ers good control over the coercivity of aN(Y
1

(!), . . . , YN(!), x)

and also there is a clear motivation for addressing nonlinear problems. At the same time,

we would like to avoid solving large coupled systems as much as possible. This motivates

us to consider stochastic collocation as proposed and analyzed in the work Babuška et al.

(2005a). This method has many advantages, such as:

• leads to uncoupled deterministic problems (also in case of input data which depend

nonlinearly on the random variables),

• treats e�ciently the case of non-independent random variables by introducing an

auxiliary density,

• easily includes the case of random variables with unbounded support (such as Gaussian

or exponential ones), and

• handles without di�culty a di↵usivity coe�cient aN with unbounded second moment.

With this in mind, it is very natural to use this method as a starting point for our research.

The rest of this chapter provides a deeper mathematical background on the numerical

approximation techniques that motivated this work. We also discuss some implementation

issues for each method.

4.1 Approximation spaces

We seek a numerical approximation to the exact solution of (1.2.1) in a suitable finite

dimensional subspace. To describe such a subspace properly, we introduce some standard

approximation subspaces, namely:

• Wh(D) ⇢ W (D) is a standard finite element space of dimension Nh, which contains

continuous piecewise polynomials defined on regular triangulations Th that have a

maximum mesh-spacing parameter h > 0. We suppose that Wh has the following

deterministic approximability property: for a given function ' 2 W (D),

min
v2Wh(D)

k'� vkW (D)

 C(s;') hs, (4.1.1)

where s is a positive integer determined by the smoothness of ' and the degree of the

approximating finite element subspace and C(s;') is independent of h.
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Example 4.1.1 Let D be a convex polygonal domain and W (D) = H1

0

(D). For

piecewise linear finite element subspaces we have, for ' 2 H2(D),

min
v2Wh(D)

k'� vkH1
0 (D)

 c h k'kH2
(D)

.

That is, s = 1 and C(s;') = k'kH2
(D)

, see for example Brenner and Scott (1994).

We will also assume that there exists a finite element operator ⇡h : W (D) ! Wh(D)

with the optimality condition

k'� ⇡h'kW (D)

 C⇡ min
v2Wh(D)

k'� vkW (D)

, 8' 2 W (D), (4.1.2)

where the constant C⇡ is independent of the mesh size h.

• P
p

(�N) ⇢ L2

⇢(�
N) is the span of tensor product polynomials with degree at most

p = (p
1

, . . . , pN) i.e. P
p

(�N) =
NN

n=1

Ppn(�n), with

Ppn(�n) = span(yk
n, k = 0, . . . , pn), n = 1, . . . , N.

Hence the dimension of P
p

(�N) is N
p

=
QN

n=1

(pn + 1).

In the case of the Monte Carlo method applied to the general problem (1.2.1) (see Section

4.2), a suitable approximating space for each sample is just Wh(D) ⇢ W (D). Here we

introduce the notion of a semi-discrete approximation uN
h to the solution uN of (1.2.1).

When considering stochastic Galerkin or Stochastic Collocation, the approximating spaces

may be based on a tensor product space defined by V N
p,h = P

p

(�N)⌦Wh(D).

Another suitable choice is the decomposition of the random domain. See the k�h method

introduced in Babuška et al. (2002, 2004b) or use full polynomial approximation or, more

interestingly, sparse tensor product approximations (see Section 4.4.2 and 4.4.3).

The goal of this research is to extend the e↵orts of Babuška et al. (2005a) where they

consider a full tensor product method for solving linear elliptic PDEs with random input

data to the more computationally e↵ective sparse tensor products. From Chapter 3 it is

obvious that we also want to include the case of a nonlinear elliptic PDE with random input

data in this more practical setting. Throughout this work, special emphasis will be placed

on the choice of approximating spaces and basis so the resulting computational technique is

highly e�cient and is “embarrassingly” parallelizable.
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4.2 Monte Carlo

The standard Monte Carlo Finite Element Method (MCFEM) approximates the expected

value function E[uN(Y
1

(!), Y
2

(!), . . . , YN(!), ·)] by sample averages of independent, identi-

cally distributed (iid) realizations corresponding to sample coe�cient functions, where uN is

the solution of a given PDE, as in, for instance, the problem (1.2.1) . For each realization of

the coe�cients aN and fN , a realization of the approximate solution is computed using the

standard Galerkin finite element method. The stochastic coe�cients depend on the noise

as described in Section 1.2 and for simplicity, we use the notation aN(!, ·) and fN(!, ·),
meaning aN(Y

1

(!), Y
2

(!), . . . , YN(!), ·) and fN(Y
1

(!), Y
2

(!), . . . , YN(!), ·), respectively.

Formulation of the Monte Carlo Finite Element Method (MCFEM):

Step 1. Choose a number of realizations, M 2 N
+

, and a finite element space on D, Wh(D),

as defined in Section 4.1.

Step 2. For each j = 1, . . . ,M , sample iid realizations of the di↵usion aN(!j, ·), the load

fN(!j, ·) and find an approximation uN
h (!j; ·) 2 Wh(D) such that

B(!j; u
N
h (!j; ·),�h) + N (!j; u

N
h (!j; ·),�h) = (fN(!j, ·),�h)L2

(D)

, 8�h 2 Wh(D), (4.2.1)

where B and N are the stochastic bilinear and nonlinear forms.

Example 4.2.1 For the linear problem described in Example 1.1.1 the stochastic forms are

defined by:

8! 2 ⌦ : B(!;�
1

,�
2

) ⌘ (a(!, ·)r�
1

,r�
2

)L2
(D)

, 8�
1

,�
2

2 H1

0

(D).

and

8! 2 ⌦ : N (!;�
1

,�
2

) ⌘ 0, 8�
1

,�
2

2 H1

0

(D).

Example 4.2.2 For the nonlinear problem described in Example 1.1.2 the stochastic forms

are defined by:

8! 2 ⌦ : B(!;�
1

,�
2

) ⌘ (a(!, ·)r�
1

,r�
2

)L2
(D)

, 8�
1

,�
2

2 Lk+2(D) \H1

0

(D).

and

8! 2 ⌦ : N (!;�
1

,�
2

) ⌘ (�
1

|�
1

|k,�
2

)L2
(D)

, 8�
1

,�
2

2 Lk+2(D) \H1

0

(D).

48



Step 3. Approximate E[uN ](·) by the sample average:

E(uN
h ; M) ⌘ 1

M

MX
j=1

uN
h (!j; ·).

Here, we consider only the case where Wh(D) is the same for all realizations, i.e. the

triangulation of D is deterministic. The computational error naturally separates into the

two parts

E[uN ]� E(uN
h ; M) =

�
E
⇥
uN

⇤� E
⇥
uN

h

⇤�
+
�
E[uN

h ]� E(uN
h ; M)

� ⌘ EN
h + EN

h,S. (4.2.2)

Therefore, the size of the space triangulation controls the space discretization error EN
h , while

the number of realizations, M of uN
h , controls the statistical error EN

h,S. Since the convergence

rate with respect to the number of samples is roughly O(1/
p

M) (Babuška et al., 2005d), we

will not pursue this method further in this project. Instead, we will focus on other methods

for approximation.

4.3 Stochastic Galerkin

This method approximates problem (1.2.1) with uN,G
h,p 2 V N

p,h such that

E
h
B(!; uN,G

h,p , v)
i

+ E
h
N (!; uN,G

h,p , v)
i

= E
⇥
(fN , v)L2

(D)

⇤
, 8 v 2 V N

p,h. (4.3.1)

Example 4.3.1 If we examine the linear problem described in Example 1.1.1 then the

approximate solution u = uN,G
h,p satisfiesZ

�

N

⇢ (aNru,rv)L2
(D)

dy =

Z
�

N

⇢ (fN , v)L2
(D)

dy, 8 v 2 V N
p,h. (4.3.2)

Example 4.3.2 Similarly for the nonlinear problem described in Example 1.1.2, the approx-

imate solution u = uN,G
h,p satisfiesZ

�

N

⇢ (aNru,rv)L2
(D)

dy +

Z
�

N

⇢ (u|u|k, v)L2
(D)

, =

Z
�

N

⇢ (fN , v)L2
(D)

dy, (4.3.3)

for all v 2 V N
p,h.

For the linear problem (4.3.2), this approach has been considered by several authors

(Babuška et al., 2002, 2004b; Deb et al., 2001b; Frauenfelder et al., 2005a; Xiu and
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Karniadakis, 2002a; Ghanem and Spanos, 1991; Matthies and Keese, 2005). Observe that, in

general, problem (4.3.2) leads to a fully coupled system of linear equations, whose dimension

is Nh⇥N
p

and demands highly e�cient strategies and parallel computations for its numerical

solution (Le Mâıtre et al., 2003; Elman et al., 2005). Conversely, the Stochastic Collocation

techniques (see e.g. Section 4.4) developed in this work only require the solution of N
p

uncoupled linear systems of dimension Nh, and is fully parallelizable. A similar observation

can be made even in the presence of polynomial nonlinearities, as in problem (1.1.3), where

we now solve N
p

uncoupled nonlinear systems of dimension Nh.

In Babuška et al. (2004b, 2005d) a particular choice of basis functions, double orthogonal

polynomials, for the space P
p

(�N) is proposed. This choice decouples the linear system

given by (4.3.2) in the special case where the di↵usion coe�cient and the forcing term are

multilinear combinations of the random variables Yn(!), for n = 1, 2, . . . , N (as is the case

if one performs a truncated linear Karhunen-Loève expansion) and the random variables are

independent, i.e. ⇢(y) =
QN

n=1

⇢n(yn). The proposed basis is then obtained by solving the

following eigenvalue problems, for each n = 1, . . . , N ,Z
�n

z kn(z)v(z)⇢n(z) dz = ckn

Z
�n

 kn(z)v(z)⇢n(z) dz, k = 1, . . . , pn + 1.

The eigenvectors  kn are normalized so as to satisfy the propertyZ
�n

 kn(z) jn(z)⇢n(z) dz = �kj,

Z
�n

z kn(z) jn(z)⇢n(z) dz = ckn�kj.

See Babuška et al. (2004b, 2005d) for further details on the double orthogonal basis.

When the di↵usion coe�cient aN(Y, x) is not linear with respect to Yn, for n =

1, 2, . . . , N , the system of linear equations that defines the stochastic Galerkin approximate

solution cannot be decoupled by means of double orthogonal polynomials (Babuška et al.,

2004b). This is also the case when studying the system of nonlinear equations given by

(4.3.3), since this method depends on the linearity of the PDE. It is clear that nonlinear

Yn-dependence o↵ers good control over the coercivity of aN(Y, x). At the same time, we

would like to avoid solving large coupled systems as much as possible. This motivates us to

consider various Stochastic Collocation techniques, described next.
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4.4 Stochastic Collocation techniques

Many authors have independently considered related di↵erent collocation methods for

di↵erential equations with random coe�cients (Tatang, 1995; Mathelin et al., 2005; Xiu

and Hesthaven, 2005). The paper that is the main inspiration for this work (Babuška

et al., 2005a) is the only one that produced convergence rates for the approximate solutions,

accommodating easily non-independent random variables with possibly unbounded support

(such as Gaussian or exponential ones) and easily treats the case where the di↵usivity

coe�cient aN has unbounded second moment. These e↵orts have been extended to higher

dimensional problems in our latest works (Nobile et al., 2006, 2007).

Thus far the analysis has been carried out for linear problems only and for applications

where the input data depend on a relatively small number of random variables. One of

the goals of this work is the extension of the methodology and corresponding convergence

analysis to the class of nonlinear problems presented in Chapter 3. More importantly, our

primary concern is those applications whose input data carry a large amount of uncertainty,

and therefore, depend on a large number of random variables.

With this in mind, the Stochastic collocation method entails the sampling of approximate

values ⇡huN(yk) = uN
h (yk) 2 Wh(D), to the solution uN of (1.2.1) on a suitable set of abscissas

yk 2 �N .

Example 4.4.1 If we examine the linear PDE for example, then we introduce the semi-

discrete approximation uN
h : �N ! Wh(D), obtained by projecting equation (2.0.5) onto the

subspace Wh(D), for each y 2 �N , i.e.Z
D

aN(y)ruN
h (y) ·r�h dx =

Z
D

fN(y)�h dx, 8�h 2 Wh(D), for a.e. y 2 �N . (4.4.1)

Example 4.4.2 Similarly for the nonlinear PDE defined by Example 1.1.2, the semi-discrete

approximation uN
h satisfies:Z

D

aN(y)ruN
h (y) ·r�h dx +

Z
D

uN
h (y) |uh

N(y)|k�h dx

Z
D

fN(y)�h dx, (4.4.2)

for all �h 2 Wh(D), for a.e. y 2 �N .

Notice that the finite element functions uN
h (y) described in Examples 4.4.1 and 4.4.2 satisfy

the optimality condition (4.1.2), for all y 2 �N .
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Then the construction of a fully discrete approximation, uN
h,p 2 C0(�N ; Wh(D)), is based

on a suitable interpolation of the sampled values. That is

uN
h,p(y, ·) =

X
k

uN
h (yk, ·)lpk (y), (4.4.3)

where, for instance, the functions lpk can be taken as the Lagrange polynomials (see Section

4.4.1, 4.4.2 and 4.4.3). This formulation can be used to compute the mean value or variance

of u, as:

E[u] ⇡ uN
h ⌘

X
k

uN
h (yk, ·)

Z
�

N

lpk (y)⇢(y)dy

and

Var[u] ⇡
X

k

�
uN

h (yk, ·)
�
2

Z
�

N

lpk (y)⇢(y)dy � �
uN

h

�
2

.

Several choices are possible for the interpolation points. We will discuss two of them,

namely Clenshaw-Curtis and Gaussian in Sections 4.4.4 and 4.4.5 respectively. See the work

Trefethen (2006) for an insightful comparison between these two choices. Regardless of the

choice of interpolating knots, the interpolation can be constructed by using either full tensor

product polynomials, see Section 4.4.1, or the space of sparse polynomials, see Sections 4.4.2

and 4.4.3.

4.4.1 Full tensor product interpolation

In this Section we briefly recall interpolation based on Lagrange polynomials. Let i 2 N
+

and {yi
1

, . . . , yi
mi
} ⇢ [�1, 1] be a sequence of abscissas for Lagrange interpolation on [�1, 1].

For u 2 C0(�1; W (D)) and N = 1 we introduce a sequence of one-dimensional Lagrange

interpolation operators U i : C0(�1; W (D)) ! Vmi(�
1; W (D))

U i(u)(y) =
miX
j=1

u(yi
j) · lij(y), 8u 2 C0(�1; W (D)), (4.4.4)

where lij 2 Pmi�1

(�1) are Lagrange polynomials of degree pi = mi � 1 and

Vm(�1; W (D)) =

(
v 2 C0(�1; W (D)) : v(y, x) =

mX
k=1

evk(x)lk(y), {evk}m
k=1

2 W (D)

)
.

Here of course we have, for i 2 N
+

,

lij(y) =
miY
k=1
k 6=j

(y � yi
k)

(yi
j � yi

k)
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and formula (4.4.4) reproduces exactly all polynomials of degree less than mi. Now, in the

multivariate case N > 1, for each u 2 C0(�N ; W (D)) and the multi-index i = (i
1

, . . . , iN) 2
NN

+

we define the full tensor product interpolation formulas

IN
i

u(y) :=
�
U i1 ⌦ · · ·⌦U iN

�
(u)(y) =

mi1X
j1=1

· · ·
miNX
jN=1

u
�
yi1

j1
, . . . , yiN

jN

� · �li1j1 ⌦ · · ·⌦ liNjN

�
.

(4.4.5)

Clearly, the above product needs (mi1 · · ·miN ) function values, sampled on a grid. These

formulas will also be used as the building blocks for the Smolyak method, described next.

4.4.2 The isotropic Smolyak method

Here we follow closely the works Novak and Ritter (1996); Gerstner and Griebel (1998b);

Novak and Ritter (1999); Novak et al. (1999); Barthelmann et al. (2000a) and describe the

Smolyak isotropic formulas A (w, N). The Smolyak formulas are just linear combinations of

product formulas (4.4.5) with the following key properties: only products with a relatively

small number of knots are used and the linear combination is chosen in such a way that an

interpolation property for N = 1 is preserved for N > 1. With U 0 = 0 and for i 2 N
+

define

�i := U i �U i�1. (4.4.6)

Moreover, for integers w 2 N, we define the sets

X(w, N) :=

(
i 2 NN

+

, i � 1 :
NX

n=1

(in � 1)  w

)

and

Y (w,N) :=

(
i 2 NN

+

, i � 1 : w �N + 1 
NX

n=1

(in � 1)  w

)
and for i 2 X(w, N) or i 2 Y (w,N) we put |i| = i

1

+ · · · + iN . Then the isotropic Smolyak

algorithm is given by

A (w,N) =
X

i2X(w,N)

�
�i1 ⌦ · · ·⌦�iN

�
. (4.4.7)

Equivalently, formula (4.4.7) can be written as (see Wasilkowski and Woźniakowski (1995))

A (w, N) =
X

i2Y (w,N)

(�1)w+N�|i|
✓

N � 1

w + N � |i|
◆
· �U i1 ⌦ · · ·⌦U iN

�
. (4.4.8)

53



33x33 Clenshaw!Curtis Grid ALPHA = [ 1.000000, 1.000000] 0 <= LEVEL <= 5

Figure 4.1: For a finite dimensional �N with N = 2 we plot the full tensor product grid using
the Clenshaw-Curtis abscissas and isotropic Smolyak sparse grids utilizing the Clenshaw-
Curtis abscissas and the Gaussian abscissas for w = 5.

To compute A (w,N)(u), one only needs to know function values on the “sparse grid”

H (w, N) =
[

i2Y (w,N)

�
#i1 ⇥ · · ·⇥ #iN

�
(4.4.9)

where #i =
�
yi

1

, . . . , yi
mi

 ⇢ [�1, 1] denotes the set of points used by U i. Note that the

Smolyak algorithm, as presented in this Section, is isotropic, since all directions are treated

equally. This can be seen from (4.4.7) where the multi-index i 2 NN
+

that determines the

number of sample points in each dimension, in, n = 1, 2, . . . , N is sampled from the set

X(w,N). This ensures that if (i
1

, i
2

, . . . , iN) is a valid index, then any permutation of it is

also a valid index.

Examples of isotropic sparse grids, for N = 2, constructed from the nested Clenshaw-

Curtis abscissas, described in Section 4.4.4, and the non-nested Gaussian abscissas, described

in Section 4.4.5, are shown in Figure 4.1. To see the reduction in function evaluations

we also include a plot of the corresponding full tensor product grid computed from the

Clenshaw-Curtis abscissas. We note that since the Gaussian abscissas and the Clenshaw-

Curtis abscissas tend to accumulate towards the boundary, plots of full tensor product grids

will look superficially the same.

We will next discuss improvements that can be made to further reduce the number of

points used to compute U i by considering an anisotropic version of the method.
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4.4.3 The anisotropic Smolyak method

It was shown in Nobile et al. (2006) that the conventional Smolyak construction is very

e↵ective for problems whose input data depend on a moderate number of random variables,

which “weigh equally” in the solution. Upon the assumption that the solution is analytic with

respect to each stochastic direction we show that for such isotropic situations the displayed

convergence is faster than standard collocation techniques built upon full tensor product

spaces.

On the other hand, the convergence rate deteriorates when we attempt to solve highly

anisotropic problems, such as those appearing when the input random variables come e.g.,

from Karhunen-Loève -type truncations of “smooth” random fields described by Example

1.2.2. In this particular case we can rely on a priori information related to the decay of the

noise coe�cients to develop an anisotropic Smolyak algorithm.

To generalize the traditional sparse grid method with respect to di↵erent stochastic

dimensions we propose an algorithm that considers a di↵erent index set rather than the unit

simplex |i|  w + N . Similar to Garcke and Griebel (2002); Gerstner and Griebel (2003) we

let ↵ = (↵
1

,↵
2

, . . . ,↵N) 2 RN
+

be N -dimensional weight vector for the di↵erent stochastic

dimensions. Furthermore, we define ↵ := min
1nN

↵n and consider the follow general class of

simplicies defined by the index set

X↵(w, N) =

(
i 2 NN

+

, i � 1 :
NX

n=1

(in � 1)↵n  w↵

)
.

The strategy to this approach relies on constructing the weight vector ↵ 2 RN
+

from either a

priori knowledge or a posteriori information. See Chapter 5 respectively for a more detailed

description.

Then, using (4.4.6) we described the anisotropic Smolyak formulas, A↵(w,N), given by

A↵(w, N) =
X

i2X↵(w,N)

�
�i1 ⌦ · · ·⌦�iN

�
(4.4.10)

for w 2 N. Equivalently, (4.4.10) can be written as

A↵(w, N) =
X

i2Y↵(w,N)

c↵(i)
�
U i1 ⌦ · · ·⌦U iN

�
(4.4.11)
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Figure 4.2: For a finite dimensional �N with N = 2 and w = 7 we plot: on the top,
the isotropic Smolyak grid and the anisotropic Smolyak grids with ↵

2

/↵
1

= 3/2 and
↵

2

/↵
1

= 2, utilizing the Clenshaw-Curtis abscissas and the bottom, the corresponding indices
(i

1

, i
2

) 2 X↵(7, 2).

with

c↵(i) :=
X

j2{0,1}N

i+j2X↵(w,N)

(�1)|j|

and

Y↵(w, N) := X↵(w, N) \X↵

✓
w � |↵|

↵
, N

◆
.

Similarly to the isotropic case, to compute A↵(w, N)(u), one only needs to know function

values on the ”sparse grid”

H↵(w, N) =
[

i2Y↵(w,N)

�
#i1 ⇥ · · ·⇥ #iN

�
. (4.4.12)
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We note that the isotropic Smolyak method presented in Section 4.4.2 is a special case of

the anisotropic algorithm. This can be observed by simply taking the components of weight

vector to be equal, i.e. ↵
1

= ↵
2

= · · · = ↵N . In this case formula (4.4.10) is equivalent to

(4.4.7) and it can be easily shown that (4.4.11) reduces to (4.4.8). Finally, in Figure 4.2,

for N = 2 and w = 7, we show anisotropic Smolyak sparse grids utilizing the Clenshaw-

Curtis points described in Section 4.4.4, corresponding to the anisotropy ratio ↵
2

/↵
1

= 1,

↵
2

/↵
1

= 3/2 and ↵
2

/↵
1

= 2 respectively. We also show the indices i 2 X↵(7, 2) that were

used to construct the anisotropic sparse interpolant A↵(7, 2). In accordance with the nested

structure of the Clenshaw-Curtis abscissas, in Figure 4.2 we point out the di↵erence between

active points/indices and previously computed points/indices.

4.4.4 Clenshaw-Curtis formulas

We first suggest to use the Smolyak algorithm based on polynomial interpolation at the

extrema of Chebyshev polynomials. For any choice of mi > 1 these knots are given by

yi
j = � cos

✓
⇡(j � 1)

mi � 1

◆
, j = 1, . . . ,mi. (4.4.13)

In addition, we define yi
1

= 0 if mi = 1. It remains to specify the numbers mi of knots that

are used in formulas U i. In order to obtain nested sets of points, i.e., #i ⇢ #i+1 and thereby

HA (w, N) ⇢ HA (w + 1, N), we choose

m
1

= 1 and mi = 2i�1 + 1, for i > 1. (4.4.14)

For such a choice of mi we arrive at Clenshaw-Curtis formulas, see Clenshaw and Curtis

(1960). It is important to choose m
1

= 1 if we are interested in optimal approximation in

relatively large N , because in all other cases the number of points used by A (w,N) and

A↵(w, N) increases too fast with N .

A variant of the Clenshaw-Curtis formulas are the Filippi formulas in which the abscissas

at the boundary of the interval are omitted (Gerstner and Griebel, 1998a). In this case only

the smaller degree mi � 1 of exactness is obtained.

4.4.5 Gaussian formulas

We also propose to apply the Smolyak formulas based on polynomial interpolation at the

zeros of the orthogonal polynomials with respect to a weight ⇢. This naturally leads to
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the Gauss formulas that have a maximum degree of exactness of 2mi � 1. However, these

Gauss-Legendre formulas are in general not nested. Regardless, as in the Clenshaw-Curtis

case, we choose

m
1

= 1 and mi = 2i�1 + 1, for i > 1.

The natural choice of the weight ⇢ should be the probability density of the random variables

Yi(!) for all i. Yet, in the general multivariate case, if the random variables Yi are not

independent, the density ⇢ does not factor across the dimensions, i.e.

⇢(y
1

, . . . , yn) 6=
NY

n=1

⇢n(yn).

To this end, we first introduce an auxiliary probability density function ⇢̂ : �N ! R+ that

can be seen as the joint probability of N independent random variables, i.e. it factorizes as

⇢̂(y
1

, . . . , yn) =
NY

n=1

⇢̂n(yn), 8y 2 �N , and is such that

����⇢⇢̂
����

L1(�

N
)

< 1. (4.4.15)

For each dimension n = 1, . . . , N let the mn Gaussian abscissas be the roots of the mn degree

polynomial that is ⇢̂n-orthogonal to all polynomials of degree mn� 1 on the interval [�1, 1].

The use of sparse approximation techniques seems to be an adequate tool for breaking

the complexity of higher dimensional problems (Nobile et al., 2006; Babuška et al., 2007;

Nobile et al., 2007). In particular, the methods presented in Sections 4.4.2 and 4.4.3 are

very flexible computational tools that are at the same time relatively simple to implement

and have a strong theoretical foundation. It is extremely important that we understand

the computational errors associated with applying our sparse collocation techniques when

solving problem (1.1.1), while utilizing the formulas presented in Sections 4.4.4 and 4.4.5.

The goal of the Chapter 6 will be to settle such matters by providing a detailed error analysis

of the techniques under study. In particular, we will describe how to estimate the rate of

convergence of the isotropic Smolyak method in Section 6.1 and the anisotropic Smolyak

method in Section 6.2. First, in the next chapter we provide a priori and a posteriori

procedures for tuning the anisotropy of our sparse grid method to the problems of interest.
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CHAPTER 5

SELECTION OF THE WEIGHTS FOR
ANISOTROPIC SMOLYAK

The ability to evaluate the stochastic dimensions di↵erently is a necessity since many

practical problems exhibit highly anisotropic behavior. The rationale behind our anisotropic

sparse grid approach is based on an examination of the total error

" = kuN � IN
p

uNkL2
⇢(�

N
;W (D))

, (5.0.1)

produced by anisotropic full tensor product polynomial interpolation on Gaussian abscissas.

Each stochastic dimension contributes to this total error. When the total error is divided

equally among the random variables our earlier work Nobile et al. (2006) revealed that the

isotropic Smolyak method, described in Section 4.4.2, displays a fast convergence rate and

is very e↵ective in considerably reducing the curse of dimensionality. We are also able to

treat e↵ectively problems that depend on a moderately large number of random variables,

while keeping a high level of accuracy. When the error is dominated by certain directions

we utilize the anisotropic Smolyak algorithm, described in Section 4.4.3 which combines an

optimal treatment of the anisotropy of the problem while minimizing function evaluations

via the use of sparse grids. Similar to an adaptive interpolation method, we place more

points in the directions with the largest contribution to the total error.

The main idea is to link the ↵n coe�cients with the rate of exponential convergence in

the corresponding direction, which for functions that satisfy Assumption 1.3.1 is described

by the following Lemma, whose proof can be found in (Babuška et al., 2005c, Lemma 7) and

which is an immediate extension of the result given in (DeVore and Lorentz, 1993, Chapter

7, Section 8):
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Lemma 5.0.3 Given a function v 2 C0(�1; W (D)) which admits an analytic extension in

the region of the complex plane ⌃(�1; ⌧) = {z 2 C, dist(z,�1)  ⌧} for some ⌧ > 0, there

holds

Emi ⌘ min
w2Vmi

kv � wkC0
(�

1
;W (D))

 2

%� 1
e�mi log(%) max

z2⌃(�

1
;⌧)

kv(z)k
W (D)

where

1 < % =
2⌧

|�1| +

s
1 +

4⌧ 2

|�1|2 . (5.0.2)

Remark 5.0.4 (Approximation with unbounded random variables) A related result

with weighted norms holds for unbounded random variables whose probability density decays

as the Gaussian density at infinity, see Babuška et al. (2005c).

In the multidimensional case, the value of ⌧n will depend, in general, on the direction n,

cf. (2.0.7) and (2.0.6). As a consequence of this variation and (5.0.2) the decay coe�cients

%n will also depend on the direction, n = 1, . . . , N . We now assume that we know positive

numbers 0 < g(n), n = 1, . . . , N , such that

%n � eg(n). (5.0.3)

Then, we will choose the anisotropic Smolyak weights as

↵n = g(n) for all n = 1, 2, . . . , N. (5.0.4)

On what follows we will use the notations

↵ = g = min
1nN

{g(n)} and G (N) =
NX

n=1

g(n). (5.0.5)

Observe that we have now transformed the problem of choosing ↵ into the one of estimating

the decay coe�cients g = (g(1), . . . , g(N)).

Remark 5.0.5 (Optimality of ↵ choice) As will be seen in Remark 6.2.12 the choice

↵ = g is optimal with respect to the error bound derived in Theorem 6.2.7.

In principle, it is possible to consider two kinds of estimation strategies. The first uses a priori

knowledge, while in the second approach we use a posteriori information from computations,

i.e. we fit the values of g. The remainder of the Section will explain the choice of ↵ 2 RN
+

,

for the construction of set of indices i 2 X↵(w, N), using these procedures.
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5.1 A priori selection

The estimation of the ↵ = g 2 RN
+

coe�cients can be achieved using a priori information,

i.e. by estimating first suitable values for ⌧n, then using (5.0.2), and taking g(n) as in (5.0.3),

namely

g(n) = log

 
2⌧n
|�n| +

s
1 +

4⌧n2

|�n|2
!

,

for n = 1, 2, . . . , N . For the numerical example 7.0.1 described in Chapter 7 we have used

the simpler and more conservative relation

g(n) = log

✓
1 +

2⌧n
|�n|

◆
. (5.1.1)

On the other hand, a priori estimates for ⌧n can be derived for certain classes of problems,

see for instance the linear problem (2.0.1) and the estimates (2.0.7) and (2.0.6). In Chapter

7 we implement numerically this a priori choice of ↵ = g 2 RN
+

for the construction of the

general simplices i 2 X↵(w, N) when solving problem (1.1.2).

In some practical applications it may not be possible to sharply estimate the vector

g using a priori information. Therefore, in the next Section we propose a computational

alternative.

5.2 A posteriori selection

In order to explain the a posteriori estimation of ↵ = g 2 RN
+

for the construction of the

general simplices i 2 X↵(w,N) we will describe particular cases with N = 11 and focus on

both an isotropic and highly anisotropic version of the linear example (7.0.1) described in

Chapter 7, corresponding to Lc = 1/64 and Lc = 1/2 respectively. To compute the weight

factor ↵n for each stochastic direction n = 1, 2, . . . , N , we inductively utilize Lemma 5.0.3

and investigate the interpolation error, given by (5.0.1).

To analyze this term we employ a one-dimensional argument. We first pass from the

norm L2

⇢ to L2

⇢̂:

kuN � IN
p

uNkL2
⇢(�

N
;W (D))


����⇢⇢̂

����1/2

L1(�)

kuN � IN
p

uNkL2
⇢̂(�

N
;W (D))

.

Here we adopt the same notation as in Section 1.3, namely we indicate with •n a quantity

relative to the direction yn and •⇤n the analogous quantity relative to all other directions yj,
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j 6= n. We focus on the first direction y
1

and define the Banach space V = L2

⇢̂⇤1
(�⇤

1

; W (D)).

Furthermore, we now describe an interpolation operator I1

p1
: C0(�1; V ) ! L2

⇢̂1
(�1; V ),

I1

p1
v(y

1

, y⇤
1

, x) =
m1X
k=1

v(y1

k, y
⇤
1

, x) l1k(y1

),

where we recall that mn = pn+1, 8n = 1, 2, . . . , N and the notation from Section 4.4.1. Then,

the global interpolant IN
p

can be written as the composition of two interpolation operators

IN
p

= I1

p1
� I(1)

p

where I(1)

p

is the interpolation operator in all directions y
2

, y
3

, . . . , yN except

y
1

, defined by I(1)

p

: C0(�⇤
1

; W (D)) ! L2

⇢̂⇤1
(�⇤

1

; W (D)). We then have

kuN � IpuNkL2
⇢̂(�

N
;W (D))

 kuN � I1

p1
uNkL2

⇢̂(�

N
;W (D))| {z }

(I)

+ kI1

p1
(uN � I(1)

p

uN)kL2
⇢̂(�

N
;W (D))| {z }

(II)

Let us bound the first term given by (I). We think of u as a function of y
1

with values in

the Banach space V , u 2 L2

⇢̂1
(�1; V ). By the construction of the auxiliary function ⇢̂ given

in (4.4.15), the following inclusion holds:

C0(�1; V ) ⇢ L2

⇢̂1
(�1; V ).

We also know from (Babuška et al., 2005c, Lemma 5) that the interpolation operator I1

p1
is

continuous as an operator from C0(�1; V ) with values in L2

⇢̂1
(�1; V ). In particular, we can

estimate

(I) = kuN � I1

p1
uNkL2

⇢̂1
(�

1
;V )

 C
2

inf
w2Vm1 (�

1
;V )

kuN � wkC0
(�

1
;V )

.

To bound the best approximation error in C0(�1; V ), in the case we use Lemma 5.0.3 and

the fact that uN 2 C0(�1; V ), see (Babuška et al., 2005c, Lemma 3). We also require

the analyticity result, for the solution uN , stated in Assumption 1.3.1. Putting everything

together, we can say that

(I)  C%
1

�p1

where the constant C is specified in Lemma 5.0.3. To bound the term (II), we again use

(Babuška et al., 2005c, Lemma 5):

(II)  C
1

kuN � I(1)

p

uNkC0
(�

1
;V )

.

The term on the right hand side is again an interpolation error. So we can bound the

interpolation error in all the other N � 1 directions, uniformly with respect to y
1

(in the
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Figure 5.1: A linear least square approximation to fit log
10

(kE["n]kL2
(D)

) versus pn with "n

defined by (5.2.2). For n = 1, 2, . . . , N = 11 we plot: on the left, the highly anisotropic case
Lc = 1/2 and on the right, the isotropic case Lc = 1/64.

norm C0). We can proceed iteratively, defining an interpolation I2

p2
, bounding the resulting

error in the direction y
2

and so on. Therefore, we arrive at a bound for the total error,

as in (6.1.2). Furthermore, from the above argument we can partition the error in the N

directions, i.e.

kuN � IN
p

uNkL2
⇢(�

N
;W (D))


NX

n=1

"n, (5.2.1)

where, using Lemma 5.0.3, we expect an error decay in the direction n of the form

"n ⇡ dn%n
�pn , for all n = 1, 2, . . . , N. (5.2.2)

Here pn is the number of collocation points in the direction n. In order to compute the

weight vector g = ↵ 2 RN
+

, g ⇡ log(%), we first observe from (5.2.2) that

log
10

("n) ⇡ log
10

(dn)� pn log
10

(%n) ⇡ log
10

(dn)� pn log
10

(e)g(n).

Therefore, if we plot log
10

("n) versus pn for each stochastic dimension n = 1, 2, . . . , N

and use a linear least squares approximation to fit the data, the slope of each line will give an

estimate of g(n). When solving problem (7.0.1), for the cases Lc = 1/2 and 1/64, we employ

the same finite element space as in Chapter 7 and we approximate E["n] in the n-th direction,

corresponding to a multi index p = (1, 1, . . . , pn, 1, . . . , 1) by E["n] ⇡ E[uN
h,p � uN

h,ep], with
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Table 5.1: The N = 11 values of the function g(n) = ↵n constructed from a posteriori
information. The values g(n), n = 1, 2, . . . , N are the slopes of N linear least squares fits to
the error of an univariate anisotropic method when solving problem (7.0.1) with correlation
lengths Lc = 1/2 and 1/64.

g(1) g(2) = g(3) g(4) = g(5) g(6) = g(7) g(8) = g(9) g(10) = g(11)

Lc = 1/2 1.7 1.6 2.1 3.3 5.3 7.4
Lc = 1/64 3.1 2.4 2.5 2.4 2.5 2.4

ep = (1, 1, . . . , pn +1, 1, . . . , 1). The computational results for the L2(D) approximation error

in the expected value, E["n], are shown on Figure 5.1.

The results for g(n), n = 1, 2, . . . , N = 11 can be seen in Table 5.1. Table 5.1 reveals

that the a posteriori selection of ↵ 2 RN
+

performs well at dictating the behavior of problem

(7.0.1) for the cases Lc = 1/2 and 1/64. In the former case the vector ↵ weighs heavily

in the higher dimensions as opposed to the latter that approximately weighs equally in all

directions. Also, both cases Lc = 1/2 and 1/64, reveal that ↵ = ↵
2

= ↵
3

.

Observe that in general the rate %n also depends on y⇤n 2 �⇤n, i.e. on the values of the

other random variables. Our way to estimate the decay coe�cient g(n) is not conservative

since we only estimate %n at the single point E[y⇤n]. A more conservative estimate will imply

estimating the worst value of y⇤n, i.e. the one that minimizes %n. This may be critical for

nearly singular cases.

Remark 5.2.1 (Applications to piecewise constant random fields) We also comment

that the a posteriori selection of ↵ 2 RN
+

, described above, is not only restricted to random

fields related to the Karhunen-Loève expansion described in Example 1.2.2 but also can be

easily applied in other cases, for instance to the piecewise constant random fields described

in Example 1.2.1.

We finally have a complete description of both the isotropic and anisotropic sparse grid

Stochastic Collocation methods for solving problems such as 1.1.2 and 1.1.3. The next

Chapter will be devoted to analyzing numerical errors for both methods considered, including

cases where the sparse interpolant uses both Clenshaw-Curtis and Gaussian abscissas. In

Section 6.1 we concentrate on analyzing the isotropic Smolyak method, described in Section

4.4.2, while Section 6.2 examines the e↵ects of exploiting the possible underlying anisotropic

behavior using the ↵-weighted version of the Smolyak, described in Section 4.4.3.
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CHAPTER 6

ERROR ANALYSIS

The goal of this chapter is to provide a complete error analysis for both the isotropic and

anisotropic sparse grid Stochastic Collocation methods considered, including cases where

the sparse interpolant utilizes both Clenshaw-Curtis and Gaussian abscissas. The isotropic

case, described in Section 4.4.2, is analyzed in Section 6.1 while the examination of the

anisotropic method, described in Section 4.4.3, can be found in Section 6.2. The analysis

relies on the regularity of the solution and exploits the behavior of sparse approximations

from the anisotropic Smolyak method. We also address the case where the input random

variables come from suitably truncated expansions of random fields and discuss how the size

of the sparse grid can be algebraically related to the number of random variables retained in

the expansion in order to have a discretization error of the same order as that of the error

due to the truncation of the input random fields.

Collocation methods can be used to approximate the solution uN 2 C0(�N ; W (D))

using finitely many function values. By Assumption 1.3.1, uN admits an analytic extension.

Further, each function value will be computed by means of a finite element technique. In

general, the semi-dicrete finite element solution ⇡huN also satisfies the regularity assumption

1.3.1. In particular, this is obviously true for the linear problem presented in Chapter 2. We

now define the numerical approximation uN
h,p = A↵(w,N)⇡huN . Our aim is to give a priori

estimates for the total error

✏ = u� uN
h,p = u�A↵(w, N)⇡huN

where the operator A↵(w, N) is either the isotropic or anisotropic Smolyak sparse interpolant

described in Sections 4.4.2 and 4.4.3 respectively. We remind the reader that anisotropic

Smolyak algorithm defined (4.4.10) or (4.4.11) is equivalent to the isotropic Smolyak
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algorithm given by (4.4.7) or (4.4.8) respectively, when the components of the weight ↵

are equal, i.e. ↵
1

= ↵
2

= · · · = ↵N . We also define ⇡h to be the finite element projection

operator described by (4.1.2). We will investigate the error

ku�A↵(w,N)⇡huNk  ku� uNk| {z }
(I)

+ kuN � ⇡huNk| {z }
(II)

+ k⇡huN �A↵(w, N)⇡huNk| {z }
(III)

(6.0.1)

evaluated in the natural norm L2

P (⌦; W (D)). Since the error functions in (II) and (III)

are finite dimensional the natural norm is equivalent to L2

⇢(�
N ; W (D)). By controlling the

error in this natural norm we also control the error in the expected value of the solution, for

example: ��E[u� uN
h,p]

��
W (D)

 E
h��u� uN

h,p

��
W (D)

i
 ��u� uN

h,p

��
L2

P (⌦;W (D))

.

The quantity (I) controls the truncation error for the case where the input data aN and fN

are suitable truncations of random fields. This contribution to the total error was considered

in (Nobile et al., 2006, Section 4.2) and seen in Section 6.1.3. The quantity (I) is otherwise

zero if the representation of aN and fN is exact, as in Example 1.2.1. The second term

(II) controls the convergence with respect to h, i.e. the finite element error, which will be

dictated by standard approximability properties of the finite element space Wh(D), given by

(4.1.1), and the regularity in space of the solution u, see e.g. Ciarlet (1978); Brenner and

Scott (1994). Specifically,

kuN � ⇡huNkL2
⇢(�

N
;W (D))

 C⇡hs

✓Z
�

N

C(s; u)2⇢(y) dy

◆
1/2

by the finite element approximability property (4.1.1).

The full tensor product convergence results are given by (Babuška et al., 2005c, Theorem

1) while the sparse tensor product convergence results for the isotropic and anisotropic

Smolyak method can be found in our work, (Nobile et al., 2006, Theorem 4.6 and 4.10) and

(Nobile et al., 2007, Theorem 5.7 and 5.13). Therefore, we devote the next two Sections to

an extensive explanation of these major results where we will only concern ourselves with

the convergence results when implementing the isotropic and anisotropic Smolyak algorithms

described in Sections 4.4.2 and 4.4.3 respectively. Namely, our primary concern will be to

analyze the interpolation error (III)

k⇡huN �A↵(w, N)⇡huNkL2
⇢(�

N
;W (D))

, (6.0.2)
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for both the Clenshaw-Curtis and Gaussian versions of the two sparse grid algorithms.

Under the very reasonable assumption that the semi-discrete finite element solution

⇡huN admits an analytic extension as described in Assumption 1.3.1 with the same

analyticity region as for uN , the behavior of the error (6.0.2) will be analogous to

kuN �A↵(w, N)uNkL2
⇢(�

N
;W (D))

. For this reason, in the next sections we will analyze the

latter.

6.1 Analysis of the sparse interpolation error:
The isotropic case

Similar to the approach described in Chapter 5, the technique used to get error bounds for

the isotropic Smolyak’s algorithm for N > 1 utilizes those for the case N = 1. Therefore,

we first address the case N = 1. Let us first recall the best approximation error, described

in Lemma 5.0.3, for a function v : �1 ! W (D) which admits an analytic extension in the

region ⌃(�1; ⌧) = {z 2 C, dist(z,�) < ⌧} of the complex plane, for some ⌧ > 0. We will

still denote the extension by v; in this case, ⌧ represents the distance between �1 ⇢ R and

the nearest singularity of v(z) in the complex plane. We again recall that �1 = [�1, 1] and

hence bounded and remind the reader that we can easily extend the analysis of this chapter

to include the case of unbounded random variables following Remark 5.0.4.

In the multidimensional case, the size of the analyticity region will depend, in general,

on the direction n, for n = 1, 2, . . . , N , and will be denoted by ⌧n, as in (2.0.7). The same

holds for the decay coe�cient %n. In what follows, we set

% ⌘ min
n
%n. (6.1.1)

As stated in Section 4.4.2, the Smolyak construction treats all directions equally and is

therefore an isotropic algorithm. Moreover, the convergence analysis presented in Sections

6.1.1 and 6.1.2 does not exploit possible anisotropic behaviors of problem (1.1.1). Therefore,

we can expect a slower convergence rate for problems that exhibit strong anisotropic e↵ects.

This motivated the development of the anisotropic Smolyak method described in Section

4.4.3 and analyzed in Section 6.2. Also see Chapter 7 where we explore numerically the

consequences of introducing an anisotropy into the model problems described by Examples

1.1.1 and 1.1.2.
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Example 6.1.1 For the linear problem described in Chapter 2 it was shown in Babuška et al.

(2005c) that for a multi-index p = (p
1

, . . . , pN), a tensor product polynomial interpolation

on Gaussian abscissas achieves exponential convergence in each direction Yn and the error

can be bounded as

kuN � IN
p

uNkL2
⇢(�

N
;W (D))

 C
NX

n=1

%n
�pN . (6.1.2)

The constant C in (6.1.2) is independent of N and, using (2.0.7), we have

%n =
2⌧n
|�n| +

s
1 +

4⌧n2

|�n|2

� 1 +
2⌧n
|�n| .

(6.1.3)

where ⌧n can be estimated e.g. as in (2.0.6) and (2.0.7).

For convenience, in the isotropic case only we will let q = w + N , where we recall that

w 2 N. Then, for q � N and i = (i
1

, i
2

, . . . , iN) 2 NN
+

such that |i| = i
1

+ · · · + iN , the

isotropic Smolyak formulas given by (4.4.7) and (4.4.8) can be redefined as:

A (q, N) =
X
|i|q

�
�i1 ⌦ · · ·⌦�iN

�
and

A (q, N) =
X

q�N+1|i|q

(�1)q�|i|
✓

N � 1

q � |i|
◆
· �U i1 ⌦ · · ·⌦U iN

�
.

respectively.

6.1.1 Clenshaw-Curtis isotropic estimates

In this section we develop error estimates for interpolating functions u 2 C0(�N ; W (D)) that

admit an analytic extension as described by Assumption 1.3.1 using the Smolyak formulations

based on the choice (4.4.13) and (4.4.14) described in Section 4.4.4. We remind the reader

that in the global estimate (6.0.1) we need to bound the interpolation error (III) in the

L2

⇢(�
N ; W (D)) norm. Yet, this norm is always bounded by the L1(�N ; W (D)). Namely, for

all v 2 L1(�N ; W (D)) we have

kvkL2
⇢(�

N
;W (D))

 kvkL1(�

N
;W (D))

.
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In our notation the norm k·k1,N is shorthand for k·kL1(�

N
;W (D))

and will be used henceforth.

We also define IN : �N ! �N as the identity operator on an N -dimensional space.

We begin by letting Em be the error of the best approximation to functions u 2
C0(�1; W (D)) by functions w 2 Vm. Similarly to Barthelmann et al. (2000b), since U i

is exact on Vmi�1

we can apply the general formula��u�U i(u)
��
1,1

 Emi�1

(u) · (1 + ⇤mi) (6.1.4)

where ⇤m is the Lebesgue constant for our choice (4.4.13). It is known that

⇤m  2

⇡
log(m� 1) + 1 (6.1.5)

for m � 2, see Dzjadyk and Ivanov (1983).

Using Lemma 5.0.3, the best approximation to functions u 2 C0(�1; W (D)) that admit

an analytic extension as described by Assumption 1.3.1 is bounded by:

Emi(u)  C %�mi (6.1.6)

where C is a constant dependent on ⌧ defined in Lemma 5.0.3. Hence (6.1.4)-(6.1.6) implies��(I
1

�U i)(u)
��
1,1

 C log(mi)%
�mi  C i%�2

i
,��(�i)(u)

��
1,1

=
��(U i �U i�1)(u)

��
1,1

 ��(I
1

�U i)(u)
��
1,1

+
��(I

1

�U i�1)(u)
��
1,1

 E i%�2

i�1
,

for all i 2 N
+

with positive constants C and E depending on u but not on i.

Theorem 6.1.2 For functions u 2 L2

⇢(�
N ; W (D)) that admit an analytic extension as

described by Assumption 1.3.1 we obtain

k(IN �A (q, N)) (u)kL2
⇢(�

N
;W (D))

 CFN  (q, N)%�
p(q,N)

2 (6.1.7)

where

p(q, N) :=

⇢
N 2q/N , if q > N�,
(q �N) log(2) · 2�, otherwise,

, (6.1.8)

 (q, N) :=

(
1 if N = 1

min
n

q2N�1, q3 eq2
o

otherwise,
(6.1.9)

and � =
⇣

1+log(2)

log(2)

⌘
.
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Proof. First we define, for j � 1 and s � d, the two functions

f(s, j) :=
1

2

�
j2s/j + 2q�N+j+2�s

�
and

g(s, j) :=
X

i2N+ ,|i|=s

jY
n=1

in.

We begin by claiming that

k(IN �A (q, N)) (u)k1,N  C
N�1X
j=1

Ej

q�N+jX
s=j

g(s, j) (q �N + j + 1� s) %�f(s,j)

+ k(I
1

�A (q �N + 1, 1))(u)k1,N (6.1.10)

where, for the trivial case, we get

k(I
1

�A (q �N + 1, 1))(u)k1,N =
��(I

1

�U q�N+1)(u)
��
1,N

 C(q �N + 1)%�2

q�N+1

 Cq%�2

q�N+1
.

This error estimate is computed inductively. For N > 1 we use recursively,

IN+1

�A (q + 1, N + 1) = IN+1

�
X
|i|q

 
NO

n=1

�in ⌦U q+1�|i|

!

=
X
|i|q

 
NO

n=1

�in ⌦ �
I
1

�U q+1�|i|�!+ (IN �A (q, N))⌦ I
1

.

Furthermore,������
X
|i|q

 
NO

n=1

(�in)(u)⌦ �
I
1

�U q+1�|i|� (u)

!������
1,N


X
|i|q

NY
n=1

��(�in)(u)
��
1,N

��(I
1

�U q+1�|i|)(u)
��
1,N

 CEN
X
|i|q

 
NY

n=1

in

!
%�

PN
n=1 2

in�1
(q + 1� |i|) %�2

q+1�|i|

 CEN
X
|i|q

 
NY

n=1

in

!
(q + 1� |i|) %� 1

2(N2

|i|/N
+2

q+2�|i|)

 CEN

qX
s=N

g(s, N) (q + 1� s) %�f(s,N)
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where we have used the convexity estimate

%�
PN

n=1 2

in  %�N2

|i|/N
.

Then, by the inductive assumption (6.1.10),

k((IN �A (q, N))⌦ I
1

) (u)k1,N  C
N�1X
j=1

Ej

q�N+jX
s=j

g(s, j) (q �N + j + 1� s) %�f(s,j)

+ k(I
1

�A (q �N + 1, 1))(u)k1,N .

Therefore,

k(IN+1

�A (q + 1, N + 1))( u)k1,N  C
NX

j=1

Ej

q�N+jX
s=j

g(s, j) (q �N + j + 1� s) %�f(s,j)

+ k(I
1

�A (q �N + 1, 1))(u)k1,N .

and (6.1.10) is proved. Set F = max{1, E} to obtain

k(IN �A (q, N)) (u)k1,N  C
N�1X
j=1

(max{1, E})N
q�N+jX

s=j

g(s, j) (q �N + j + 1� s) %�f(s,j)

+ k(I
1

�A (q �N + 1, 1))(u)k1,N

 CFN

N�1X
j=1

q�N+jX
s=j

g(s, j) (q �N + j + 1� s) %�f(s,j)

+ k(I
1

�A (q �N + 1, 1))(u)k1,N .
(6.1.11)

We now turn our attention to finding a maximum for %�f(s,j) on the set {(s, j) : j  s 
q �N + j and 1  j  N � 1}. Clearly

@f

@s
=
�
2s/j � 2q�N+j+2�s

�
log(2) = 0

implies that s = s(j) = j + j(q�N+1)

j+1

, which satisfies for any j 2 N
+

j  s(j)  q �N + 1 + j.

Hence,
max

jsq�N+j
%�f(j,s) = %�f(j,s(j))

 %�h(j)
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where h(j) = (j + 1)2(q�N+1)/(j+1). Then we get

dh

dj
= 2(q�N+1)/(j+1)

✓
1� (q �N + 1) log(2)

j + 1

◆
= 0

which yields j = (q � N + 1) log(2) � 1. For q su�ciently large, the minimum of h(j) falls

outside the interval [1, N �1] and the function h(j) is decreasing on this interval. Therefore,

there are two cases to consider, the first being the situation when q > N
⇣

1+log(2)

log(2)

⌘
= N�

and the second when N  q  N�. In either case

max
1jN�1

%�h(j) = %�p(q,N),

hence

max
1jN�1

jsq�N+j

%�f(j,s)  %�p(q,N).

In conclusion we have, for q � N

k(IN �A (q, N)) (u)k1,N  CFN%�p(q,N)

N�1X
j=1

q�N+jX
s=j

g(s, j)(q �N + j + 1� s)

= CFN%�p(q,N) + k(I
1

�A (q �N + 1, 1))(u)k1,N

(6.1.12)

and

 =
N�1X
j=1

q�N+jX
s=j

g(s, j)(q �N + j + 1� s)

=
N�1X
j=1

q�N+jX
s=j

(q �N + j + 1� s)
X

i2Nj
+, |i|=s

 
jY

n=1

in

!


N�1X
j=1

q�N+jX
s=j

(q �N + j + 1� s)
X

i2Nj
+, |i|=s

✓ |i|
j

◆j

=
N�1X
j=1

q�N+jX
s=j

(q �N + j + 1� s)

✓
s

j

◆j ✓s� 1

j � 1

◆

 (q �N + 1)
N�1X
j=1

q�N+jX
s=j

✓
q �N + j

j

◆j (s� 1)j�1

(j � 1)!

 (q �N + 1)(q �N)
N�1X
j=1

(q � 1)j (q �N + j)j�1

(j � 1)!
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 (q �N + 1)(q �N)
N�1X
j=1

(q � 1)2j�1

(j � 1)!

= (q �N + 1)(q �N)(q � 1)
N�2X
j=0

(q � 1)2j

j!
.

(6.1.13)

Since the sum
PN�2

j=0

(q�1)

2j

j!
can be bounded by e(q�1)

2
or by (q�1)

2N�2

q(q�2)

, then in either case

   (q, N). Finally, from (6.1.11) and using (6.1.12) and (6.1.13) we conclude that

k(IN �A (q, N)) (u)k1,N  CFN  (q, N)%�
p(q,N)

2 + %�2

q�N+1
. (6.1.14)

We also observe that  (q, N) � 1 and by straightforward calculations

2q�N+1 � p(q, N)

2
, 8N � 1, q � N,

to conclude that

%�2

q�N+1   (q, N)%�
p(q,N)

2

and this completes the proof. ⇤
Now we relate the number of collocation points ⌘ = ⌘(q, N) = #H (q, N) to the level q

of the Smolyak algorithm. We state the result in the following lemma.

Lemma 6.1.3 Using the Smolyak interpolant described by (4.4.7) where the abscissas are

the Clenshaw-Curtis knots, described in Section 4.4.4, the total number of points required at

level q satisfies the following bounds:

2q�N+1  ⌘  2qqN

(N � 1)!
. (6.1.15)

Proof. The proof follows immediately but will be shown for completeness. By using formula

(4.4.7) and exploiting the nested structure of the Clenshaw-Curtis abscissas the number of

points ⌘ = ⌘(q, N) = #H (q, N) can be counted in the following way:

⌘ =
X
|i|q

NY
n=1

r(in), where r(i) :=

8<:
1 if i = 1
2 if i = 2
2i�2 if i > 2

. (6.1.16)

If we take i
1

= i
2

= . . . = iN�1

= 1 then to satisfy the constraint |i|  q we required
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iN  q �N + 1. Then we get

2q�N�1  ⌘ =
X
|i|q

NY
n=1

r(in) 
X
|i|q

2|i| 
qX

j=N

X
|i|=j

2j =
qX

j=N

2j

✓
j � 1

N � 1

◆


qX

j=N

2q (q � 1)N�1

(N � 1)!

 2qqN

(N � 1)!

which completes the proof. ⇤
The next Theorem relates the error bound (6.2.10) to the number of collocation points

⌘ = ⌘(q, N) = #H (q, N), described by Lemma 6.1.3.

Theorem 6.1.4 Assume the conditions of Lemma 6.1.2 and Lemma 6.1.3, and define the

function

�(⌘, N) = log
2

(⌘) + N + 1,

then for N  q < N�

k(IN �A (q, N)) (u)kL2
⇢(�

N
;W (D))

 CFN  (�(⌘, N), N)

✓
(2�(⌘, N))N

⌘ (N � 1)!

◆⇥
2 log(%)

(6.1.17)

and for q � N�

k(IN �A (q, N)) (u)kL2
⇢(�

N
;W (D))

 CFN  (�(⌘, N), N) %�
N
2 [(N�1)!]

1/N ⌘1/N

�(⌘,N) , (6.1.18)

where ⇥ = 2� and ⌘ = ⌘(q, N) is the number of knots that are used by A (q, N) and  was

defined in (6.1.9).

Proof. Recall that the error bound will be separated into two estimates depending on the

domain of definition of (6.1.8). First for N  q < N� and using (6.1.15) we arrive at

log(⌘) + log((N � 1)!)  q log(2) + N log(q)

 q log(2) + N log �(⌘, N)

= (q �N) log(2) + N log(2�(⌘, N)).

Hence,

q �N � log(⌘) + log((N � 1)!)�N log(2�(⌘, N))

log(2)
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and using (6.1.8) implies that

p(q, N) � (log(⌘) + log((N � 1)!)�N log(2�(⌘, N))) ·⇥
= ⇥ log

✓
⌘ (N � 1)!

(2�(⌘, N))N

◆
.

Therefore, using (6.1.15) we deduce that

k(IN �A (q, N)) (u)k1,N  CFN  (�(⌘, N), N) %
�⇥ log

“
(N�1)!+⌘

(2�(⌘,N))N

”

= CFN  (�(⌘, N), N)

✓
e
� log(%) log

“
(N�1)!+⌘

(2�(⌘,N))N

”◆
⇥

= CFN  (�(⌘, N), N)

✓
(2�(⌘, N))N

⌘(N � 1)!

◆
⇥·log(%)

(6.1.19)

and we recover (6.1.17).

On the other hand, for q � N� and using (6.1.15) we find that✓
2qqN

(N � 1)!

◆
1/N

� ⌘1/N

which implies that

2q/N � (⌘(N � 1)!)1/N

�(⌘, N)

and

p(q, N) � N [(N � 1)!]1/N ⌘1/N

�(⌘, N)
.

Therefore, again with (6.1.15) we conclude that

k(IN �A (q, N)) (u)k1,N  CFN  (�(⌘, N), N)%�
N
2 [(N�1)!]

1/N ⌘1/N

�(⌘,N) . (6.1.20)

and we recover (6.1.18). ⇤

6.1.2 Gaussian isotropic estimates

Similarly to the previous section we now develop error estimates for interpolating functions

u 2 C0(�N ; W (D)) that admit an analytic extension as described by Assumption 1.3.1 using

the Smolyak formulations based on Gaussian abscissas described in Section 4.4.5. As before,

we remind the reader that in the global estimate (6.0.1) we need to bound the interpolation
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error (III) in the norm L2

⇢(�
N ; W (D)). Yet, the Gaussian points defined in Section 4.4.5

are constructed for the more appropriate density ⇢̂ =
QN

n=1

⇢̂n and we have

kvkL2
⇢(�

N
;W (D))


����⇢⇢̂

����
L1(�

N
)

· kvkL2
⇢̂(�

N
;W (D))

for all v 2 C0(�N ; W (D)).

In what follows we will use the shorthand notation k · k⇢̂,N for k · kL2
⇢̂(�

N
;W (D))

. Utilizing the

work of Erdös and Turan (1937) we present the following lemma:

Lemma 6.1.5 For every function u 2 C0(�1; W (D)) the interpolation error satisfies

ku�U i(u)k⇢̂,1  2
p

C⇢̂ inf
w2Vmi

ku� wk1,1,

where C⇢̂ =

Z
�

1

⇢̂(y) dy.

Proof. We have, indeed, for any v 2 Vmi

ku�U i(u)k2

⇢̂,1 =
��u� v + (v �U i(u))

��2

⇢̂,1

=
��u� v + U i(v � u)

��2

⇢̂,1

 2
⇣
ku� vk2

⇢̂,1 +
��U i(u� v)

��2

⇢̂,1

⌘ (6.1.21)

where we observe that 8v 2 Vmi , it holds U i(v) = v. Then it is easy to see that

ku� vk2

⇢̂,1 
Z

�

1

⇢̂(y) |(u� v)(y)|2 dy

 ku� vk2

1,1

Z
�

1

⇢̂(y) dy = C⇢̂ ku� vk2

1,1

and

��U i(u� v)
��2

⇢̂,1
=

�����
miX
j=1

(u� v)(yi
j)l

i
j(y)

�����
2

⇢̂,1


miX

j,j0=1

��(u� v)(yi
j)
�� ��(u� v)(yi

j0)
�� Z

�

1

⇢̂(y)lij(y)lij0(y) dy

 ku� vk2

1,1

miX
j=1

Z
�

1

⇢̂(y)(lij(y))2 dy =

✓Z
�

1

⇢̂(y)dy

◆
ku� vk2

1,1

where we exploit the orthogonality of the Lagrange polynomial basis. Then from (6.1.21)

we conclude that

ku�U i(u)k2

⇢̂,1  4

✓Z
�

1

⇢̂(y)dy

◆
ku� vk2

1,1
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and the result follows directly. ⇤
Similar to Section 6.1.1 we let Em be the error of the best approximation to functions

u 2 C0(�1; W (D)) that admit an analytic extension as described by Assumption 1.3.1 by

functions w 2 Vm. Then, from Lemma 6.1.5 we begin with

��u�U i(u)
��

⇢̂,1
 2

s✓Z
�

1

⇢̂(y)dy

◆
Emi�1

(u). (6.1.22)

Again, from Lemma 5.0.3 the best approximation is bounded by :

Emi(u)  C %�mi (6.1.23)

where C is a constant dependent on ⌧ defined in Lemma 5.0.3. Hence (6.1.22) and (6.1.23)

imply ��(I
1

�U i)(u)
��

⇢̂,1
 eC %�2

i
,��(�i)(u)

��
⇢̂,1

=
��(U i �U i�1)(u)

��
⇢̂,1

 ��(I
1

�U i)(u)
��

⇢̂,1
+
��(I

1

�U i�1)(u)
��

⇢̂,1

 eE %�2

i�1

for all i 2 N
+

with positive constants eC and eE depending on u but not on i. We then present

the following lemma and theorem whose proofs follow, with minor changes, those given in

Lemma 6.1.2 and Theorem 6.1.4 respectively.

Lemma 6.1.6 For functions u 2 L2

⇢(�
N ; W (D)) that admit an analytic extension as

described by Assumption 1.3.1 we obtain

k(IN �A (q, N)) (u)kL2
⇢(�

N
;W (D))

 k⇢/⇢̂kL1(�

N
)

eC eFN e (q, N)%�
p(q,N)

2 (6.1.24)

where

p(q, N) :=

⇢
N 2q/N , if q > N�,
(q �N) log(2) · 2�, otherwise

, (6.1.25)

e (q, N) :=

⇢
1 if N = 1
min

�
qN�2, qeq

 
otherwise

(6.1.26)

and � =
⇣

1+log(2)

log(2)

⌘
.

Now we relate the number of collocation points ⌘ = ⌘(q, N) = #H (q, N) to the level q

of the Smolyak algorithm. We state the result in the following lemma:
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Lemma 6.1.7 Using the Smolyak interpolant described by (4.4.8) where the abscissas are

the Gaussian knots described in Section 4.4.5, the total number of points required at level q

satisfies the following bounds:

2q�N  ⌘  2qqN

(N � 1)!
. (6.1.27)

Proof. The proof follows immediately but will be shown for completeness. By using

formula (4.4.8), where we collocate using the Gaussian abscissas, the number of points

⌘ = ⌘(q, N) = #H (q, N), can be counted in the following way:

⌘ =
X

q�N+1|i|q

NY
n=1

er(in), where 2i�1  er(i) :=

⇢
1 if i = 1
2i�1 + 1 if i � 2

. (6.1.28)

If we take i
1

= i
2

= . . . = iN�1

= 1, then to satisfy the constraint q � N + 1  |i|  q we

required iN  q �N + 1. Then we get

2q�N  2q�N + 1  ⌘ =
X

q�N+1|i|q

NY
n=1

er(in) 
X
|i|q

2|i| 
qX

j=N

X
|i|=j

2j =
qX

j=N

2j

✓
j � 1

N � 1

◆


qX

j=N

2q (q � 1)N�1

(N � 1)!

 2qqN

(N � 1)!

which completes the proof. ⇤
Finally, the next Theorem relates the error bound (6.1.24) to the number of collocation

points ⌘ = ⌘(q, N) = #H (q, N), described by Lemma 6.1.7.

Theorem 6.1.8 Assume the conditions of Lemma 6.1.6 and 6.1.7, and define the function

e�(⌘, N) = log
2

(⌘) + N,

then for N  q < N� there holds

k(IN �A (q, N)) (u)kL2
⇢(�

N
;W (D))

 bC eFN e (e�(⌘, N), N)

✓
(2e�(⌘, N))N

⌘(N � 1)!

◆⇥
2 log(%)

(6.1.29)

and for q � N�

k(IN �A (q, N)) (u)kL2
⇢(�

N
;W (D))

 bC eFN e (e�(⌘, N), N)%�
N
2 [(N�1)!]

1/N ⌘1/N

e�(⌘,N) , (6.1.30)

where ⇥ = 2�, bC = eC k⇢/⇢̂kL1(�

N
)

and ⌘ = ⌘(q, N) is the number of knots that are used by

A (q, N) and e was defined in (6.1.26).
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6.1.3 Influence of truncation errors

In this Section we consider the case where the coe�cients aN and fN from (1.2.1) are suitably

truncated random fields. In this case the truncation error u�uN is nonzero and contributes

to the total error. Such contribution should be considered as well as the relationship between

this error and the discretization error.

To this end, if we take the level q to be dimension dependent, i.e. q = ↵N where ↵ � � is

some constant, then we can estimate the total error ku�A (q, N)(uN)kL2
P (⌦;W (D))

in terms

of N only. Consider first the case of Gaussian abscissas described in Section 4.4.5. The

following theorem holds:

Theorem 6.1.9 Let q = ↵N such that ↵ � � and ⇣(N) is a monotonic decreasing function

of N such that ⇣(N) ! 0 as N ! 1. Further define �(↵) = ↵ + log( eF ) � log(%) 2↵�1, e↵
the solution to �(e↵) = 0 and ↵ > max{�, e↵}. Under the assumptions of Lemma 6.1.6 and

Theorem 6.1.8 and the further assumption that

ku� uNkL2
P (⌦;W (D))

 ⇣(N)

where u 2 L2

P (⌦; W (D)) and uN 2 L2

⇢(�
N ; W (D)), we get

ku�A (q, N)(uN)kL2
P (⌦;W (D))

 ⇣(N) + ↵ bCN e�(↵)N . (6.1.31)

Proof. We begin by writing the total error when approximating u 2 C0(⌦; W (D)) by its

N -dimensional interpolant A (q, N)(uN). That is, we want to understand

ku�A (q, N)(uN)kL2
P (⌦;W (D))

 ku� uNkL2
P (⌦;W (D))

+ k(IN �A (q, N)(uN))kL2
P (⌦;W (D))

= ku� uNkL2
P (⌦;W (D))| {z }

(I)

+ k(IN �A (q, N)(uN))kL2
⇢(�

N
;W (D))| {z }

(II)
(6.1.32)

By the assumption, the first term (I) is bounded by ⇣(N) for all N and from Lemma 6.1.6,

and by the assumption q = ↵N � �N , the second term (II) can be bounded by

k(IN �A (q, N)) (uN)kL2
⇢(�

N
;W (D))

 bC eFNq eq%�
N
2 2

q/N

 bC eFN↵N e↵N%�N 2

↵�1

 ↵ bC eFNN e↵N�log(%)N 2

↵�1

= ↵ bCN eN(↵+log(

eF )�log(%) 2

↵�1
)

= ↵ bCN e�(↵)N

(6.1.33)
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where �(↵) = ↵ + log( eF ) � log(%) 2↵; such that, for su�ciently large ↵, �(↵) is negative.

With ↵ > max{�, e↵} equation (6.1.33) becomes

k(IN �A (q, N)) (uN)kL2
⇢(�

N
;W (D))

 ↵ bCN e�(↵)N ,

which substituted into the total error (6.1.32) yields

ku�A (q, N)(u)kL2
P (⌦;W (D))

 ku� uNkL2
P (⌦;W (D))

+ k(IN �A (q, N)(uN))kL2
⇢(�

N
;W (D))

 ⇣(N) + ↵ bCN e�(↵)N

as required by (6.1.31). ⇤
We want to understand the cases where (II) is negligible when compared with (I). In

Theorem 6.1.9 we assume that the truncation error ku� uNkL2
P (⌦;W (D))

is bounded by ⇣(N)

for all N . The function ⇣(N) is typically related to the decay of the eigenvalues if one

truncates the noise with a Karhunen-Loève expansion, see Frauenfelder et al. (2005b). For

example, if

ku� uNkL2
P (⌦;W (D))

 ✓N�r, for r > 0,

for some constant ✓, then

ku�A (q, N)(u)kL2
P (⌦;W (D))

 ✓N�r| {z }
(I)

+↵ bCN e�(↵)N| {z }
(II)

.

In such a situation the Smolyak error (II) is asymptotically negligible with respect to

the truncation (I) as N ! 1. Therefore, the isotropic Smolyak algorithm is an e�cient

interpolation scheme to choose in computational experiments. On the other hand, if

ku� uNkL2
P (⌦;W (D))

 ✓e��N where � > �(↵)

then
ku�A (q, N)(u)kL2

P (⌦;W (D))

 ✓e��N| {z }
(I)

+↵ bCN e�(↵)N| {z }
(II)

,

which implies that the truncation error (I) is dominated by the Smolyak error (II). In this

case the Smolyak algorithm is an inadequate interpolation scheme and improvements to

this algorithm must be investigated. To facilitate faster convergence of such problems we

utilize the anisotropic Smolyak algorithm, described in Section 4.4.3 and analyzed in the

next section.
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Remark 6.1.10 In the situation in which the Clenshaw-Curtis abscissas are used, the term

(II) in (6.1.32) can be bounded as

k(IN �A (q, N)(uN))kL2
⇢(�

N
;W (D))

 C FNq2eq2
%�

N
2 2

q/N

= Cq2eN log(F )+q2�N
2 log %2

q/N
.

In the presence of the term q2, global convergence can only be achieved if one takes q = N1+↵

with ↵ > 0.

6.2 Analysis of the sparse interpolation error:
The anisotropic case

Similar to the previous section, In order to get error bounds for the anisotropic Smolyaks

algorithm in the multidimensional case, we will connect the general case to the case N = 1

and then successively apply Lemma 5.0.3 .

As stated in Section 4.4.3, the sparse grid construction treats all directions di↵erently

and is therefore an anisotropic algorithm. Moreover, the convergence analysis presented

in Section 6.2.1 exploits the possible anisotropic behaviors of problem (1.1.1). Therefore,

we can expect a faster convergence rate when compared to our previous isotropic Smolyak

algorithm (Nobile et al., 2006), described in Section 6.1, for such problems that exhibit strong

anisotropic e↵ects. Since the algorithm exploits this behavior and is a sparse interpolation

technique, a similar conclusion can be drawn when making convergence comparisons with

the anisotropic full tensor product method, introduced in the work Babuška et al. (2005c).

See Chapter 7 where we explore numerically the consequences of introducing an anisotropy

into the model problem described by Examples 1.1.1 and 1.1.2 .

6.2.1 Clenshaw-Curtis anisotropic estimates

For n = 1, 2, . . . , N we begin by recalling that we previously defined Em to be the error

of the best approximation to functions u 2 C0(�n; W (D)) by functions w 2 Vm. Similarly

to Section 6.1.1, for n = 1, . . . , N , since U in is exact on Vmin�1

we can apply the general

formula ��u�U in(u)
��
1,1

 Emin�1

(u) · �1 + ⇤min

�
(6.2.1)

where ⇤m is the Lebesgue constant for our choice (4.4.13), defined previously by (6.1.5).
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Using Lemma 5.0.3 and with the assumption (5.0.3) on the decay coe�cients, the best

approximation to functions u 2 C0(�n; W (D)) that admit an analytic extension as described

by Assumption 1.3.1 is bounded by:

Emin
(u)  C %�min

n = C e�g(n) min , (6.2.2)

where C is a constant dependent on ⌧ and u but otherwise independent of n, defined

in Lemma 5.0.3. For n = 1, 2, . . . , N we define the one-dimensional indentity operator

I(n)

1

: �n ! �n, then (6.2.1)-(6.2.2) implies���(I(n)

1

�U in)(u)
���
1,1

 C log(min)%�min
n  C in%

�2

in

n = C ine
�g(n)2

in
,

��(�in)(u)
��
1,1

=
��(U in �U in�1)(u)

��
1,1


���(I(n)

1

�U in)(u)
���
1,1

+
���(I(n)

1

�U in�1)(u)
���
1,1

 E in%
�2

in�1

n = E ine
� g(n)

2 2

in

(6.2.3)

for all i 2 N
+

with positive constants C and E depending on u but not on i or n.

The convergence proof will be split in several pieces, the main results being given in

Theorems 6.2.3 and 6.2.7 which state the convergence rates in terms of the level w and the

total number of collocation points, respectively.

For the purpose of error analysis we first introduce the set

X̃↵(w, d) :=

(
i 2 Nd

+

, i � 1 :

 
dX

n=1

(in � 1)↵n � ↵w

!
2 [0,↵d]

)
.

Moreover, we denote by Id the identity operator applicable to functions which depend on

the first d variables y
1

, . . . , yd. Then the following result holds:

Lemma 6.2.1 For functions u 2 L2

⇢(�
N ; W (D)) satisfying the assumption of Lemma 5.0.3

with decay coe�cients as in (5.0.3), the anisotropic Smolyak formula (4.4.10) satisfies:

k(IN �A↵(w,N)) (u)kL2
⇢(�

N
;W (D))


NX

d=1

R(w, d) (6.2.4)

with

R(w, d) :=
X

i2 ˜X↵(w,d)

CEd�1

 
dY

n=1

in

!
e�h(i,d) (6.2.5)
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and

h(i, d) =
dX

n=1

g(n)2in�1, (6.2.6)

with constants C and E defined in (6.2.2) and (6.2.3).

Proof. We start providing and equivalent representation of the anisotropic Smolyak formula:

A↵(w,N) =
X

i2X↵(w,N)

NO
n=1

�in

=
X

i2X↵(w,N�1)

N�1O
n=1

�in ⌦

j
1+w ↵

↵N
�

PN�1
n=1 (in�1)

↵n
↵N

kX
j=1

�j

=
X

i2X↵(w,N�1)

N�1O
n=1

�in ⌦U
j
1+w ↵

↵N
�

PN�1
n=1 (in�1)

↵n
↵N

k

where we have denoted with b·c the integer part of a real number.

The error estimate is computed recursively using the previous representation.

IN �A↵(w, N) = IN �
X

i2X↵(w,N�1)

N�1O
n=1

�in ⌦
✓

U
j
1+w ↵

↵N
�

PN�1
n=1 (in�1)

↵n
↵N

k

� I(N)

1

◆

�
X

i2X↵(w,N�1)

N�1O
n=1

�in ⌦ I(N)

1

=
X

i2X↵(w,N�1)

N�1O
n=1

�in ⌦
✓

I(N)

1

�U
j
1+w ↵

↵N
�

PN�1
n=1 (in�1)

↵n
↵N

k◆
+ (IN�1

�A↵(w, N � 1))⌦ I(N)

1

=
NX

d=2

"
R̃(w, d)

NO
n=d+1

I(n)

1

#
+
⇣
I(1)

1

�A↵(w, 1)
⌘ NO

n=2

I(n)

1

where, for a general dimension d, we define

R̃(w, d) =
X

i2X↵(w,d�1)

d�1O
n=1

�in ⌦
⇣
I(d)

1

�U
ˆid�1

⌘

and, for any (i
1

, . . . , id�1

) 2 X↵(w, d � 1), we have set îd =
j
2 + w ↵

↵d
�Pd�1

n=1

(in � 1)↵n
↵d

k
.

Observe that with this definition, the d-dimensional vector j = (i
1

, . . . , id�1

, îd) 2 X̃↵(w, d).
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The term R̃(w, d) can now be bounded as���R̃(w, d)(u)
���
1,d


X

i2X↵(w,d�1)

d�1Y
n=1

��(�in)(u)
��
1,d

���⇣I(d)

1

�U
ˆid�1

⌘
(u)

���
1,d


X

i2X↵(w,d�1)

C Ed�1

 
d�1Y
n=1

in

!
(̂id � 1)e�

Pd�1
n=1 g(n)2

in�1�g(d)2

îd�1


X

i2 ˜X↵(w,d)

C Ed�1

 
dY

n=1

in

!
e�h(i,d) =: R(w, d).

Hence, the interpolation error with the anisotropic Smolyak construction can be bounded by

k(IN �A↵(w,N))(u)k1,N 
NX

d=2

R(w, d) +
���(I(1)

1

�A↵(w, 1))(u)
���
1,1

.

Observe that the first term in the recursion (6.2.4) can also be bounded by (6.2.5). Indeed,

the set X̃↵(w, 1) contains only the point i
1

= b2 + ↵w
↵1
c and���⇣I(1)

1

�A↵(w, 1)
⌘

(u)
���
1,1

=

����✓I(1)

1

�U
j
1+

↵w
↵1

k◆
(u)

����
1,1

 C

�
1 +

↵w

↵
1

⌫
e�g(1) 2

b1+
↵w
↵1 c


X

i12 ˜X↵(w,1)

C i
1

e�g(1) 2

i1�1
=: R(w, 1)

and this concludes the proof. ⇤

Lemma 6.2.2 For the choice ↵n = g(n) of the weights in the anisotropic Smolyak formula

(4.4.10), the following bound holds for the term R(w, d), d = 1, . . . , N :

R(w, d)  C
1

(g, d) exp

⇢
�G (d)

2
2w

g

G (d) + w
dg

G (d)

�
, (6.2.7)

where the function C
1

(g, d) does not depend on w.

Proof. First we convert the sum appearing in (6.2.5) into an integral. For that, we define

the two subsets of Rd:

Ỹ↵(w, d) :=
n
y 2 Rd

+

: byc+ 1 2 X̃↵(w, d)
o

,

Ỹ +

↵ (w, d) :=

(
y 2 Rd

+

:

 
dX

n=1

yn↵n � w↵

!
2 [0,↵d +

dX
n=1

↵n]

)
,
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and notice that X̃↵(w, d) ⇢ Ỹ↵(w, d) ⇢ Ỹ +

↵ (w, d). Then the term R(w, d) can be bounded

by

R(w, d) =

Z
˜Y↵(w,d)

CEd�1

 
dY

n=1

(bync+ 1)

!
e�h(byc+1,d) dy


Z

˜Y +
↵ (w,d)

CEd�1

 
dY

n=1

(yn + 1)

!
e�h(y,d) dy.

(6.2.8)

Next, we define y⇤ = w
g

G (d)

and we expand the function h(y, d) up to second order, around

the point y⇤ = (y⇤, . . . , y⇤):

h(y, d) = h(y⇤, d)+rh(y⇤, d) · �y| {z }
(I)

+ �yT 1

2
r2h(y⇤ + s�y, d)�y| {z }

(II)

, with �y = y � y⇤ and s 2 [0, 1].

The linear term is positive on the set Ỹ +

↵ (w, d); indeed

(I) = log(2)2y⇤�1

dX
n=1

g(n) (yn � y⇤)

= log(2)2y⇤�1

dX
n=1

(yn↵n � w↵) � 0 8y 2 Ỹ +

↵ (w, d)

Similarly, the second order remainder can be bounded as

(II) =
log(2)2

2

dX
n=1

g(n)2[y⇤+s(yn�y⇤)�1](yn � y⇤)2

� log(2)2

4

dX
n=1

g(n)(yn � y⇤)2

=
dX

n=1

(yn � y⇤)2

2�2

n

, with �2

n =
2

log(2)2g(n)

Finally, the bound (6.2.8) becomes

R(w, d)  CEd�1e�h(y

⇤,d)

Z
˜Y +
↵ (w,d)

dY
n=1

(yn + 1)e
�

Pd
n=1

(yn�y⇤)2

2�2
n dy| {z }

I(d)

.

We now turn to estimating the term I(d). For that, let us introduce the function

pn(y) = e
� (y�y⇤)2

2�2
n /

p
2⇡�2

n which corresponds to the probability density function of a Normal
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random variable with mean y⇤ and variance �2

n. Then, we have

I(d) =

Z
˜Y +
↵ (w,d)

dY
n=1

p
2⇡�2

n(yn + 1)pn(yn) dy {setting zn = yn + 1}


dY

n=1

✓p
2⇡�2

n

Z 1

0

znpn(zn � 1) dzn

◆
{by Cauchy-Schwartz ineq.}


dY

n=1

 p
2⇡�2

n

✓Z 1

0

z2

npn(zn � 1) dzn

◆ 1
2

!


dY

n=1

⇣p
2⇡�2

n

p
�2

n + (1 + y⇤)2

⌘


dY
n=1

⇣p
2⇡�2

n (1 + y⇤ + �n)
⌘


dY
n=1

⇣p
2⇡�2

ne
y⇤+�n

⌘
= C

2

(�, d)ew
dg

G (d) , with C
2

(�, d) =
dY

n=1

⇣p
2⇡�2

ne
�n

⌘
.

From this the final result is easily obtained and inequality (6.2.7) holds with constant

C
1

(g, d) = CEd�1

✓
2
p
⇡

log(2)

◆d
 

dY
n=1

1p
g(n)

!
exp

( p
2

log(2)

dX
n=1

1p
g(n)

)
. (6.2.9)

⇤

Theorem 6.2.3 For functions u 2 L2

⇢(�
N ; W (D)) satisfying the assumption of Lemma 5.0.3

with decay coe�cients as in (5.0.3), the anisotropic Smolyak formula (4.4.10) with the choice

↵n = g(n) of the weights satisfies:

k(IN �A↵(w, N)) (u)kL2
⇢(�

N
;W (D))

 Ĉ(g, N)ew��(w,N) (6.2.10)

where

�(w,N) :=

8>>><>>>:
w

g log(2)e

2
, if 0  w  G (N)

g log(2)

,

G (N)

2
2w

g

G (N) , otherwise

, (6.2.11)

and the function Ĉ(g, N) does not depend on w.

Proof. From Lemmas 6.2.1 and 6.2.2 we obtain the following bound for the interpolation

error

k(IN �A↵(w, N)) (u)kL2
⇢(�

N
;W (D))


NX

d=1

C
1

(g, d) exp
n

w � b�(w, d)
o
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with b�(w, d) := G (d)

2

2w
g

G (d) . We now turn our attention to finding a minimum for b�(w, d) for

1  d  N . Let us define, for s 2
h
1, G (N)

g

i
, the function

p(s) := s 2
w
s .

so that b�(w, d) =
g

2

p
⇣

G (d)

g

⌘
and

min
1dN

b�(w, d) � min
s2[1,G (N)/g]

g

2
p(s).

We have
dp

ds
= 2

w
s

⇣
1�

⇣w

s

⌘
log(2)

⌘
= 0

yielding s = w log(2). For w su�ciently large, the minimum of p(s) falls outside the intervalh
1, G (N)

g

i
and the function p(s) is decreasing on this interval. Therefore, there are two cases to

consider. The first being the situation when w > G (N)

g log(2)

and the second when 0  w  G (N)

g log(2)

.

In either case

min
1dN

b�(w, d) � �(w, N)

and hence,

max
1dN

e�
b�(w,d)  e��(w,N).

From this the result (6.2.10) follows, by taking

Ĉ(g, N) = N max
d=1,...,N

C
1

(g, d). (6.2.12)

⇤

Remark 6.2.4 From the expressions (6.2.12) and (6.2.9) we observe that the constant

Ĉ(g, N) appearing in the convergence estimates of Theorem 6.2.3 goes to infinity when g

tends to zero. We should note that in such case we loose convergence anyhow.

On the other hand, for given g and N , the more the sequence g is anisotropic (i.e. the

larger the ratio gmax/g gets), the smaller becomes the constant Ĉ(g, N). In any case, such

constant can be bounded by

Ĉ(g, N)  C

E
exp

(
Npg

 
2E
p
⇡ +

p
2

log(2)

!)
,

independently of the anisotropy.
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Now we relate the number of collocation points ⌘ = ⌘(w, N) = #H↵(w, N) to the level

w of the anisotropic Smolyak algorithm. We state the result in the following lemma:

Lemma 6.2.5 Using the anisotropic Smolyak interpolant described by (4.4.7) where the

abscissas are the Clenshaw-Curtis knots, described in Section 4.4.4, the total number of

points required at level w satisfies the following bounds:

2w�1  ⌘  2wew
PN

n=1 ↵/↵n . (6.2.13)

Moreover, as a direct consequence of (6.2.13) we get that:

log(⌘)PN
n=1

↵
↵n

+ log(2)
 w  log

2

(2⌘). (6.2.14)

Proof. By using formula (4.4.7) and exploiting the nested structure of the Clenshaw-Curtis

abscissas the number of points ⌘ = ⌘(w, N) = #H↵(w,N) can be counted in the following

way:

⌘ =
X

i2X↵(w,N)

NY
n=1

r(in), where r(i) :=

8<:
1 if i = 1
2 if i = 2
2i�2 if i > 2

. (6.2.15)

Begin by noticing that for all n = 1, 2, . . . , N the following bound holds:

2in�2  r(in)  2in�1. (6.2.16)

Next, let m 2 [1, N ] be the index corresponding to the minimum ↵, i.e. ↵m = min
1nN

{↵n} =

↵. A lower bound on the number ⌘ of points can be obtained considering only the

contribution from the tensor grid of indices in = 1, for n 6= m and im = w + 1. On

the other hand, it is easy to see that |i � 1| =
PN

n=1

(in � 1)  w so the following bounds

hold:

2w�1  ⌘ =
X

i2X↵(w,N)

NY
n=1

r(in) 
X

i2X↵(w,N)

2|i�1|  2w#X↵(w,N).

We need now a bound for the cardinality of the set X↵(w,N). We prove by induction

that

#X↵(w,N) 
NY

n=1

✓
w
↵

↵n

+ 1

◆
. (6.2.17)
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Indeed, the result is obviously true for N = 1, and assuming that it holds for N �1, we have

#X↵(w, N) =
bw↵/↵N c+1X

jN=1

#X↵

✓
w � (jN � 1)↵N

↵
, N � 1

◆

=
bw↵/↵N c+1X

jN=1

N�1Y
n=1

✓
w
↵

↵n

� (jN � 1)↵N

↵n

+ 1

◆


bw↵/↵N c+1X

jN=1

N�1Y
n=1

✓
w
↵

↵n

+ 1

◆


NY

n=1

✓
w
↵

↵n

+ 1

◆
and this finishes the induction proof. Moreover we have

#X↵(w,N)  exp

(
w

NX
n=1

↵

↵n

)
(6.2.18)

and the inequalities (6.2.13) and (6.2.14) follow. ⇤

Remark 6.2.6 The bound for the cardinality of the set #X↵(w,N) given in (6.2.17) is not

sharp when w !1 and actually one has instead the asymptotic behaviour

#X↵(w, N) <⇠
wN

N !

NY
n=1

↵

↵n

,

which is consistent with the isotropic result given in Nobile et al. (2006), described by Lemma

6.1.3. Moreover, if we use Stirling’s approximation for the factorial term, the previous bound

becomes

#X↵(w, N) <⇠
1p
N

NY
n=1

ew

N

↵

↵n

 1p
N

exp

(
w

 
e

N

NX
n=1

↵

↵n

!)
,

which greatly improves (6.2.18).

The next Theorem provides an error bound in terms of the total number ⌘ of collocation

points. The proof follows directly from the results in Theorem 6.2.3 and Lemma 6.2.5 and

is therefore omitted.

Theorem 6.2.7 For functions u 2 L2

⇢(�
N ; W (D)) satisfying the assumption of Lemma 5.0.3

with decay coe�cients as in (5.0.3), the anisotropic Smolyak formula (4.4.10) with the choice

↵n = g(n) of the weights satisfies:
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• Algebraic convergence
⇣
0  w  G (N)

g log(2)

⌘
. Under the assumption that g � 1/(e log(2)),

k(IN �A↵(w,N)) (u)kL2
⇢(�

N
;W (D))

 Ĉ(g, N)⌘�µ1 ,

with µ
1

=
g log(2)e� 1

log(2) +
PN

n=1

g/g(n)
.

(6.2.19)

• Sub-exponential convergence
⇣
w > G (N)

g log(2)

⌘
k(IN �A↵(w, N)) (u)kL2

⇢(�

N
;W (D))

 Ĉ(g, N)(2⌘)1/ log(2)e�
G (N)

2 ⌘µ2 ,

with µ
2

=
g log(2)

G (N)
⇣
log(2) +

PN
n=1

g/g(n)
⌘ .

(6.2.20)

and constant Ĉ(g, N) defined in (6.2.12) and independent of ⌘.

Remark 6.2.8 The estimates given in (6.2.20) may be improved when w ! 1. Such

asymptotic estimate is obtained using the better counting result described in Remark 6.2.6.

Remark 6.2.9 We observe that sub-exponential rate of convergence is always faster than

the algebraic one when w > G (N)/(g log(2)). Yet, this estimate is of little practical relevance

since in practical computations, such a high level w is seldom reached.

Remark 6.2.10 The condition g > 1/(log(2)e) in the algebraic regime can be improved

following an L2 analysis. Yet it is largely satisfied in all our numerical tests. In the next

Section we present results using Gaussian abscissas where this condition is no longer needed.

Remark 6.2.11 Suppose now that the stochastic input data are truncated expansions of

random fields and that we are able to estimate the values {g(n)}1n=1

. Whenever the sumP1
n=1

g/g(n) is finite then the algebraic exponent in (6.2.19) does not deteriorate as the

truncation dimension N increases. This condition is satisfied for instance by the problem

presented in the numerical Section. This is a clear advantage with respect to the isotropic

Smolyak method.

Remark 6.2.12 (Optimal choice of ↵) Looking at the exponential term e�h(i,d) in (6.2.5),

which is the term determining the rate of convergence, we may try to choose the weight ↵

for X↵(w, N) as the solution to the optimization problem

max
↵2Rd

+
|↵|=1

min
i2 ˜X↵(w,d)

h(i, d).

This problem has the solution ↵ = g and hence, our choice of weights (5.0.4) is optimal.
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6.2.2 Gaussian anisotropic estimates

By using a similar approach to our previous work (Nobile et al., 2006, Section 4.1.2) and

Section 6.1.2 we can develop error estimates for interpolating functions u 2 C0(�N ; W (D))

that admit an analytic extension as described by Assumption 1.3.1 using the anisotropic

Smolyak formulations based on Gaussian abscissas described in Section 4.4.5. We remind

the reader that in the global estimate (6.0.1) we need to bound the interpolation error (III)

in the norm L2

⇢(�
N ; W (D)). Yet, the Gaussian points defined in Section 4.4.5 are constructed

for the more appropriate density ⇢̂ =
QN

n=1

⇢̂n and we have the following useful bound:

kvkL2
⇢(�

N
;W (D))


����⇢⇢̂

����
L1(�

N
)

· kvkL2
⇢̂(�

N
;W (D))

for all v 2 C0(�N ; W (D)).

In what follows we will use the shorthand notation k · k⇢̂,N for k · kL2
⇢̂(�

N
;W (D))

. Following

Nobile et al. (2006) and Section 6.1.2, the one-dimensional interpolation error for Gaussian

abscissas satisfies���(I(n)

1

�U in)(u)
���

⇢̂,1
 C̃ e�g(n)2

in
and

��(�in)(u)
��

⇢̂,1
 Ẽ e�

g(n)
2 2

in
,

for all i 2 N
+

with positive constants C̃ and Ẽ depending on u but not on i or n.

The following Theorem states the rate of convergence for the anisotropic Smolyak formula

based on Gaussian abscissas. Since the proof is mostly similar to the one presented in the

previous Section for Clenshaw-Curtis points, it will be just sketched and only the main

di↵erences will be highlighted.

Theorem 6.2.13 For functions u 2 L2

⇢(�
N ; W (D)) satisfying the assumption of Lemma

5.0.3 with decay coe�cients as in (5.0.3), the anisotropic Smolyak formula (4.4.10), based

on Gaussian abscissas and with the choice ↵n = g(n) of the weights satisfies:

• Algebraic convergence
⇣
0  w  G (N)

g log(2)

⌘
:

k(IN �A↵(w, N)) (u)kL2
⇢(�

N
;W (D))

 ĈG(g, N)⌘�µ1 ,

with µ
1

=
g log(2)e

2 log(2) +
PN

n=1

g/g(n)
.

(6.2.21)

91



• Sub-exponential convergence
⇣
w > G (N)

g log(2)

⌘
:

k(IN �A↵(w, N)) (u)kL2
⇢(�

N
;W (D))

 ĈG(g, N)e�
G (N)

2 ⌘µ2 ,

with µ
2

=
g log(2)

G (N)
⇣
2 log(2) +

PN
n=1

g/g(n)
⌘ .

(6.2.22)

and constant ĈG(g, N) independent of ⌘.

Proof. The recursion formula (6.2.4) still holds with the term R(w, d) defined now as

R(w, d) =

����⇢⇢̂
���� X

i2 ˜X↵(w,d)

C̃Ẽd�1e�h(i,d).

Notice that the negative e↵ect of the Lebesgue constant for the Clenshaw-Curtis points,

which was responsible for the term
Qd

n=1

in in the definition of R(w, d) (see (6.2.5)) is not

present any more. Then, following the guidelines of the proof of Lemma 6.2.2, this term can

be bounded as

R(w, d)  CG
1

(g, d) exp

⇢
�G (d)

2
2w

g

G (d)

�
,

with constant

CG
1

(g, d) =

����⇢⇢̂
���� C̃Ẽd�1

✓
2
p
⇡

log(2)

◆d
 

dY
n=1

1p
g(n)

!
.

This leads to the estimate in terms of w

k(IN �A↵(w, N)) (u)kL2
⇢(�

N
;W (D))

 ĈG(g, N)e��(w,N) (6.2.23)

with the same �(w,N) as in (6.2.11) and ĈG(g, N) = N maxd=1,...,N CG
1

(g, d). Again, notice

the great improvement with respect to the bound (6.2.10) holding for Clenshaw-Curtis points.

Finally, we observe that for a given level w, the number of Gauss points is larger than the

number of Clenshaw-Curtis points (due to the non-nested structure) and, following Lemma

6.1.7, we know that (Nobile et al., 2006):

⌘ =
X

i2Y↵(w,N)

NY
n=1

r̃(in), with r̃(i) :=

(
1 for i = 1

2i�1 + 1 for i > 1
(6.2.24)

NY
n=1

r̃(in) 
NY

n=1

(2in�1 + 1)  22|i�1|  22w
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and the number of points can be bounded as

2w�1  ⌘  22w#Y↵(w, N)  22w#X↵(w, N),

which, substituted in (6.2.23) gives the desired result. ⇤
To demonstrate the e↵ectiveness of the proposed methods considered throughout this

chapter, in the next chapter we present some numerical results validating our theoretical

results. We also include a comparison of our proposed methods with other ensemble-based

approaches, including the well-known Monte Carlo.
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CHAPTER 7

NUMERICAL EXAMPLES

This Chapter illustrates the convergence of the both the isotropic and anisotropic sparse

collocation methods for the stochastic linear and nonlinear elliptic problems in two spatial

dimensions, as described in Chapters 2 and Chapters 3 repectively. Most of this chapter will

be devoted to a linear problem with applications to a nonlinear problem left until the end.

The computational results are in accordance with the convergence rates predicted by the

theory. Actually, we observe a faster convergence than stated in Theorems 6.2.7 and 6.2.13,

which hints that the current estimates may be improved.

We will also use this chapter to compare the convergence of the anisotropic Smolyak

method, described and analyzed in Sections 4.4.3 and 6.2 respectively and the work Nobile

et al. (2007), with other ensemble-based methods such as: the isotropic Smolyak method,

described and analyzed in Sections 4.4.2 and 6.1 respectively and the work Nobile et al.

(2006), the anisotropic adaptive full tensor product method described in the work (Babuška

et al., 2005d, Section 9) and finally, the well-known Monte Carlo method.

The linear and nonlinear problems we consider are as follows:⇢ �r · (a(!, ·)ru(!, ·)) = f(!, ·) in ⌦⇥D,
u(!, ·) = 0 on ⌦⇥ @D,

(7.0.1)

and ⇢ �r · (a(!, ·)ru(!, ·)) + u3 = f(!, ·) in ⌦⇥D,
u(!, ·) = 0 on ⌦⇥ @D,

(7.0.2)

with D = [0, d]2 and d = 1. For these numerical examples we take a deterministic load

f(!, x, z) = cos(x) sin(z) and construct the random di↵usion coe�cient aN(!, x) with one-

dimensional spatial dependence as

log(aN(!, x̃)� 0.5) = 1 + Y
1

(!)

✓p
⇡L

2

◆
1/2

+
NX

n=2

⇣n 'n(x) Yn(!). (7.0.3)
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where

⇣n :=
�p

⇡L
�
1/2

exp

 
� �bn

2

c⇡L
�
2

8

!
, if n > 1 (7.0.4)

and

'n(x) :=

8<: sin
⇣
bn

2 c⇡x

Lp

⌘
, if n even,

cos
⇣
bn

2 c⇡x

Lp

⌘
, if n odd.

(7.0.5)

For x 2 [0, d] let Lc be a desired physical correlation length for the coe�cient a, meaning

that the random variables a(x) and a(y) become essentially uncorrelated for |x� y| >> Lc.

Then, the parameter Lp in (7.0.5) and (7.0.4) is Lp = max{d, 2Lc} and the parameter L in

(7.0.3) and (7.0.4) is

L =
Lc

Lp

.

In this example, the random variables {Yn(!)}1n=1

are independent, have zero mean and unit

variance, i.e. E[Yn] = 0 and E[YnYm] = �nm for n, m 2 N
+

, and are uniformly distributed in

the interval [�p3,
p

3]. Expression (7.0.3) is truncation of a one-dimensional random field

with stationary covariance

cov[log(aN � 0.5)](x
1

, x
2

) = E
⇥
(log(a)(x

1

)� E[log(a)](x
1

)) ((log(a)(x
2

)� E[log(a)](x
2

))
⇤

= exp

✓�(x
1

� x
2

)2

L2

c

◆
.

To illustrate the convergence, given in Chapter 6, of isotropic and anisotropic Smolyak

algorithms, described in Sections 4.4.2 and 4.4.3 respectively, for solving problem (7.0.1) we

need to first, describe the decay coe�cient given by (5.0.3) and then second, either a priori

or a posteriori select the N -dimensional weights described in Chapter 5.

To formulate the constant %n for each n = 1, 2, . . . , N , defined by (5.0.3), for the problem

(7.0.1), we investigate a lower bound for %n. That is (see (6.1.3)) for n = 1

%
1

� 1 +
1

4
p

3

✓
2p
⇡L

◆
1/2

= 1 +
1

2

✓
1

6
p
⇡L

◆
1/2

� 1 + exp

✓
�1

2
log

�
24
p
⇡L

�◆ (7.0.6)

and similarly, for n � 2

%n � 1 +
e
bn

2 c
2⇡2L2

8p
24
p
⇡L

= 1 + exp

✓bn
2

c2⇡2L2

8
� 1

2
log

�
24
p
⇡L

�◆
.

(7.0.7)
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The rate of convergence of the isotropic Smolyak method is dictated by the decay coe�cient

% defined by (5.0.3), which from (7.0.6)-(7.0.7) can be defined by

% = min
n
%n � 1 +

s
1

24
p
⇡L

. (7.0.8)

We consider now an a priori selection of the weights g(n) based on formula (6.1.3) for

solving problem (7.0.1) using the anisotropic Smolyak method. For that, from (2.0.7) we

can estimate the parameters ⌧n by

⌧n =
1

4⇣nk'k1 =

8><>:
q

1

8

p
⇡L

, for n = 1q
1

16

p
⇡L

exp
⇣
bn

2 c
2⇡2L2

8

⌘
, for n > 1.

Then, using (6.1.3) the weight vector g becomes

g(n) =

8>><>>:
log

⇣
1 +

q
1

24

p
⇡L

⌘
, for n = 1

log
⇣
1 +

q
1

48

p
⇡L

exp
⇣
bn

2 c
2⇡2L2

8

⌘⌘
, for n > 1

(7.0.9)

and then we have %n � eg(n) for all n = 1, 2, . . . , N .

In Table 7.1 we show the function values g(n) for n = 1, 2, . . . , N = 11 using (7.0.9). With

this a priori information we can construct the simplices i 2 X↵(w, N). These become the

indices i 2 NN
+

used for solving problem (7.0.1) with correlation lengths Lc = 1/2, 1/4, 1/16

and 1/64. This table also yields insight into the anisotropic behavior of each problem. In

the case of small correlation lengths, i.e. Lc = 1/64, we observe an almost equal weighing of

all stochastic directions, except for the first one. The opposite behavior can be seen as we

increase the correlation length. For example, when Lc = 1/2 the ratio between g(11) and

g = g(2) = g(3) is approximately 30 : 1.

Since the random variables Yn are uniformly distributed, in this case the Gaussian

abscissas correspond to the root of the Legendre polynomials. Recall from Section 4.4.4

that the Clenshaw-Curtis abscissas are nested and therefore, in practice, we exploit this

fact and construct the isotropic or anisotropic Smolyak interpolant using formula (4.4.7)

or (4.4.10) respectively. Hence, the number of points ⌘ = ⌘(w, N) = #H↵(w,N) can be

counted as in formula (6.1.16) or (6.2.15) respectively. On the other hand, the Gaussian

abscissas, described in Section 4.4.5, are not nested and to reduce the number of points
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Table 7.1: The N = 11 values of the function g(n) constructed from a priori information
given by (7.0.9) for correlation lengths Lc = 1/2, 1/4, 1/16, 1/64.

g(1) g(2) = g(3) g(4) = g(5) g(6) = g(7) g(8) = g(9) g(10) = g(11)

Lc = 1/2 0.20 0.19 0.42 1.24 3.1 5.8
Lc = 1/4 0.27 0.21 0.26 0.36 0.56 0.91
Lc = 1/16 0.48 0.36 0.37 0.37 0.38 0.40
Lc = 1/64 0.79 0.62 0.62 0.62 0.62 0.62

necessary to build the isotropic or anisotropic Smolyak interpolant one utilizes the variant of

(4.4.7) or (4.4.10), given by (4.4.8) or (4.4.11) respectively. Consequently, we can count the

number of points ⌘ used by the Smolyak interpolant as in (6.1.28) or (6.2.24) respectively.

The finite element space for the spatial discretization is the span of continuous functions

that are piecewise polynomials with degree two over a uniform triangulation of D with 4225

unknowns.

Observe, in general, that the collocation method only requires the solution of uncoupled

deterministic problems over the set of collocation points, even in the presence of a di↵usivity

coe�cient which depends nonlinearly on the random variables as in (7.0.3). This is a

significant advantage that the collocation method o↵ers compared to the classical Stochastic-

Galerkin finite element method as considered, for instance, in Babuška et al. (2004b);

Frauenfelder et al. (2005b); Matthies and Keese (2005); Xiu and Karniadakis (2002a). To

study the convergence of the isotropic and anisotropic Smolyak algorithms we consider a

problem with a fixed dimension N and investigate the behavior when the level w of the

interpolation in the Smolyak algorithm is increased linearly.

The computational results for the L2(D) approximation error to the expected value, E[u],

using the isotropic Smolyak interpolant, are shown in Figure 7.1. The isotropic Smolyak

algorithm for solving problem (7.0.1) was analyzed in Sections 6.1.1 and 6.1.2 and in the work

Nobile et al. (2006). To estimate the computational error in the w-th level we approximate

kE[✏]k ⇡ kE[A (w,N)⇡huN �A (w +1, N)⇡huN ]k using either Gaussian or Clenshaw-Curtis

abscissas. The results reveal, as expected, that for a small non-degenerate correlation length,

i.e. Lc = 1/64, the error decreases (sub)-exponentially, as the level w increases. We also

observe that the convergence rate is dimension dependent and slightly deteriorates as N

increases.

To investigate the performance of the isotropic algorithm by varying the correlation
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Figure 7.1: The rate of convergence of the isotropic Smolyak algorithm for solving problem
(7.0.1) with given correlation lengths Lc = 1/64 using both the Gaussian and Clenshaw-
Curtis abscissas. For a finite dimensional probability space �N with N = 5 and N = 11
we plot log(✏) versus the number of collocation points. The L2(D) approximation error in
the expected value for the anisotropic sparse collocation methods is given by: kE[✏]kL2

(D)

⇡
kE[A (w, N)⇡huN �A (w + 1, N)⇡huN ]kL2

(D)

where w = 0, 1, . . . , w.

length Lc we also include the cases where Lc = 1/16, Lc = 1/4 and Lc = 1/2 for both

N = 5 and N = 11, seen in Figure 7.2. We notice that the larger correlation lengths have

negative e↵ects on the rate of convergence. This can be explained by examining % defined by

(7.0.8). From this we see that the coe�cient % appearing in the estimates (6.2.19)-(6.2.20)

and (6.1.29)-(6.1.30), is approaching 1 as Lc becomes large. Hence, the e↵ect of increasing

Lc is a deterioration of the rate of convergence. This motivated developing and analyzing

the anisotropic Smolyak method, which will be the primary focus of the remainder of this

chapter.

The computational results for the L2(D) approximation error to the expected value,

E[u], using the anisotropic Smolyak interpolant, are shown in Figures 7.3. The anisotropic

Smolyak algorithm for solving problem (7.0.1) was analyzed in Sections 6.2.1 and 6.2.2 and

in the work Nobile et al. (2007). Here we consider the truncated probability space to have

dimensions N = 5 and N = 11 and we compute approximate solutions up to level w. To
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estimate the computational error in the w-th level, for 0  w  w, first we denote the

maximum index utilized by A↵(w, N) in each stochastic direction, (↵, w) 2 NN
+

, given

component-wise as:

n(↵, w) ⌘ max
i2X↵(w,N)

{in}. (7.0.10)

Then we introduce an enriched solution,

Ab↵(w + 1, N)⇡huN , with b↵n =

✓
n(↵, w)� 1

n(↵, w)

◆✓
↵n

↵

◆
, (7.0.11)

and approximate the computational error for w = 0, 1, 2, . . . , w as

kE[✏]k ⇡ kE[A↵(w, N)⇡huN �Ab↵(w + 1, N)⇡huN ]k. (7.0.12)

By construction, the enriched solution possesses a maximum index (b↵, w + 1) which is

larger by one in each direction, i.e. n(b↵, w + 1) = n(↵, w) + 1, n = 1, . . . , N .

Tables 7.2 and 7.3 show the values (↵, w) for computing A↵(w, N), with w =

0, 1, 2, . . . , w, as well as the value (b↵, w) for computing the enriched solution, Ab↵(w, N),

for the cases Lc = 1/2 and Lc = 1/64, respectively. The convergence plots shown in Figures

7.3 and 7.4 confirm, as expected, that the error decreases sub-exponentially, as the level w

increases linearly. For highly anisotropic problems, i.e. Lc = 1/2, we observe that the rate

of convergence is increased significantly with respect to the isotropic Smolyak method, as

we anticipated in Theorem 6.2.7. We also observe that the convergence rate is dimension

dependent and slightly deteriorates as N increases.

Table 7.2: The N = 11 components of the maximum indices (↵, w) and b = (b↵, w + 1),
defined by (7.0.10) and (7.0.11), respectively, used for solving problem (7.0.1) with a
correlation length Lc = 1/2.

w 
1

(↵, w) 
2

=
3

(↵, w) 
4

=
5

(↵, w) 
6

=
7

(↵, w) 
8

=
9

(↵, w) 
10

=
11

(↵, w)

0 1 1 1 1 1 1
1 1 2 1 1 1 1
2 2 3 1 1 1 1
3 3 4 2 1 1 1
4 4 5 2 1 1 1
5 5 6 3 1 1 1b 6 7 4 2 2 2

To investigate the performance of the anisotropic algorithm by varying the correlation

length Lc we examine Figure 7.4. We notice that the larger correlation lengths have positive
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Table 7.3: The N = 11 components of the maximum indices (↵, w) and b = (b↵, w),
defined by (7.0.10) and (7.0.11), respectively, used for solving problem (7.0.1) with a
correlation length Lc = 1/64.

w 
1

(↵, w) 
2

=
3

(↵, w) 
4

=
5

(↵, w) 
6

=
7

(↵, w) 
8

=
9

(↵, w) 
10

=
11

(↵, w)
0 1 1 1 1 1 1
1 1 2 2 2 2 2
2 2 3 3 3 3 3
3 3 4 4 4 4 4
4 4 5 5 5 5 5b 5 6 6 6 6 6

e↵ects on the rate of convergence. This can be explained by examining g(n) defined by

(7.0.9). From this we see that as Lc becomes large the higher dimensions weigh less

which greatly reduces the number of function evaluation required by the anisotropic sparse

collocation method. On the other hand, the e↵ect of decreasing Lc is a deterioration of the

rate of convergence, due to the equal weighing of all directions. In this case, our anisotropic

Smolyak algorithm and the isotropic Smolyak method obtain an equivalent convergence

rate. Our final interest is to compare our sparse tensor product methods, both isotropic

and anisotropic, with an anisotropic full tensor product method, proposed in Babuška et al.

(2005d) and also with the Monte Carlo method.

Recall, the isotropic Smolyak algorithm for solving problem (7.0.1) was analyzed in

Section 6.1 and the work Nobile et al. (2006) and can be constructed by equally weighing

all stochastic directions, e.g. ↵ = 1 2 RN
+

. To estimate the computational error in the

w-th level we approximate kE[✏]k ⇡ kE[A (w,N)⇡huN � A (w + 1, N)⇡huN ]k using either

Gaussian or Clenshaw-Curtis abscissas.

The anisotropic full tensor product algorithm can be described in the following way:

given a tolerance tol the method computes a multi-index p = (p
1

, p
2

, . . . , pN), corresponding

to the order of the approximating polynomial spaces P
p

(�N). This adaptive algorithm

increases the tensor polynomial degree with an anisotropic strategy: it increases the order

of approximation in one direction as much as possible before considering the next direction.

Table 7.4 and Table 7.5 show the values of components of the 11-dimensional multi-index

p for di↵erent values of tol, corresponding to Lc = 1/2 and Lc = 1/64 respectively. These

tables can also give insight into the anisotropic behavior of each particular problem and
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should be compared with Tables 7.4 and Table 7.5, respectively. Observe, in particular, for

the case Lc = 1/64 the algorithm predicts a multi-index p which is equal in all directions, i.e.

an isotropic tensor product space. A convergence plot for Lc = 1/2 and Lc = 1/64 can be

constructed by examining each row of the Table 7.4 and Table 7.5 respectively, and plotting

the number of points in the tensor product grid versus the error in expectation. We estimate

the error in expectation by kE[✏]k ⇡ kE[uN
h,p�uN

h,ep]k, with ep = (p
1

+1, p
2

+1, . . . , pN+1). This

entails an additional computational cost, which is bounded by the factor exp
⇣PN

n=1

1/pn

⌘
times the work to compute E[uN

h,p].

Table 7.4: The N = 11 components of the multi index p computed by he anisotropic full
tensor product algorithm when solving problem (7.0.1) with a correlation length Lc = 1/2.

tol N = 1 N = 2, 3 N = 4, 5 N = 6, 7 N = 8, 9 N = 10, 11

1.0e-04 1 1 1 1 1 1
1.0e-05 2 1 1 1 1 1
1.0e-06 2 2 1 1 1 1
1.0e-07 3 2 2 1 1 1
1.0e-08 4 3 2 1 1 1
1.0e-09 4 4 3 1 1 1
1.0e-10 5 5 3 2 1 1
1.0e-11 5 5 4 2 1 1
1.0e-12 5 6 4 2 1 1

Table 7.5: The N = 11 components of the multi index p computed by the anisotropic full
tensor product algorithm when solving problem (7.0.1) with a correlation length Lc = 1/64.

tol N = 1 N = 2, 3 N = 4, 5 N = 6, 7 N = 8, 9 N = 10, 11

1.0e-03 1 1 1 1 1 1
1.0e-06 2 2 2 2 2 2
1.0e-09 3 3 3 3 3 3
1.0e-12 4 4 4 4 4 4

The standard Monte Carlo Finite Element Method is the most common choice for anyone

solving SPDEs such as (7.0.1) or (7.0.2) (Burkardt et al., 2007; Babuška et al., 2005d).

If the aim is to compute a functional of the solution such as the expected value, one

would approximate E[u] numerically by sample averages of iid realizations of the stochastic

input data. Given a number of realizations, M 2 N
+

, we compute the sample average as

follows: For each k = 1, . . . ,M , sample iid realizations of a(!k, ·) and f(!k, ·), solve problem

(7.0.1) and construct finite element approximations uN
h (!k, ·). We note that once we have
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fixed ! = !k, the problem is completely deterministic, and may be solved by standard

methods as in the collocation approach. Finally, approximate E[u] by the sample average:

E[uN
h,k; M ](·) := 1

M

PM
k=1

uN
h (!k, ·).

For the cases Lc = 1/2, 1/4, 1/16 and 1/64 we take M = 2i, i = 0, 1, 2, . . . , 11

realizations and compute the approximation to the error in expectation by kE[✏]k ⇡
kE[uN

h,k; M ]�E[Ab↵(w+1, N)⇡huN ]k, where Ab↵(w+1, N) is the enriched anisotropic sparse

solution defined previously and b↵ is defined by (7.0.11).

To study the advantages of an anisotropic sparse tensor product space as opposed to the

isotropic sparse tensor product space or an anisotropic full tensor product space we show, in

Figure 7.5, the convergence of these methods when solving problem (7.0.1), using correlation

lengths Lc = 1/2, 1/4, 1/16 and Lc = 1/64 with N = 11. We also include 5 ensembles of the

Monte Carlo method described previously. Figure 7.5 reveals that for the isotropic case with

Lc = 1/64 the anisotropic and isotropic Smolyak method obtain a comparable convergence

rate, both faster than the anisotropic full tensor product method.

On the contrary, opposite behavior can be observed for Lc = 1/2. Since, in this case,

the rate of decay of the expansion is faster, the anisotropic full tensor method weighs

heavily the important modes and, therefore, achieves a faster convergence than the isotropic

Smolyak method. Similar conclusions can be made for the anisotropic Smolyak: the increased

convergence for this method comes from the fact that it combines an optimal treatment of

the problem anisotropy while reducing the curse of dimensionality via the use of sparse grids.

In all four cases we observe that all the 3 methods out-perform the Monte Carlo method.

We know that the amount of work to reach the accuracy ✏ in the Monte Carlo approach can

be approximated by ✏ ⇡ O(M�1/2) times the amount of work per sample, where M is the

number of samples. This is only a↵ected by the problem dimension through the increase of

the work per sample. Nevertheless, the convergence rate is quite slow and a high level of

accuracy is only achieved when an large amount of function evaluations are required. This

can been seen from Figure 7.5 where we include reference lines with slopes �1/2 and �1,

respectively, or in Table 7.6 where, for N = 11, we compare the work, proportional to the

number of samples, which is the number of collocation points, required by each method to

decrease the original error by a factor of 104 for all four correlation lengths Lc = 1/2, 1/4, 1/16

and Lc = 1/64.

The only aspect we have not yet discussed is applications to nonlinear problems such
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Table 7.6: For N = 11, we compare the number of function evaluations required by
the Anisotropic Smolyak (AS) using Clenshaw-Curtis abscissas, Anisotropic Full Tensor
product method (AF) using Gaussian abscissas, Isotropic Smolyak (IS) using Clenshaw-
Curtis abscissas and the Monte Carlo (MC) method using random abscissas, to reduce the
original error of problem (7.0.1), in expectation, by a factor of 104.

Lc AS AF IS MC

1/2 50 2.5⇥ 102 2.5⇥ 103 5.0⇥ 109

1/4 1.6⇥ 102 1.2⇥ 103 4.0⇥ 103 2.0⇥ 109

1/16 2.0⇥ 102 2.0⇥ 103 5.0⇥ 102 1.6⇥ 109

1/64 3.1⇥ 102 2.0⇥ 105 3.6⇥ 102 1.3⇥ 109

as (7.0.2). First, the well-posedness of the nonlinear problem was verified in Chapter

3. We observed in Section 3.4 that the analyticity requirement given by Assumption

1.3.1 is challenging to verify in the case of nonlinear elliptic PDEs. In what follows we

adopt the consequences of Assumption 1.3.1 and will show numerically that such regularity

requirements are still justified since we obtain similar convergence results as in the linear

problem (7.0.1). Moreover, we will also use the a posteriori approach, described in Section

5.2 to construct the anisotropic Smolyak method, described in Section 4.4.3. For a finite

dimensional probability space with N = 17 we will compare this procedure with the Monte

Carlo technique for computing the expected value E[u] of the nonlinear SPDE described by

(7.0.2).

In Example 6.1.1 we explained that for the linear problem described in Chapter 2, it was

shown in the work Babuška et al. (2005c) that for a multi-index p = (p
1

, . . . , pN), a tensor

product polynomial interpolation on Gaussian abscissas achieves exponential convergence in

each direction Yn. In fact, this result and all the results of this work can be extended to any

problem satisfying Assumption 1.3.1. We showed, in Theorem 3.4.1, that for the nonlinear

problem, in general, this is not a trivial assumption to extend. However, Figure 7.6 reveals

that the convergence of problem 7.0.2 maintains the exponential rate in each direction and

that provides us with enough optimism that these results remain valid and can be extended

to the general nonlinear case, described in Chapter 3.

In Figure 7.6 we take Lc = 1/64, 1/16, 1/4 and 1/2 and use the a posteriori method

described in Section 5.2 to plot log
10

("n), where the error "n is defined by (5.2.2), versus

the number of collocation points in each direction n = 1, 2, . . . , N = 11. Similar to Section

5.2 by using a linear least squares approximation to fit the data, the slope of each line will
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give an estimate of g(n). The values of g(n) for n = 1, 2, . . . , 11 can be seen in Table 7.7.

Table 7.7 reveals that the a posteriori selection of ↵ 2 RN
+

performs well at dictating the

behavior of problem (7.0.2) for the cases Lc = 1/2, 1/4, 1/16 and 1/64. In comparing with

Table 5.1 we see that exponential convergence rate predicted by g(n) for the linear example

7.0.1 is almost indistinguishable to the rate predicted by g(n) for the nonlinear problem

7.0.2. Again, we observe that for the highly anisotropic case, L = 1/2 the vector ↵ weighs

heavily in the higher dimensions as opposed to the highly isotropic case L = 1/64, that

approximately weighs equally in all directions.

Table 7.7: The N = 11 values of the function g(n) = ↵n constructed from a posteriori
information. The values g(n), n = 1, 2, . . . , N are the slopes of N linear least squares fits to
the error of an univariate anisotropic method when solving problem (7.0.2) with correlation
lengths Lc = 1/2, 1/4, 1/16 and 1/64.

g(1) g(2) = g(3) g(4) = g(5) g(6) = g(7) g(8) = g(9) g(10) = g(11)

Lc = 1/2 1.7 1.6 2.1 3.3 5.3 7.3
Lc = 1/4 2.0 1.7 1.6 1.9 2.4 2.8
Lc = 1/16 2.5 2.2 1.9 1.9 2.1 2.1
Lc = 1/64 3.1 2.4 2.5 2.4 2.5 2.4

To examine the extraordinary capabilities of the anisotropic Smolyak algorithm for

computing accurate solutions to problems with a moderately large amount of uncertainty

we compute the expected value , E[u], of the nonlinear problem (7.0.2) using a correlation

length Lc = 1/4. In this particular case, to fully resolve the noise requires N = 17 random

variables in the expansion given by (7.0.3). We employ the a posteriori approach described in

Section 5.2 to compute the weight ↵ 2 R17

+

used by the anisotropic Smolyak algorithm. For

this particular problem the isotropic Smolyak and anisotropic full tensor product methods

su↵er from the curse of dimensionality as the calculation of E[u] becomes computational

infeasible. Therefore, in Figure 7.7 we finally compare the anisotropic Smolyak algorithm

with the Monte Carlo method when problem (7.0.2) depends on a 17-dimensional probability

space. In Figure 7.7 we illustrate the computational results for the L2(D) approximation

error to the expected value, E[u], using the above two approaches. Similar to the linear

results described previously we observe that the anisotropic Smolyak method continues to

achieve faster convergence rates compared to Monte Carlo, even in the case where N = 17

and the underlying SPDE is nonlinear.
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Figure 7.2: The convergence of the isotropic Smolyak algorithm for solving problem (7.0.1)
with given correlation lengths Lc = 1/2, 1/4, 1/16 and 1/64 using both the Gaussian and
Clenshaw-Curtis abscissas. For a finite dimensional probability space �N with N = 5 and
N = 11 we plot log(✏) versus the logarithm of the number of collocation points. The L2(D)
approximation error in the expected value for the isotropic sparse collocation methods is given
by: kE[✏]kL2

(D)

⇡ kE[A↵(w, N)⇡huN �A↵(w + 1, N)⇡huN ]kL2
(D)

where w = 0, 1, . . . , w.

105



0 1000 2000 3000 4000 5000 6000 7000 8000
!14

!13

!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

# points

L
o

g
1

0
(L

2
 e

rr
o

rs
)

Errors vs. # points 

0 1000 2000 3000 4000 5000 6000 7000 8000
!14

!13

!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

# points

L
o

g
1

0
(L

2
 e

rr
o

rs
)

Errors vs. # points 

0 1000 2000 3000 4000 5000 6000 7000 8000
!14

!13

!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

# points

L
o

g
1

0
(L

2
 e

rr
o

rs
)

Errors vs. # points 

0 1000 2000 3000 4000 5000 6000 7000 8000
!14

!13

!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

# points

L
o

g
1

0
(L

2
 e

rr
o

rs
)

Errors vs. # points 

N = 5

N = 11
N = 11

N = 5

N = 5

N = 5

N = 11N = 11

lo
g 1

0(
L2

er
ro

r)

N = 5, 11 & L = 1/64

lo
g 1

0(
L2

er
ro

r)
lo

g 1
0(

L2
er

ro
r)

lo
g 1

0(
L2

er
ro

r)

N = 5, 11 & L = 1/2 N = 5, 11 & L = 1/4

N = 5, 11 & L = 1/16

Anisotropic Smolyak with Clenshaw-Curtis abscissas (N = 11)

Anisotropic Smolyak with Gaussian abscissas (N = 11)

Anisotropic Smolyak with Clenshaw-Curtis abscissas (N = 5)
Anisotropic Smolyak with Gaussian abscissas (N = 5)

# points # points

# points # points

Figure 7.3: The rates of convergence of the anisotropic Smolyak algorithm for solving
problem (7.0.1) with given correlation lengths Lc = 1/2, 1/4, 1/16 and 1/64 using both
the Gaussian and Clenshaw-Curtis abscissas. For a finite dimensional probability space �N

with N = 5 and N = 11 we plot log(✏) versus the number of collocation points. The L2(D)
approximation error in the expected value for the anisotropic sparse collocation methods is
given by: kE[✏]kL2

(D)

⇡ kE[A↵(w, N)⇡huN � Ab↵(w, N)⇡huN ]kL2
(D)

where w = 0, 1, . . . , w
and b↵ is defined by (7.0.11).
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Figure 7.4: The convergence of the anisotropic Smolyak algorithm for solving problem (7.0.1)
with given correlation lengths Lc = 1/2, 1/4, 1/16 and 1/64 using both the Gaussian and
Clenshaw-Curtis abscissas. For a finite dimensional probability space �N with N = 5 and
N = 11 we plot log(✏) versus the logarithm of the number of collocation points. The L2(D)
approximation error in the expected value for the anisotropic sparse collocation methods is
given by: kE[✏]kL2

(D)

⇡ kE[A↵(w, N)⇡huN � Ab↵(w, N)⇡huN ]kL2
(D)

where w = 0, 1, . . . , w
and b↵ is defined by (7.0.11).
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Figure 7.5: A 11-dimensional comparison of the anisotropic Smolyak method, the isotropic
Smolyak method, the anisotropic full tensor product algorithm and Monte Carlo approach
for solving problem (7.0.1) with correlation lengths Lc = 1/2, 1/4, 1/16 and 1/64. The L2(D)
approximation error in the expected value for the sparse collocation methods is given by:
kE[✏]kL2

(D)

⇡ E[A↵(w,N)⇡huN�Ab↵(w, N)⇡huN ] where w = 0, 1, . . . , w and b↵ is defined by
(7.0.11). The L2(D) approximation error in the expected value for the anisotropic full tensor
product method is given by: kE[✏]kL2

(D)

⇡ kE[uN
h,p � uN

h,ep]kL2
(D)

, where p = (p
1

, p
2

, . . . , pN)
and ep = (p

1

+1, p
2

+1, . . . , pN +1). The L2(D) approximation error in the expected value for
the Monte Carlo method is given by: kE[✏]kL2

(D)

⇡ kE[uN
h,k; M ]� E[Ab↵(w, N)⇡huN ]kL2

(D)

,
where M = 2i, i = 0, 1, 2, . . . , 10.
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Figure 7.6: A linear least square approximation to fit log
10

(kE["n]kL2
(D)

) versus pn with "n

defined by (5.2.2). For n = 1, 2, . . . , N = 11 we plot the cases corresponding to Lc = 1/2,
1/4, 1/16 and 1/64 when solving the nonlinear problem given by (7.0.2).
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Figure 7.7: A 17-dimensional comparison of the anisotropic Smolyak method with Monte
Carlo approach for solving problem (7.0.2) with correlation lengths Lc = 1/4 using the
a posterirori approach described in Section 5.2. The L2(D) approximation error in the
expected value for the anisotropic sparse collocation method is given by: kE[✏]kL2

(D)

⇡
E[A↵(w,N)⇡huN �Ab↵(w, N)⇡huN ] where w = 0, 1, . . . , w and b↵ is defined by (7.0.11). The
L2(D) approximation error in the expected value for the Monte Carlo method is given by:
kE[✏]kL2

(D)

⇡ kE[uN
h,k; M ]� E[Ab↵(w,N)⇡huN ]kL2

(D)

, where M = 2i, i = 0, 1, 2, . . . , 10.
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CHAPTER 8

SUMMARY

In this work we proposed and analyzed several sparse grid stochastic collocation methods for

solving both linear and nonlinear elliptic partial di↵erential equations whose coe�cients and

forcing terms depend on a finite number of random variables. When introducing the novel

weighted Smolyak method we also described an optimal choice for the weight parameters.

These weights adaptively tune the anisotropy of the method for each given problem. Their

systematic choice can be based both on a priori or a posteriori information and is motivated

by the regularity of the solution and the error estimates derived in this work. The sparse grids

are constructed from the Smolyak algorithm, utilizing either Clenshaw-Curtis or Gaussian

abscissas. Both methods lead to the solution of uncoupled deterministic problems and, as

such, are fully parallelizable like a Monte Carlo method.

This method extends the work proposed in Babuška et al. (2005c) where a stochastic

collocation method on tensor product grids was proposed to solve problem (1.1.2). Not

only do we include nonlinear elliptic problems, as in Example 1.1.2, but the use of sparse

grids considered in the present work (as opposed to full tensor grids), reduces considerably

the curse of dimensionality and allows us to treat e↵ectively problems that depend on a

moderately large number of random variables, while keeping a high level of accuracy. The

new methods can be found in our latest works Nobile et al. (2006, 2007).

Upon assumption that the solution depends analytically on each random variable (which

is a reasonable assumption for a certain class of applications, see Babuška et al. (2004b,

2005c)), we have provided a full convergence analysis and demonstrated (sub)-exponential

convergence of the “probability error” in the asymptotic regime and algebraic convergence

of the “probability error” in the pre-asymptotic regime, with respect to the total number of

collocation points used in the sparse grid.
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The main theoretical results for the isotropic and anisotropic methods are given in

Theorem 6.1.2, Theorem 6.1.8 and Theorem 6.2.7, Theorem 6.2.13 respectively. The

consequences of these results are confirmed numerically by the examples presented in Chapter

7.

The isotropic Smolyak method, introduced in Section 4.4.2 and analyzed in Section 6.1,

is very e↵ective for problems whose input data depend on a moderate number of random

variables, which “weigh equally” in the solution. For such an isotropic situation the displayed

convergence is faster than standard collocation techniques built upon full tensor product

spaces.

On the other hand, the convergence rate deteriorates when we attempt to solve highly

anisotropic problems, such as those appearing when the input random variables come e.g.

from Karhunen-Loève-type truncations of “smooth” random fields. In such cases, a full

anisotropic tensor product approximation, as proposed in Babuška et al. (2005c,d), may still

be more e↵ective for a small or moderate number of random variables.

To facilitate faster convergence for these types of problems we also introduced an

anisotropic version of the Sparse Grid Stochastic Collocation method in Section 4.4.3, which

combines an optimal treatment of the anisotropy of the problem while reducing the curse of

dimensionality via the use of sparse grids. Again, our theoretical results shown in Section

6.2 are confirmed numerically in Chapter 7 and we see that our new method outperforms the

previous existing numerical methods, such as Stochastic Galerkin (Section 4.3), Full tensor

product interpolation (Section 4.4.1) and Monte Carlo (Section 4.2), to solve problems such

as (1.1.2) and (1.1.3) depending on a moderately large number of random variables.

One aspect that we did not consider in this work was the large computation cost that

is e↵ected by each realization. Determining accurate statistical information about outputs

from ensembles of realizations is very di�cult whenever the input-output map involves the

(computational) solution of systems of nonlinear partial di↵erential equations, such (1.1.3).

Recently, in applications such as control and optimization that also require multiple solutions

of PDEs, there has been much interest in reduced-order models (ROMs) that greatly reduce

the cost of determining approximate solutions.

Future directions of this research will include the combination of sparse grid techniques

in a probability setting with the use of ROMs for determining outputs that depend on

solutions of stochastic PDEs. One is then able to cheaply determine much larger ensembles,
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but this increase in sample size is countered by the lower fidelity of the ROM used to

approximate the state. In the contexts of proper orthogonal decomposition-based ROMs,

we will explore these counteracting e↵ects on the accuracy of statistical information about

outputs determined from ensembles of solutions. For a particular nonlinear SPDE, we will

devote the next chapter to investigating the use of ROMs as an e↵ective technique to further

reduce the complexity of such problems. This will serve as the groundwork of much future

work and research endeavors (Burkardt et al., 2007).
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CHAPTER 9

A REDUCED-ORDER MODEL FOR SOLVING
SPDES: A PROMISING RESEARCH DIRECTION

Realistic simulations of complex systems governed by nonlinear partial di↵erential equations

must account for the “noisy” features of the modeled phenomena, such as material properties,

coe�cients, domain geometry, excitations and boundary data. “Noise” can be understood

as uncertainties in the specification of the physical model; because of noise, the behavior of

a complex system is at least partially unpredictable. A simulation can attempt to capture

the noisy aspects of a system by describing the simulation input data as random fields. This

turns the problem into a stochastic partial di↵erential equation (SPDE). We will consider

such problems, characterized by nonlinear partial di↵erential equations, and for which the

input data are not purely deterministic; for example, the coe�cients or the right-hand-side

of the partial di↵erential equation may be regarded as sums of a deterministic and stochastic

function.

For a given system, various stochastic perturbation techniques have been considered

(Allen et al., 1998; Alós and Bonaccorsi, 2002; Babuška and Liu, 2001; Babuška et al., 2005b,

2004a; Davie and Gaines, 2000; Deb et al., 2001a; Mytnik, 2002; Yan, 2002, 2003). This

chapter will focus on nonlinear SPDE’s in which the stochastic inputs are modeled as white

noise, i.e., they are not significantly correlated. The aim of our work is to e�ciently determine

statistical information about the random field u = u(t,x;!) from numerical approximations

of the nonlinear SPDE driven by white noise:

du

dt
= Au� �N(u) + g + ✏

dW

dt
, x 2 D, ! 2 ⌦, t > 0. (9.0.1)

Here D ⇢ Rd, d = 1, 2, 3, is a convex, bounded and polygonal spatial domain, (⌦,F , P ) is

a probability space described in section 9.1, and A is a linear second-order elliptic operator
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with deterministic coe�cients, defined on a space of functions satisfying certain boundary

conditions, N(u) is a nonlinear function of the random process u, g represents a deterministic

function and W denotes an infinite dimensional Brownian motion or Wiener process. The

additive noise that appears in (9.0.1) is in the form of space-time Brownian white noise as

described in section 9.1.1. The amplitudes of the noise and the nonlinearity are controlled

by parameters ✏ and �, respectively. Once the equation is reformulated into a weak form, the

usual Galerkin finite element approach can be used to produce a discretized system suitable

for solution on a computer.

Generally, obtaining precise statistics about ensembles of realizations of nonlinear SPDEs

such as (9.0.1) entails a high cost in both memory and CPU. This cost is exhibited in many

recent attempts on similar problems (Dalang and Mueller, 2003; Gyongy, 1999; Gyongy

and Martinez, 2003). Even with the use of reliable nonlinear solvers and carefully chosen

solution schemes, these computations involve formidable work. Typical finite element codes

may require the use of many thousands of degrees of freedom for the accurate simulation of

deterministic PDEs. The situation becomes far worse when the same techniques are extended

to SPDEs (Du and Zhang, 2002) for which multiple realizations are usually required.

It is natural to consider a reduced-order model (ROM), such as Burkardt et al. (2003,

2004). A reduced-order model attempts to determine acceptable approximate solutions of

a PDE while using very few degrees of freedom. One way to achieve this e�ciency is for

the models to use basis functions that are in some way intimately connected to the problem

being solved. Once a low-dimensional reduced basis has been determined, it may be used

in a new Galerkin system to solve related instances of the PDE. In this way, a ROM may

be used to e�ciently explore the behavior of large ensembles of PDE solutions. This is the

kind of e�ciency needed when attempting to compute realistic statistics from outputs of the

SPDE.

There have been many reduced-order modeling techniques proposed; see Burkardt et al.

(2003, 2004); Kunisch and Volkwein (2001); Nagy (1979) and the references cited therein.

The most popular reduced-order modeling approach for nonlinear PDEs is based on proper

orthogonal decomposition (POD) analysis. POD begins with a set of em precomputed

solutions of the equation, often called snapshots; these could be generated by evaluating

the computational solution of a transient problem at many instants of time or over a range

of values of the problem parameters. These solutions are presumably obtained using costly,

115



large-scale, high-fidelity codes. The K-dimensional POD basis is then formed from the K

eigenvectors corresponding to the dominant eigenvalues of the snapshot correlation matrix.

This basis may then be used to construct a new finite element system of much reduced

order, suitable for generating approximate solutions, at least within a limited range of the

underlying snapshot data. POD-based model reduction has been applied with some success

to several problems, most notably in fluid mechanics. For detailed discussions, one may

consult Aubry et al. (1993); Berkooz et al. (1993); Berkooz and Titi (1993); Burkardt et al.

(2003, 2004); Deane et al. (1991); Graham and Kevrekidis (1996); Holmes et al. (1996,

1997); Kunisch and Volkwein (1999, 2001); Lumley (1970); Park and Cho (1996); Park and

Chung (2002); Park (2000); Park and Lee (1998, 2000, 2002); Rathinam and Petzold (2003,

2002); Ravindran (2000a,b); Rodŕıguez and Sirovich (1990); Sirovich (1987); Smaoui and

Armbruster (1997); Volkwein (1999, 2001).

The e�ciency of a POD basis comes from its low dimension combined with its good

approximating power. However, the ability of a POD-based basis to approximate the

state of a system is totally dependent on the information contained in the snapshot set.

Certainly, a POD-based basis cannot contain more information than that contained in the

snapshot set. Thus, crucial to the success of the POD-based approaches to model reduction

is the generation of “good” snapshot sets, which manage to capture a wide range of system

behaviors.

In order to present a standard approach, we focus on the case D = (0, 1) ⇥ (0, 1) ⇢ R2,

I := [t1, T ], a bounded interval of R and Au = �u =
⇣

@2

@x2 + @2

@y2

⌘
u with homogeneous

Dirichlet boundary conditions. However, much of our results and computations can be readily

extended to higher spatial dimensions and more general second-order elliptic operators. An

e↵ort has been made to present most of this discussion using the familiar terminology from

standard finite element methods for the numerical approximation of deterministic PDEs.

This final chapter is organized as follows: we first formulate the idea of a probability

space, a Wiener process and Brownian motion in a plane half strip. Next, we discuss

discrete Brownian white noise, the model nonlinear stochastic PDE and its finite element

approximation. We then apply the Monte Carlo-Galerkin finite element method, introduced

in Section 4.2, by sampling input data for the nonlinear SPDE and then approximating the

corresponding realization of the solution. Reduced-order models (ROMs) are generated and

analyzed with respect to noise driven by the Brownian motion; computational error results
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are presented. Finally, some concluding remarks are given.

9.1 Some notation

We begin by recalling the mathematical formulation of a probability space (⌦,F , P ), where

⌦, F and P are the set of random events, the minimal �-algebra of subsets of ⌦, and the

probability measure, respectively. We define D ⇢ RN to be a bounded spatial domain.

If X is a real random variable in (⌦,F , P ) with X 2 L1(⌦), we denote its expected value

by

E [X] =

Z
⌦

X(!)P ( d!) =

Z
R

xµ( dx). (9.1.1)

Here µ is the distribution probability measure for X, defined on the Borel set B of R, given

by

µ(B) = P
�
X�1(B)

�
. (9.1.2)

We will assume that µ (B) is absolutely continuous with respect to Lebesgue measure; then

there exists a density function for X, ⇢ : R ! R+, such that

E [X] =

Z
R

x⇢(x) dx. (9.1.3)

Next, we define what is meant by a measurable stochastic and Wiener process and

formally explain the concept of a Brownian motion on a plane half-strip (otherwise known

as a Brownian sheet):

Definition 9.1.1 An (N, d)-valued stochastic process U(z) =
�
U(z); z 2 RN

+

 
=

{(U
1

(z), . . . ,Ud(z))}
z2RN

+
, defined on a probability space (⌦,F , P ), is measurable if

U : ⌦⇥ RN
+

! Rd

is F ⇥ B(RN
+

) measurable.

Notice that when N = 1, U is just an Rd-valued stochastic process.

Definition 9.1.2 An R-valued stochastic process W (t) = {W (t)}t2R1
+

is called a Brownian

motion or Wiener process if

• W
0

= 0 a.s.,
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• Wt �Ws is N(0, t� s)1 for all t � s � 0

• for all times 0 < t
1

< t
2

< · · · < tn, the random variables Wt1 , Wt2 �Wt1 , . . . ,Wtn �
Wtn�1 are independent (“independent increments”).

Notice that

E(Wt) = 0, E(W 2

t ) = t for each t � 0.

We complete this section by defining Brownian motion on a plane half strip or Brownian

sheet W(t, z), t 2 R1

+

and z 2 RN�1

+

.

Definition 9.1.3 Let W(t, z) = {W(t, z)}t2R1
+, z2RN�1

+
denote an (N, d) Brownian sheet.

That is, W is the N-parameter Gaussian random field with values in Rd, its mean-function is

zero, and its covariance function is given by the following: for all t, s 2 R1

+

and z,w 2 RN�1

+

and all 1  i, j  d,

E (Wi(t, z) ·Wj(s,w)) =

8>>><>>>:
(t ^ s)⇥

NY
k=1

(zk ^ wk), if i = j

0, if i 6= j.

We have written W(t, z) in vector form as {(W
1

(t, z), . . . ,Wd(t, z))}t2R1
+, z2RN�1

+
, as is

customary. When N = 1, W is just Brownian motion in Rd.

Now consider the three-dimensional Gaussian white noise

�W(t,x) =
@3W

@t@x
1

@x
2

(t,x;!), x = (x
1

, x
2

) 2 D ⇢ R2,

where W(t,x) is Brownian motion on a half plane or a Brownian sheet satisfying, for

t, s 2 R1

+

and x,y 2 D:

E (�W(t,x) ·�W(s,y)) = �(t� s)⇥ �(x� y)

= �(t� s)⇥ �(x
1

� y
1

)⇥ �(x
2

� y
2

) (9.1.4)

with � the usual Dirac �-function. According to Allen et al. (1998), application of standard

finite element techniques requires that �W(t,x) = �W(t, x
1

, x
2

) be modeled by the

piecewise constant random process given in the following section.
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Figure 9.1: Piecewise constant approximation for the noise �cW(t,x), defined by 9.1.5, at
the final time T = 1 over a uniform finite element triangulation. The number of elements
ranges from fM = 2 to fM = 512.

9.1.1 The approximation of Brownian white noise

Following Allen et al. (1998); Du and Zhang (2002); Yan (2002), we regularize the noise

through discretization. For simplicity, we use a uniform discretization 0 = t1 < t2 < · · · <

tn < · · · < t
eN = T of the time interval [t1, T ] given by

tn+1 = t1 + n�t, t > 1

with �t = (T � t
1

)/ eN , for some integer eN large enough so that �t 2 (0, 1). Likewise, we

consider a uniform finite element triangulation {⌧j}fM
j=1

of the square D characterized by the

parameter h, which we take to be the longest side of any triangle. We denote by �⌧ the

area of any of the finite elements.

Using the finite element triangulation {⌧j}fM
j=1

of D, and guided by Lemma 9.1.4, a

“reasonable” piecewise constant approximation of the noise is given by

�cW(t,x) =
@3cW

@t@x
1

@x
2

(t,x;!) = c eN fM

eNX
i=1

fMX
j=1

⌘ij(!)�i(t)�j(x), (9.1.5)

where

c eN fM =
1p

�t
p
�⌧

and, for i = 1, 2, . . . , eN�1, j = 1, 2, . . . , fM�1, ⌘ij 2 N(0, 1) is independently and identically

distributed (iid),
p
�t
p
�⌧ ⌘ij =

Z ti+1

ti

Z
⌧j

dW(t,x),

1 N(0, t� s) is the zero-mean Gaussian (or normal) distribution with variance t� s
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�i(t) =

⇢
1, if ti  t < ti+1,
0, otherwise

and �j(x) =

⇢
1, if x 2 ⌧j,
0, otherwise .

That is, �i(t) is the characteristic function for the ith time interval and �j(x) is the

characteristic function for the jth finite element. For an arbitrary i and j, the discrete

analog of (9.1.4) for the piecewise constant approximation to �cW is given by

E
⇣
�cW(t,x) ·�cW(s,y)

⌘
=

8><>:
1

�t
⇥ 1

�⌧
, if ti  t, s < ti+1 and x,y 2 ⌧j,

0, otherwise

Therefore,

lim
eN,fM!1

E
⇣
�cW(t,x) ·�cW(s,y)

⌘
= �(t� s)⇥ �(x� y)

as required. In Figure 9.1.1, some sample realizations of the piecewise constant approxima-

tion of the three-parameter white noise are displayed for �t = 1 and various values of fM at

the final time T = 1.

Similarly to Allen et al. (1998), we have the following result for a nonrandom function

f(t,x).

Lemma 9.1.4 Let f be a nonrandom function and Lipschitz continuous on [0, T ] ⇥
[0, 1] ⇥ [0, 1]. In particular, assume that there is a positive constant � � 0 such that

|f(t,x)� f(s,y)|  � (|t� s|+ kx� yk) for (t,x), (s,y) 2 [0, T ]⇥ [0, 1]⇥ [0, 1]. Then

E

Z T

0

Z
D

f(t,x) dW(t,x)�
Z T

0

Z
D

f(t,x) dcW(t,x)

�
2

 2T�2

�
(�t)2 + h2

�
.

Proof. The proof is as follows:

E

Z T

0

Z
D

f(t,x) dW(t,x)�
Z T

0

Z
D

f(t,x) dcW(t,x)

�
2

= E

24 eNX
i=1

fMX
j=1

Z ti+1

ti

Z
⌧j

f(t,x) dW(t,x)

�
eNX

i=1

fMX
j=1

Z ti+1

ti

Z
⌧j

f(s,y)

 
1

�t�⌧

Z ti+1

ti

Z
⌧j

dW(t,x)

!
dy ds

352

= E

24 eNX
i=1

fMX
j=1

Z ti+1

ti

Z
⌧j

 
f(t,x)� 1

�t�⌧

Z ti+1

ti

Z
⌧j

f(s,y) dy ds

!
dW(t,x)

352
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=

eNX
i=1

fMX
j=1

Z ti+1

ti

Z
⌧j

 
f(t,x)� 1

�t�⌧

Z ti+1

ti

Z
⌧j

f(s,y) dy ds

!
2

dx dt

=

eNX
i=1

fMX
j=1

Z ti+1

ti

Z
⌧j

 
1

�t�⌧

Z ti+1

ti

Z
⌧j

(f(t,x)� f(s,y)) dy ds

!
2

dx dt

 �2

(�t�⌧)2

eNX
i=1

fMX
j=1

Z ti+1

ti

Z
⌧j

 Z ti+1

ti

Z
⌧j

(|t� s|+ kx� yk) dy ds

!
2

dx dt

 �2

(�t�⌧)2

eNX
i=1

fMX
j=1

Z ti+1

ti

Z
⌧j

 Z ti+1

ti

Z
⌧j

(�t + h) dy ds

!
2

dx dt

= �(�t + h)2

eNX
i=1

fMX
j=1

Z ti+1

ti

Z
⌧j

dx dt  2T�2

�
(�t)2 + h2

�
.

⇤

9.2 The model nonlinear SPDE and its finite element
approximation

In this section we discuss the formulation of the nonlinear stochastic PDE and its finite

element approximation. Let D = D
1

⇥ D
2

be a bounded region in R2 whose boundary

is denoted @D; let T denote a positive constant. Denote x = (x
1

, x
2

) 2 D such that

x
1

2 D
1

and x
2

2 D
2

. Let ✏ denote the given (constant) perturbation parameter that

measures the amplitude of the space-time white noise
@3W

@t@x
1

@x
2

(t,x;!). Furthermore, let g

be a deterministic function. We consider the model nonlinear stochastic partial di↵erential

equation on a bounded interval I := (0, T ) ⇢ R as follows: find u : Ī ⇥D ! R such that8>>><>>>:
@u

@t
(t,x)��u(t,x) + �N(u(t,x)) = g(t,x) + ✏

@3W

@t@x
1

@x
2

(t,x;!), in I ⇥D

u(t,x) = 0, on @D

u(0,x) = 0, in D,

(9.2.1)

where N : Ī ⇥ D ! R is a nonlinear function of u(t,x) and � denotes the strength of

the nonlinearity. Setting ✏ = 0 reduces (9.2.1) to a deterministic PDE for which standard

reduced-order methods apply. Similarly, setting � = 0 reduces (9.2.1) to a linear stochastic

PDE.

Generally, when discussing the stochastic process u(t,x;!), we will omit the explicit
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dependence on the probability space ⌦, treating each realization as a deterministic PDE,

unless it will be useful for clarity’s sake to make this dependence explicit.

9.2.1 The nonlinear Monte Carlo finite element method

For our first attempt at a ROM for nonlinear SPDEs we decided to apply the Monte Carlo

Finite Element Method as outlined in Section 4.2. Our aim is to approximate the integral

E (u(· ;!)) numerically by sample averages of iid realizations corresponding to sample white

noise functions. In fact, all the statistics we are interested in are really integrals of a function

u(· ;!) over ⌦.

We begin with a variational formulation, to define a finite element method suitable for

producing approximate solutions of (9.2.1); of course, many other methods could also be

used. A variational formulation of (9.2.1) is the following: find u(t, ·), t 2 I, such that8>>>>>>>>>><>>>>>>>>>>:

Z
D

u(t,x)�(x) dD +

Z T

0

Z
D

{ru ·r�} dD ds

+ �

Z T

0

Z
D

N(u(s,x))�(x) dD ds

=

Z T

0

Z
D

g(s,x)�(x) dD ds + ✏

Z T

0

Z
D

�(x) dW(s,x),

u(0,x) = 0, in D.

(9.2.2)

for all � 2 H1

0

(D). The last integral in (9.2.2) is understood in the Itô sense.

The semi-discretization in space leads to the following problem: find u(t, ·) 2 H1

0

(D),

t 2 I, such that

(ut,�(x))L2
(D)

+ B(u,�) = F (�) for all � 2 H1

0

(D) (9.2.3)

where

B(u,�) =

Z
D

ru ·r� dD + �

Z
D

N(u(t,x))�(x) dD

= (ru,r�)L2
(D)

+ (N(u),�)L2
(D)

(9.2.4)

and

F (�) =

Z
D

 
g(t,x) + ✏

@3cW
@t@x

1

@x
2

(t,x;!)

!
�(x) dD

= (g,�)L2
(D)

+
⇣
�cW,�

⌘
L2

(D)

(9.2.5)

respectively. We note that ut := @u
@t

.
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For each realization of the piecewise constant noise �cW, a realization of the approximate

solution is computed, using a time-marching scheme such as the standard backward Euler-

Galerkin finite element method. Linearization is accomplished by a Newton or Quasi-Newton

approach. Here it will be helpful to write the solution as u(· ;!) to emphasize the dependence

on the probability space (⌦, F , P ). The challenge is that we do not know u(· ;!), as this

remains an unknown quantity of interest. Hence, we formulate a solution procedure that

does not require knowledge of a functional form for u(· ;!) for all ! 2 ⌦.

The Monte Carlo method for the problem (9.0.1) is defined as follows:

1. Choose the number of realizations M 2 N
+

and a piecewise continuous finite element

approximating space of D, Sh
0

.

2. For each k = 1, . . . ,M , sample iid realizations of the piecewise constant noise

�cW(· ;!k) and produce approximations uh(· ;!k) 2 Sh
0

such that

(uh
t (· ;!k),�

h)L2
(D)

+ eB(uh(· ;!k),�
h)

= fF (�h) =
⇣
g(·) + ✏�cW(· ;!k),�

h
⌘

L2
(D)

8�h 2 Sh
0

where eB and fF are the stochastic forms of (9.2.4) and (9.2.5) respectively, defined by

8! 2 ⌦ : eB(�
1

,�
2

) = B(�
1

,�
2

;!) 8�
1

,�
2

2 H1

0

(D)

and fF (�
2

) = F (�
2

;!) 8�
2

2 H1

0

(D).

Once we have fixed ! = !k, the problem is completely deterministic, and may be solved

by standard methods.

3. Approximate E[u](x) by the sampling average:

E(uh; M) =
1

M

MX
k=1

uh(· ;!k) (9.2.6)

We only consider the case where Sh
0

is fixed for all realizations, in particular, we have fixed

the triangulation {⌧j} of D and employ a backward-Euler scheme for the time discretization.
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9.3 A Reduced-order model for the nonlinear SPDE

In this section, we briefly describe the reduced-order model (ROM) for the nonlinear SPDE

(9.2.1). In Section 9.4, we will use a concrete example to exhibit the relative accuracy

and e�ciency of the ROM compared to the standard FEM approach. The generation of

the reduced-order model requires a set of snapshot solution vectors; see section 9.4.1 for a

discussion of snapshots.

9.3.1 POD reduced-order bases

Given a discrete set of snapshot vectors W = {~wn}N
n=1

belonging to RJ , we form the J ⇥N

snapshot matrix A whose columns are the snapshot vectors ~wn:

A =
�
~w

1

~w
2

· · · ~wN

�
.

Let

UT AV =

✓
⌃ 0
0 0

◆
,

where U and V are J ⇥ J and N ⇥ N orthogonal matrices, respectively, and ⌃ =

diag(�
1

, . . . ,�fM) with �
1

� �
2

� · · · � �fM be the singular value decomposition of A.

Here, fM is the rank of A, i.e., the dimension of the snapshot set W , which would be less

than N whenever the snapshot set is linearly dependent. It can easily be shown that if

U =
�
~�

1

~�
2

· · · ~�J

�
and V =

�
~ 

1

~ 
2

· · · ~ N

�
,

then

A~ i = �i
~�i and AT ~�i = �i

~ i for i = 1, . . . , fM
so that also

AT A~ i = �2

i
~ i and AAT ~�i = �2

i
~�i for i = 1, . . . , fM

so that �2

i , i = 1, . . . , fM , are the nonzero eigenvalues of AT A (and also of AAT ) arranged in

nondecreasing order. The matrix C = AT A is simply the correlation matrix of the snapshot

vectors W = {~wn}N
n=1

, i.e., we have that Cmn = ~wT
m ~wn.

In the reduced-order modeling context, given a set of snapshots W = {~wn}N
n=1

belonging

to RJ , the POD reduced basis of dimension K  N < J is the set {~�k}K
k=1

of vectors also
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belonging to RJ consisting of the first K left singular vectors of the snapshot matrix A. Thus,

one can determine the POD basis by computing the (partial) singular value decomposition

of the J ⇥N matrix A. Alternately, one can compute the (partial) eigensystem {�2

k, ~ i}K
i=1

of the N ⇥N correlation matrix C = AT A and then set ~�k = 1

�k
A~ k, k = 1, . . . , K.

The K-dimensional POD basis has the obvious property of orthonormality. It also has

several other important properties which we now mention. Let {~sk}K
k=1

be an arbitrary set

of K orthonormal vectors in RJ and let ⇧~w denote the projection of a vector ~w 2 RJ onto

the subspace spanned by that set. Further, let

E(~s
1

, . . . ,~sK) =
NX

n=1

|~wn � ⇧~wn|2,

i.e., E is the sum of the squares of the error between each snapshot vector ~wn and its

projection ⇧~wn onto the span of {~sk}K
k=1

. Then, it can be shown that⇢
the POD basis {~�k}K

k=1

minimizes E over all possible
K-dimensional orthonormal sets in RJ .

(9.3.1)

In fact, the POD basis corresponding to a set of snapshots W = {~wn}N
n=1

is often defined

by (9.3.1), and then its relation to the singular value decomposition of the matrix A, or to

the eigenvalue decomposition of AT A, are derived properties. We note that E(~�
1

, . . . , ~�K)

is referred to as the “POD energy” or “error in the POD basis.” Also, it can be shown that

E(~�
1

, . . . , ~�K) =

fMX
k=K+1

�2

k, (9.3.2)

i.e., the error in the POD basis is simply the sum of the squares of the singular values

corresponding to the neglected POD modes.

Another property of the POD basis is given as follows:8>>><>>>:
the POD basis {~�k}K

k=1

solves the sequence of problems:

for k = 1, . . . , K, max
~sk2RJ

NX
n=1

�
~wT

n~sk

�
2

subject to |~sk| = 1 and ~sT
j ~sk = 0 for j = 1, . . . , k � 1.

(9.3.3)

Again, (9.3.3) is often used to define the POD basis and then its relation to the singular

value decomposition and (9.3.1) are noted as derived properties.
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The singular values of the snapshot matrix may be used to determine a practical value

for the dimension K of the POD basis. Indeed, it is a simple matter to show that if one

requires the error in the POD basis to be less than some prescribed tolerance �, i.e., that

E(~�
1

, . . . , ~�K)  �,

then one need only

choose K to be the smallest
integer such that

PK
k=1

�2

kPfM
k=1

�2

k

� 1� �.

The usefulness of POD-based reduced-order modeling is derived from the observation that

in many settings one finds that, even if � is chosen to be relatively small, e.g., 0.01, one can

still be able to use a basis of low order K; K is usually much smaller than fM and might be

of order 10 or so.

For reduced-order modeling applications, the snapshot vectors are coe�cient vectors

in the expansion of the finite element approximation of the stochastic process evaluated at

di↵erent instants in time. Thus, to each snapshot vector ~wn, n = 1, . . . , N , there corresponds

a finite element function

wn(x) =
JX

j=1

wj,n�j(x) 2 Sh
0

, (9.3.4)

where wj,n denotes the j-th component of the vector ~wn and �j(x) 2 V h
0

denotes the j-th

finite element basis function. One can define a POD basis with respect to functions instead

of vectors, i.e., we could start with a snapshot set W = {wn(x)}N
n=1

consisting of finite

element functions belonging to Sh
0

. Then, instead of (9.3.3), one could define the POD basis

{�k(x) 2 V h
0

}K
k=1

to be the solution of the sequence of problems: for k = 1, . . . , K,

max
sk(x)2V h

0

NX
n=1

hwn, ski2
0

subject to ksk(x)k
0

= 1 and hsj, ski0 = 0 for j = 1, . . . , k � 1. Note that h· , ·i
0

= h· , ·iL2
(D)

.

Equivalently, one could define the POD basis to be the solution of the problem: minimize

E(s
1

, . . . , sK) =
NX

n=1

kwn � ⇧wnk2

0

over all possible K-dimensional L2(D)-orthonormal sets {sk(x)}K
k=1

in V h
0

, where ⇧wn is the

L2(D)-projection of wn onto the span of the functions {sk(x)}K
k=1

. Moreover, one can instead
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determine the POD basis by first solving the N ⇥N eigenvalue problem: for k = 1, . . . , fM ,

C~ak = �2

k~ak, |~ak| = 1, ~aT
` ~ak = 0 if k 6= `, and �k � �k�1

> 0, (9.3.5)

then setting

�k(x) =
NX

n=1

1

�k

ak,nwn(x) for k = 1, . . . , K.

Here, we have that the rank fM  N correlation matrix C is defined by Cmn = hwm, wni0,
and ak,n is the n-th component of the eigenvector ~ak. Note that in terms of the snapshot

matrix A and the mass matrix M for the finite element basis, i.e., for Mij = (�i,�j)0

, we

now have that C = AT MA. This fact allows us to again use the singular value decomposition

to determine the POD basis function. To this end, let M = ST S, where the J ⇥ J matrix

S may be chosen to be a symmetric, positive definite square root of M, i.e., S = M1/2, or S
could be a Cholesky factor, i.e., ST = L. Then, we let eA = SA so that C = AT MA = eAT eA
and therefore ~ak, k = 1, . . . , K, are the first K right singular vectors of eA.

9.3.2 The POD reduced-order models

We now show how a POD basis is used to define a reduced-order model for the nonlinear

stochastic PDE (9.2.1). For the sake of brevity, we only discuss the case for which the

snapshot set is viewed as a set of finite element coe�cient vectors; the case for which the

snapshot set is a set of finite element functions proceeds in similar manner.

Let {~�k}K
k=1

be a K-dimensional POD basis corresponding to the snapshot set {~wn}N
n=1

.

For each ~�k, k = 1, . . . , K, there is a finite element function

�k(x) =
JX

j=1

�j,k�j(x) 2 Sh
0

, (9.3.6)

where �j,k denotes the jth component of ~�k. Let

UK = span{�k}K
i=1

⇢ Sh
0

.

As will be explained in Section 9.4.1, the reduced basis functions satisfy homogeneous

boundary conditions. We then seek a reduced basis approximation of the stochastic process

field of the form

uK(t, ·) 2 UK .
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We determine uK(t, ·), t 2 I, from the discrete problem8>>>>>>>>>><>>>>>>>>>>:

Z
D

@uK

@t
�(x) dD +

Z
D

{ruK ·r�} dD

+ �

Z
D

N(uK(s,x))�(x) dD

=

Z
D

 
g(t,x) + ✏

@3cW
@t@x

1

@x
2

(t,x;!)

!
�(x) dD

uK(0,x) = 0, in D 8�(x) 2 UK .

(9.3.7)

The reduced basis approximation of the stochastic process takes the form

uK(t, ·) =
KX

k=1

↵k(t;!)�k

and (9.3.7) may be expressed as8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

KX
k=1

d↵k

dt

Z
D

�k(x)�j(x) dD +
KX

k=1

↵k(t)

Z
D

r�kr�j dD

+ �

Z
D

N

 
KX

k=1

↵k(t)�k(x)

!
�j dD

=

Z
D

 
g(t,x) + ✏

@3cW
@t@x

1

@x
2

(t,x;!)

!
�j(x) dD

KX
k=1

↵k(0;!)�k(x) = 0, in D,

(9.3.8)

for j = 1, . . . , K. Equivalently, we have the system of nonlinear ordinary di↵erential

equations that determine the coe�cient functions {↵k(t;!)}K
k=1

:8<: G d

dt
~↵(t;!) + eG~↵(t;!) + ~N (~↵(t;!)) = ~f(t;!)

~↵(0;!) = ~↵
0

,
(9.3.9)

where the Gram matrix G, sti↵ness matrix eG, nonlinear vector function ~N (~↵(t;!)), and

solution vector ~↵(t;!) are respectively given by

Gjk =

Z
D

�k(x)�j(x) dD, eGjk =

Z
D

r�kr�j dD,

~N (~↵(t;!)) = �

Z
D

N

 
KX

k=1

↵k(t;!)�k(x)

!
�j dD and (~↵)k = ↵k(t;!)
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for j, k = 1, . . . , K, while the forcing vector ~f(t;!) and initial data vector ~↵
0

are respectively

given by

(~f)j =

Z
D

 
g(t,x) + ✏

@3cW
@t@x

1

@x
2

(t,x;!)

!
�j(x) dD

and

(~↵
0

)j = 0

for j = 1, . . . , K. Unlike the matrices in a standard FEM formulation, these matrices are

not sparse; but their order K is so much smaller (see Section 9.4) that their density is of

no consequence. Another important observation is that matrices G, eG, depend only on the

reduced basis functions {�k}K
k=1

so that they may all be pre-computed.

9.3.3 The error in a reduced-order solution

At any given time t, we define the “error” E(t) in a POD reduced-order solution to be the

L2(D)-norm of the di↵erence between the expected value of the full finite element solution

and the expected value of the reduced-order solution, i.e.,

E(t) =

(Z
D

✓Z
⌦

uh(t,x;!)P ( d!)�
Z

⌦

uK(t,x;!)P ( d!)

◆
2

dD

)
1/2

=

⇢Z
D

�
E
⇥
uh(t,x;!)

⇤� E
⇥
uK(t,x;!)

⇤�
2

dD

�
1/2

⇡
⇢Z

D

�
E(uh; M)� E(uK ; M)

�
2

dD

�
1/2

, (9.3.10)

where uh(t,x;!) denotes the approximate stochastic process determined using the full

finite element simulation code, and uK(t,x;!) denotes the approximate stochastic process

determined by a POD reduced-order model. The expected value E(·) is defined in Section

9.1. Using the standard MCFEM described in section 9.2.1, we approximate E(uh) by

sampling averages E(uh; M) where M is the number of sample realizations. We can use a

similar Monte Carlo reduced-order modeling technique to approximate E(uK) by E(uK ; M)

for the same number of sample realizations. Also of interest is the space-time error

ET =

⇢Z T

0

E2(s) ds

�
1/2

=

⇢Z T

0

Z
D

�
E
⇥
uh(t,x;!)

⇤� E
⇥
uK(t,x;!)

⇤�
2

dD ds

�
1/2

⇡
⇢Z T

0

Z
D

�
E(uh; M)� E(uK ; M)

�
2

dD ds

�
1/2

. (9.3.11)
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There are two contributions to these “errors.” One is due to the fact that the reduced-

order model does not exactly reproduce the information contained in the snapshot set; the

other to the fact that the snapshot set itself cannot exactly represent the full finite element

solution.

Recall that the POD reduced bases are determined from a set of snapshots and that

those bases are designed so that most of the information in the snapshot set is captured.

But because we truncate the singular value decomposition quite early, it is clear that even

if the only solutions encountered were linear combinations of snapshot vectors, there would

be many such solutions which would lie partially or entirely outside the span of the reduced

basis.

Even if a reduced basis could exactly capture all the information in the snapshot set, the

errors (9.3.10) and (9.3.11) would not vanish because the snapshot set itself cannot exactly

capture all the behaviors allowed in the full finite element space.

A snapshot cannot exactly represent even the finite element solutions used in its

construction because that set consists of a time-sampling of those solutions. Also, a snapshot

set represents only a discrete set of sampled values of any system parameters or boundary

conditions. Strong nonlinearities in those e↵ects can reveal that a snapshot set is inadequate

for a given problem.

The analyst must therefore always keep in mind the limitations of the snapshot approach.

On the other hand, it is easy to automate, and generally quite practical. It has been

demonstrated many times in the literature that POD-based reduced-order models are

excellent at exploiting the information contained in a snapshot set; the computational

experiments reported in Section 9.4 provide one such example. Thus, a key to designing

reduced-order models of the POD type is to ensure that the snapshot set contains su�cient

information for the problems to be considered.

9.4 Computational experiments

We compare the use, e�ciency, and accuracy of the POD-based reduced-order modeling

techniques on an example. We consider a nonlinear stochastic PDE in which a perturbation

parameter ✏ controls the intensity of the space-time white noise. The problem has a relatively

strong cubic nonlinearity, in which the strength of the nonlinear function N(u(t,x) =

u(1�u)2 is � = 10. The nonlinear stochastic PDE is rewritten as follows: find u : Ī⇥D ! R
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such that 8>>>>>>>><>>>>>>>>:

@u

@t
(t,x)��u(t,x) + 10 u(t,x)(1� u(t,x))2

= et sin(x
1

) cos(x
2

) + ✏
@3cW

@t@x
1

@x
2

(t,x;!), in I ⇥D

u(t,x) = 0, on @D

u(0,x) = 0, in D,

(9.4.1)

where x = (x
1

, x
2

) and the deterministic forcing term g(t,x) = et sin(x
1

) cos(x
2

).

The Galerkin finite element method on a square grid of J = 1089 nodes is used in the

discrete weak formulation, described in section 9.2.1, to obtain accurate stochastic Galerkin

finite element approximations of solutions of (9.4.1). This choice of spatial dimension is

arbitrary; however for this initial study, a relatively coarse grid was chosen to allow us to

compute multiple realizations of the stochastic example problem (9.4.1). The time derivative

is discretized by a backward-Euler method. Newton’s method is used to solve the fully

discrete nonlinear stochastic PDE. Finite element solutions are used for the generation of

snapshots and later for comparison with POD-based reduced-order solutions.

The snapshot solutions are generated by the finite element method applied to problem

(9.4.1) for a particular number of realizations; each realization samples the piecewise constant

white noise �cW(· ;!) with a specific perturbation parameter ✏ whose assignment is to be

discussed next.

9.4.1 Generating snapshots

For all simulations involved in the snapshot generation process, ✏ is chosen to have the

value 0.1. The snapshot vectors are determined by the following procedure. First, for

k = 1, . . . , eK = 10 realizations and t 2 I = (0, 1), a finite element approximation is

determined
PJ

j=1

w(t;!k)�(x) of the solution of (9.4.1), where J denotes the dimension

of the finite element space Sh
0

, and {�j}J
j=1

denotes the basis functions for that space. This

is the approximate stochastic process used to generate the snapshots. For S = 200 and

P = 10, the N = S ⇥ P = 2000 snapshot vectors

~wn = ~wsp =

0BBB@
w

1

(ts;!p)

w
2

(ts;!p)
...

wJ(ts;!p)

1CCCA , for s = 1, . . . , S, and p = 1, . . . , P (9.4.2)
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are then determined for P realizations of (9.4.1). For each realization p = 1, . . . , P ,

the solution is started impulsively, and evaluated at 200 equally spaced time values ts,

s = 1, . . . , 200, ranging from t = 0 to T = 1, for a total of 2000 snapshots. The time interval

used for sampling snapshots is the same used for the time discretization of the nonlinear

SPDE (9.4.1). The snapshot vectors {~wn}N
n=1

correspond to the snapshot functions

wn(x) = wsp(x) =
JX

j=1

wj(ts;!p)�j(x) for n = 1, . . . , N.

It is sometimes convenient to modify the snapshot set {~wn}N
n=1

to satisfy certain boundary

conditions. In this case, the snapshot vectors naturally satisfy the Dirichlet homogeneous

boundary conditions. It might also seem relevant to compute the sample average of the P

realizations and use the resulting S snapshot vectors rather than the complete N snapshot

vectors in the reduced-order model. In the next section, it is explained why this approach

was not employed.

9.4.2 POD reduced bases

POD reduced bases corresponding to the snapshot set {~wn}N
n=1

are determined as described

in Section 9.3.1. As described in the previous section, each POD basis function satisfies zero

Dirichlet boundary conditions on the boundary �D. The elements of a K-dimensional POD

basis constitute the first K elements of all POD bases of dimension greater that K. For

the snapshot set determined as described in Section 9.4.1, the 16-dimensional POD basis

functions are displayed in Figure 9.3 and the first 16 singular values of the corresponding

Table 9.1: The first 16 singular values of the snapshot matrix for the example problem
(9.4.1).

1 34.0387 5 8.8536 9 6.4498 13 5.5122
2 13.0477 6 8.4762 10 6.1230 14 4.8172
3 11.7138 7 7.3131 11 5.8013 15 4.7471
4 9.7154 8 7.1571 12 5.5966 16 4.6712

snapshot matrix are listed in Table 9.1. In the context of POD-based reduced-order modeling,

one expects the singular values to decrease rapidly, indicating that a low-dimension POD

basis can capture most of the information in the snapshot set. This behavior cannot, of

course, be universal, but it has been observed in many examples. In our particular problem
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Figure 9.2: The first 100 singular values of the snapshot matrix for the example problem
(9.4.1).

we observe from Table 9.1 and Figure 9.2, that the singular values of the corresponding

snapshot matrix decay rather slowly to zero. However, we shall show in section 9.4.5

that the POD-based reduced-order models for the nonlinear SPDE still perform adequately

for the approximation of ensemble averages of finite element solutions, rather than for

the approximate finite element solutions themselves; this is the usual case for POD-basis

reduced-order models. That is, a “small-dimensional” POD basis can still be su�cient if our

primary interest is approximating the expected value of finite element solutions, and not the

approximation of a particular realization.

Note that if one computes the sample average of the P realizations and uses the resulting

S snapshot vectors rather than the complete N snapshot vectors, the resulting singular

values decay at the same rate. Therefore, the smaller snapshot set does not provide any

extra information or improvement over our reduced-order calculation.

9.4.3 Determining POD-based reduced-order approximations

Given a perturbation parameter ✏ and a particular ! 2 ⌦, the K-dimensional system of

nonlinear ordinary di↵erential equations (9.3.9) is used to determine reduced-order solutions

of the example problem (9.4.1). Approximate solutions of the system of ordinary di↵erential

equations (9.3.9) can be determined using an ODE solver of appropriate order. The
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Figure 9.3: The POD reduced basis of cardinality 16 for the nonlinear stochastic problem
9.4.1.

computations described here use the finite element type assembly, described in section 9.2,

for the considerably smaller K-dimensional system.

The vectors and matrices appearing in the system (9.3.9) depend only on the choice of

reduced basis, so that once a POD basis is determined as described in section 9.4.2 it can be

reused for di↵erent choices of ✏ and !. This is a major advantage of POD-based reduced-order

models, where the primary interest is the approximation of the expected value E[uh(· ;!)](x).

Similar to the MCFEM described in section 9.2.1, we again use a Monte Carlo sampling

method for the reduced-order model. That is, given the number of realizations M 2 N
+

we

sample iid realizations of the piecewise constant white noise �cW(· ;!k) for k = 1, . . . ,M

and find uK(· ;!) satisfying (9.3.7). The quantity E[uK(· ;!)](x) is then approximated by

the sampling average:

E(uK ; M) =
1

M

MX
k=1

uK(· ;!k). (9.4.3)

To illustrate the e↵ectiveness of the low-dimensional, POD-based reduced-order models,

we employ several perturbation parameters ✏ and several di↵erent choices for the dimension

of the reduced bases. Note that the set {!p}P
p=1

used to generate the snapshot vectors

{~wn}N
n=1

is distinct from the set {!k}M
k=1

used to calculate the sample average (9.4.3).
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9.4.4 Perturbation parameters for POD-based reduced-order mod-
els

The specific choices used for ✏ in the reduced-order simulation are given as follows. For

M = 1000 realizations, we compute the sampling average E(uK ; M), described by (9.4.3),

using several di↵erent cases: ✏ = 0, 0.01, 0.05, 0.1, 0.5, 1. In each case, the reduced-order

solution uK satisfies (9.3.7).

It is worth noting something about the six perturbation parameters ✏ used in these

computational experiments: For all cases except ✏ = 0.1, the perturbation parameter is

di↵erent from the parameter used to generate the snapshots. This is, of course, how one

wants to use a reduced-order model: generate a reduced basis using snapshots determined

from finite element simulations for some specific choice of data for the example problem

(9.4.1), and then solve the reduced-order model for a variety of di↵erent data. For those

cases, the reduced-order simulations are carried out over the time interval [0, 1], which is the

same time interval used to generate the snapshots.

9.4.5 Computational results

For all six cases, full finite element solutions employing thousands of unknowns are deter-

mined so that they may be compared to the POD-based reduced-order solutions for the same

data. Specifically, for the comparisons, we use the measures E(t) and ET defined in (9.3.10)

and (9.3.11), respectively.
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Figure 9.4: E(t) for the POD-based reduced-order models with ✏ = 0 and ✏ = 0.1. The
plots are on the same scale indicated the e↵ects on the error by introducing the perturbation
parameter ✏ into the ROM.

In Figure 9.6, plots of E(t) versus the time t are provided for each of the six test problems
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described in Section 9.4.4. In each plot, results are displayed for eight values of the POD

basis K, ranging from 2 to 16. Each plot has been scaled separately, to exhibit the drop in

error as K increases. To consider the e↵ect of ✏, we also provide, in Figure 9.4, a panel of plots

drawn to the same scale, for ✏ = 0 and ✏ = 0.01. A comparison of these plots demonstrates

the e↵ect of introducing noise into the system (9.0.1), while also suggesting how well the

mean of the reduced-order solution still approximates the mean of the finite element solution

of the deterministic PDE. Both plots indicate that the error grows with ✏ but can be reduced

by increasing K. Obviously, for a given K, by increasing ✏, the approximation error E(t)

will generally be larger.

For the example problem (9.4.1), an examination of Figure 9.6 shows that very low-

dimensional POD-based reduced-order models are quite e↵ective at approximating the

expected value of the full finite element solutions; even for bases of dimension less than

10, the “error” E(t) is small. As the perturbation parameter increases, though, a larger

number of basis vectors are required to control the error E(t). It should be noted that for

small perturbation parameters, 0 < ✏  0.01, the error E(t) follows the error for the case

✏ = 0, with the obvious stochastic e↵ects present. The results also suggest that, for this

problem, increasing the order of the reduced basis beyond about K = 10 produced very

little further improvement in accuracy. This conclusion can also be inferred from Table 9.2

where the space-time “error” ET versus K is listed. There is a much slower reduction in the

error as K increases from 10 to 16 than the change from 2 to 10.

Table 9.2: ET for the POD-based reduced-order models vs. the dimension K of the reduced
basis space for the six test cases.

K ✏ = 0 ✏ = 0.01 ✏ = 0.05 ✏ = 0.1 ✏ = 0.5 ✏ = 1
2 3.17e-02 3.19e-02 3.90e-02 5.07e-02 1.25e-01 2.08e-01
4 3.03e-02 3.06-02 3.72e-02 4.79e-02 1.15e-01 1.89e-01
6 2.61e-02 2.66e-01 3.44e-02 4.54e-02 1.09e-01 1.76e-01
8 2.37e-02 2.42e-02 3.25e-02 4.34e-02 1.04e-01 1.67e-01
10 2.36e-02 2.41e-02 3.18e-02 4.22e-02 9.99e-02 1.60e-01
12 2.31e-02 2.36e-02 3.10e-02 4.11e-02 9.96e-02 1.53e-01
14 2.24e-02 2.29e-02 3.01e-02 4.00e-02 9.37e-02 1.48e-01
16 2.12e-02 2.17e-02 2.93e-02 3.91e-02 9.13e-02 1.44e-01

Finally, Figure 9.6 and Table 9.2 show that POD-based reduced-order models have

the ability to approximate the expected value of full finite element solutions by solving
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a very small dimensional system. This is also evident from observing Figure 9.5 which

plots the approximate expected value E(uh) using the full FEM versus the approximate

expected value E(uK) using the reduced-order model with 2, 8 and 16 POD vectors at times

t = 0, 0.25, 0.5, 0.75 and 1. From this plot we see that as the dimension K increases from 2

to 16 the quality of the approximation improves dramatically.

t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

Full FE Basis 2 POD Basis 8 POD Basis 16 POD Basis

Figure 9.5: The approximate expected value E(uh), using the full FEM versus the ap-
proximate expected value E(uK) using the ROM with 2, 8 and 16 POD vectors at times
t = 0, 0.25, 0.5, 0.75 and 1. All plots are generated for the case ✏ = 0.1.
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Figure 9.6: E(t) for the POD-based reduced-order models for Cases 1-6. As the perturbation
parameter ✏ increases from 0 to 1.0, the scale of the plots is adjusted to clearly display the
error behavior.
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9.5 Summary

We saw in section 9.3.1 that snapshots can be viewed either as finite element coe�cient

vectors or as finite element functions. The net e↵ect of taking the latter view is the

appearance of the finite element mass matrix M in, e.g., (9.3.5). Although handling the

appearance of the mass matrix does not add a significant cost to the determination of a

reduced basis, it also does not appreciably improve the performance of the reduced-order

model. For this reason, in section 9.4.5, we only provided results based on viewing snapshots

as coe�cient vectors.

The results given in Section 9.4.5 suggest that POD-based reduced-order modeling can be

very e↵ective in approximating the expected value of solutions of a nonlinear stochastic PDE

driven by space-time additive white noise. It is therefore appropriate to briefly examine the

cost of these POD-based reduced-order models. If one settles on a reduced-order modeling

technique that relies on the generation of snapshots, then one only needs to discuss the

production of a reduced-order basis when comparing the cost of such a procedure. That is,

regardless of the type of reduced-order model employed, one must certainly “pay the price”

of computing a snapshot set. The expense of extracting the reduced order basis from the

snapshot set is minuscule compared to the cost of generating the snapshot set itself.

POD methods have attracted much research interest in recent years as an inexpensive

means of simulating deterministic PDEs. To our knowledge, little work has been done on

extending this method to the field of stochastic PDEs, and yet this is a field of study which

seems ideal for this approach, given the need to consider a vast ensemble of solutions. We

hope that this work invites further inquiry by others into a relatively open area.

There are many worthwhile problems to consider in both linear and nonlinear stochastic

PDEs. For instance, using a Karhunen-Loève representation of the input data, described by

Example 1.2.2, provides greater correlation and information concerning the random fields.

Studies of these cases may lead to a better understanding of the errors that occur when

approximating ensemble averages of solutions by a reduced-order model. More importantly,

the coupling of this ROM technique with the sparse collocation methods described in

Chapters 1 - 7 will be of critical importance since our eventual goal is to solve realistic

engineering applications. Such investigations will increase the understanding, interest and

application of these methods for the analysis of the stochastic dynamics of linear and
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nonlinear problems of practical interest (Deang et al., 2001; Faris and Jona-Lasino, 1982;

Sancho et al., 1998; Shardlow, 2005, 2003, 2004).
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CHAPTER 10

CONCLUDING REMARKS AND FUTURE
RESEARCH

The major contribution of this work was the development and analysis of a novel weighted

Smolyak method, describing an optimal choice for the weight parameters. These weights

adaptively tune the anisotropy of the method for each given problem. The methodology

behind this approach can be based both on a priori or a posteriori information and is

motivated by the regularity of the solution and the error estimates derived in this work.

The method proposed here can be viewed as a natural extension of our previous works;

the full tensor Stochastic Collocation method described in Babuška et al. (2005c) and the

isotropic Sparse Grid Stochastic Collocation method Nobile et al. (2006).

The new technique consists of a Galerkin approximation in physical space and an

anisotropic collocation in probability space, at the zeros of sparse tensor product polynomials

utilizing either Clenshaw-Curtis or Gaussian knots. As a consequence of the collocation

approach our techniques naturally lead to the solution of uncoupled deterministic problems

that are trivially parallelizable, as in the Monte Carlo method.

The error estimates derived in this work predict a rate of convergence that is at least

algebraic with respect to the total number of collocation points. Similarly to the Monte

Carlo method, the number of collocation points is directly proportional to the computational

work required by the algorithm. Furthermore, the derived estimates provide a glimpse into

future directions in this area. We observe that for problems possessing coe�cients that are

truncated expansions with proper decay in each probability direction, there may not be a

deterioration in the exponent of the algebraic convergence with respect to the truncation

dimension. This is a substantial advantage when comparing to the previous works; see

Babuška et al. (2005c) and Nobile et al. (2006).
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The numerical examples included in this work gave computational ground to the

theoretical results and suggest that the actual convergence rate of the method may be

superior to the prediction yielded by the current error estimates. The numerical results

include a comparison of the new weighted Smolyak method with the methods from Babuška

et al. (2005c), Nobile et al. (2006) and the standard Monte Carlo. In particular, for

moderately large dimensional problems, the anisotropic sparse grid approach seems to be

very e�cient and superior to all examined methods.

Some of the immediate research directions and possible future areas of study we would

like to pursue include topics that are extensions of my current e↵orts, while others are areas

we are interested in and look forward to exploring. Each of these areas are discussed below.

• Regularity of solutions to nonlinear SPDEs: For certain classes of

problems, the solution may have very regular dependence on input random variables.

Rigorous analysis of solution regularity with respect to the random variables is fundamental

since it dictates the rate of convergence. For instance, it was shown in Babuška et al. (2005c)

and Babuška et al. (2004b) that the solution of a linear elliptic PDE with di↵usivity coe�cient

and/or forcing term described as truncated expansions of random fields is analytic in the

input random variables. In Chapter 3 we provided a similar proof, under mild assumptions

for a nonlinear elliptic problem with a quadratic nonlinearity.

This is an area of extreme interest to us and we intend to pursue several varying

approaches in the future, to prove this result in general. In particular, we are optimistic

that borrowing techniques from abstract nonlinear parabolic theory will assist in validating

this result. For example, the works Lunardi (1987, 2004); Escher and Simonett (2003) prove

that the solution to a fully nonlinear parabolic problem admits an analytic extension in some

region of the complex plane with respect to the parameter t (time). In this setting we can

think of the parameter t as the noise parameter yn 2 �n = [�1, 1] and we can attempt to

extend these analyticity results to our particular problem, described by 3.4.2.

Broadening these abstract theoretical results will open the door to many new appli-

cations. In particular, the work of Takáč et al. (1996) proved the analyticity of essentially

bounded solutions to semilinear parabolic systems with applications to the Ginzburg-Landau

equations. It is this direction that we predict this area of study to be headed. This thesis is

just a beginning to many realistic engineering applications which we intend to devote much
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future research.

• Parameter identification in nonlinear SPDEs: An important inverse

problem in applications (biochemistry, physics, bioengineering) is to fit a system of nonlinear

SPDEs to observed data, possibly corrupted by random measuring errors. Let the given data

be a set of measurements {⌘(t, x,!); t 2 (0, T ), x 2 D,! 2 ⌦} (or a discrete set, even a finite

number of snapshots in time, or on a small portion D� of the physical domain D), and

suppose that these data are to be modeled by a system of equations of the form

@y

@t
(t, x,!)=f

⇣
t, x,!, y(t, x,!),ry(t, x,!),�y(t, x,!); �(t, x,!)

⌘
(10.0.1)

with some boundary and initial conditions, where � is the parameter to be determined by

fitting. In most cases, the system of SPDEs cannot be solved in closed form, so it is necessary

to combine a numerical solver with the parameter identification process. We seek � so that

the corresponding computed solutions y� match the measured data ⌘.

The method that we use is a nonlinear least square approach, i.e. we minimize the

expected value

L (�) = E
Z

(0,T )⇥D

⇣
y�(t, x,!)� ⌘(t, x,!)

⌘
2

dxdt

�
,

with respect to �, and subject to the restriction y� being a solution of (10.0.1). We treat this

as a target-tracking optimal control problem, where we will extend our work (Gunzburger

et al., 2007) to prove the existence of a global minimizer and use adjoint-based first order

necessary conditions for optimality to write a gradient type numerical algorithm to find the

parameter � that corresponds to the ⌘ measurements.

• Combining deterministic ROMs with Sparse Grid probabilistic

techniques : There are many worthwhile problems to consider in both linear and

nonlinear stochastic PDEs. For instance, rather than the white noise approach in Burkardt

et al. (2007) described in Chapter 9, using a Karhunen-Loève representation of the random

fields discussed in our earlier work (Nobile et al., 2006, 2007; Babuška et al., 2007), provides

greater correlation and information concerning the random fields. Studies of these cases

may lead to a better understanding of the errors that occur when approximating ensemble

averages of solutions by a ROM. More importantly, the coupling of this reduced-order
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modeling technique with the sparse collocation methods described in Sections 4.4.2 and

4.4.3 will be of critical importance, since our eventual goal is to solve realistic engineering

applications. Such investigations will increase the understanding, interest and application of

these methods for the analysis of the stochastic dynamics of linear and nonlinear problems

of practical interest.

•Extending our SPDE techniques to solve complicated applications:

In the future we would like to focus on the development of mathematical theory and e�cient

numerical algorithms to produce reliable numerical approximations for a wide variety of

applied problems. In particular, it has been my goal since first investigating SPDEs to

research Multiscale Methods for Fluid-Structure Interaction, where the interaction between

distinct regions is random or uncertain. An example application of this type of algorithm is

modeling blood-flow through a pulsating heart, and the blood endocardial wall interactions

involved.

The fluid mechanics formulation will be based on multiscale and stabilized finite element

methods for the incompressible Navier-Stokes equations with random coe�cients and source

terms. It is in this setting that we intend to couple my existing stochastic techniques.

We already have insight into the regularity of solutions to the stochastic Navier Stokes

equations with respect to the noise parameterization. Along with the fact that our stochastic

techniques are “embarrassingly parallel” and we can reuse deterministic codes, we are

extremely confident that we can expect analytical and computational successes in this area.

• Verification and Validation (V&V): The main aim of our stochastic sim-

ulations is to derive some predictions, which could be the basis for decision making.

A major question is how reliable these predictions are. The areas of Verification and

Validation address the question above. In particular, “Validation” relates to the reliability

of the mathematical model (a completely formulated mathematical problem) which is solved

numerically, while “Verification” relates to the quality of a numerical solution to the given

mathematical model. The Verification step is purely a mathematical problem, while the

Validation and prediction steps pose much more complex problems.

Recently, there have been many interesting publications attempting to improve the

e↵ectiveness of V&V, all revealing the need to perform nondeterministic computational

simulations in comparison with experimental data. It is this parallel that exists to my

144



own e↵orts that we believe must be addressed in order for V&V to be more e↵ective in

improving confidence in computational predictive capability. We are eager to explore this

area further.

In closing, we firmly believe that our research in several areas of applied mathematics,

in particular the cutting-edge field of SPDEs and their numerical solutions, will undeniably

generate both intellectual interest on the part of our colleagues and fellow researchers in the

field, and monetary support as an extension of the current widespread appeal this type of

work has invariably gained. Many of the areas in which we have devoted our attention have

been recently explored however, there still are vast uncharted areas in these fields where we

feel our techniques would be adept at conquering. We are anxious to get started.
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4242-0, applications in science and engineering. 4

Gunzburger, M., C. Trenchea, and C. Webster, 2007: Analysis of an optimal control problem
for nonlinear stochastic partial di↵erential equations. In progress. 143, 160

151



Gyongy, I., 1999: Lattice approximations of stochastic quasi-linear parabolic partial di↵er-
ential equations driven by space-time white noise ii. Potential Analysis , 11(1-37). 115

Gyongy, I. and T. Martinez, 2003: On the approximation of solutions of stochastic di↵erential
equations of elliptic type. Tech. rep., Universidad Autónoma de Madrid. 115

Helton, J. and F. Davis, 2003: Latin hypercube sampling and the propagation of uncertainty
in analyses of complex systems. Reliability Engineering and System Safety , 81, 23–69. 6

Helton, J. C., 1997: Analysis in the presence of stochastic and subjective uncertainties.
Journal of Stochastical Computations and Simulations , 57, 3–76. 3

Hlaváček, J., I. Chleboun, and I. M. Babuška, 2004: Uncertain input data problems and the
worst scenario method . Elsevier, Amsterdam. 2

Holmes, P., J. Lumley, G. Berkooz, and P. Holmes, 1996: Turbulence, Coherent Structures,
Dynamical Systems and Symmetry . Cambridge University Press. 116

Holmes, P., J. Lumley, G. Berkooz, J. Mattingly, and R. Wittenberg, 1997: Low-dimensional
models of coherent structures in turbulence. Phys. Rep., 287, 337–384. 116

Johnson, C., 2000: Adaptive computational methods for di↵erential equations. In ICIAM
99 (Edinburgh), Oxford Univ. Press, Oxford, pp. 96–104. 1
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J. Sci. Comput., 18(1526-1532). 116

Smolyak, S., 1963: Quadrature and interpolation formulas for tensor products of certain
classes of functions. Dokl. Akad. Nauk SSSR, 4, 240–243. 9, 42

Sobol0, I. M., 1994: A primer for the Monte Carlo method . CRC Press. 43

—, 1998: On quasi-Monte Carlo integrations. Math. Comput. Simulation, 47, 103–112. 44

Soize, C., 2003: Random matrix theory and non-parametric model of random uncertainties
in vibration analysis. J. Sound Vibration, 263(4), 893–916. 2

—, 2005: Random matrix theory for modeling uncertainties in computational mechanics.
Comput. Methods Appl. Mech. Engrg., 194(12-16), 1333–1366. 2

Soize, C. and R. Ghanem, 2004: Physical systems with random uncertainties: chaos
representations with arbitrary probability measure. SIAM J. Sci. Comput., 26(2), 395–410
(electronic). 2
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