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Defense > Riemannian Optimization > Motivation

What is Riemannian optimization?

Definition

Riemannian Optimization refers to the optimization of an objective function
over a Riemannian manifold.

Given a Riemannian manifold M and a smooth function

f :M→ R ,

the goal is to find an extreme point:

min
x∈M

f(x) or max
x∈M

f(x)
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Examples of Riemannian optimization problems

Riemannian optimization problems are best identified by the involvement of a
Riemannian manifold.

The usual suspects

set of linear subspaces:

Grass(p, n,R) = p dimensional subspaces of Rn

set of (orthonormal) linear bases

St(p, n,R) = {X ∈ Rn×p : XTX = Ip}

set of orthogonal matrices

O(n,R) = {Q ∈ Rn×n : QTQ = QQT = In}
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Examples of Riemannian problems

Subspace Optimization

H2-optimal model reduction of
MIMO systems [Absil, Gallivan, Van

Dooren]

Interpolation of linear ROMs
across parameter changes [Amsallem,

Farhat and Lieu]

Optimal linear subspace for face
recognition [Liu, Srivastava, Gallivan]

Computing solutions of
generalized eigenvalue problems:
KX = MXΛ

Basis Optimization

Computing dominant singular
vectors/values

Computing optimal rank tensor
factorizations

ICA

Orthogonal Group Optimization

Pose estimation

Motion recovery
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Isn’t this just constrained Euclidean optimization?

Why bother with manifolds?

You have no choice.

There may be no efficient embedding.

You don’t like constrained optimization.

Riemannian optimization methods are feasible.
Unconstrained Riemannian optimization methods have “simpler” theory.

The difference

Riemannian optimization can be thought of as an unconstrained optimization
in a constrained search space.
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Iterations on the manifold

Consider the following generic update for an iterative Euclidean optimization
algorithm:

xk+1 = xk + sk .

It is implemented in numerous ways, e.g.:

Newton’s method: xk+1 = xk − αk
[
∇2f(xk)

]−1∇f(xk)
Steepest descent: xk+1 = xk − αk∇f(xk)

To Do

We need Riemannian concepts describing directions and movement on the
manifold.
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What is a Riemannian manifold?

Definition

A Riemannian manifold is a differentiable manifold endowed with a
Riemannian metric.

Why Riemannian Manifolds?

The combination of these provides the tools necessary to conduct optimization
on a manifold:

topology

calculus

geometry
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Tangent vectors to the rescue

The concept of direction is provided by
tangent vectors.

Intuitively, tangent vectors are tangent to
curves on the manifold.

Tangent vectors are an intrinsic property of a
differentiable manifold.

Definition

The tangent space TxM is the vector space comprised of the tangent vectors
at x ∈M.
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What is a Riemannian metric?

Definition

A Riemannian metric is a symmetric bi-linear mapping on the tangent spaces,
which varies smoothly from point to point:

gx : TxM× TxM→ R
: (ξ, ζ) 7→ gx(ξ, ζ) = 〈ξ, ζ〉

What is it good for?

The metric provides an inner product for the tangent spaces and a Riemannian
geometric structure for the manifold M.
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Riemannian gradient and Riemannian Hessian

We have calculus and geometry at our disposal.

First step: the Riemannian gradient

Second step: the Riemannian Hessian

Definition

The Riemannian gradient of f at x is the tangent vector in TxM satisfying

D f(x)[η] = 〈grad f(x), η〉 .

Definition

The Riemannian Hessian of f at x is a symmetric linear operator from TxM
to TxM defined as

Hess f(x)[η] = D grad f(x)[η] .
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Geodesics: Straight lines in a curvy world

What are they good for?

Tangent vectors describe directions on the manifold.

Geodesics describe a mechanism for movement.

Definition

A geodesic is a curve on the manifold with zero acceleration.

Geodesic γ embodies many ideal properties:

distance minimizing curve
between points

uniquely defined w.r.t. a
tangent vector

Homogeneous:
γ(t;x, η) = γ(1;x, tη)

analogous to
straight lines
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The exponential map

Definition

A point x ∈M, the exponential mapping Expx is a one-to-one mapping
between a neighborhood of x and a subset of the tangent space TxM:

Expx(η) = γ(1;x, η)

What is it good for?

The exponential map allows us to map
tangent vectors to nearby points on the
manifold.

We are now fully equipped to describe
some iterations.

TxM

Expx(η)

γ(t;x, η)

η

x
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Back to the old school

Steepest descent

on a manifold.

1 compute steepest descent direction s = −∇ f(x)
2 find step size α

3 x+ = x+ αs

[HM94][Udr94]

Newton’s method

on a manifold.

1 compute Newton update s = −
[
∇2 f(x)

]−1∇ f(x)
2 find step size α

3 x+ = x+ αs

[Lue72, Gab82, Udr94, EAS98, MM02, ADM+02, DPM03, HT04]
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Back to the old school

Steepest descent on a manifold.

1 compute steepest descent direction η = −grad f(x)
2 find step size α

3 x+ = Expx (αη)
[HM94][Udr94]

Newton’s method on a manifold.

1 compute Newton update η = − [Hess f(x)]−1 grad f(x)
2 find step size α

3 x+ = Expx (αη)
[Lue72, Gab82, Udr94, EAS98, MM02, ADM+02, DPM03, HT04]
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Why Riemannian trust-region methods?

Beg the question

Why Euclidean trust-region methods?

Improved convergence theory and performance

Robust global convergence of steepest descent

Fast local convergence of Newton methods

Avoids expensive linear solves of Newton methods
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Trust-region methods

Operation of trust-region methods

Work on a model inside a region of tentative trust

1. At iterate x, construct (quadratic) model mx of f around x

2. Find (approximate) solution to

s∗ = argmin
‖s‖≤∆

mx(s)

3. Compute ρx(s):

ρx(s) =
f(x)− f(x+ s)
mx(0)−mx(s)

4. Use ρx(s) to adjust ∆ and accept/reject proposed iterate:

x+ = x+ s
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Needs for Riemannian trust-region method

Trust-region requirements

A Riemannian trust-region method needs:

theoretical setting for constructing model

tractable setting for conducting the model minimization

preservation of convergence theory

How about the exponential map?

The exponential map provides some of this, with drawbacks:

computationally expensive

unnecessarily specific
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Relaxing the exponential: Retractions

Definition

A retraction is a mapping R from TM to M satisfying the following:

R is continuously differentiable

Rx(0) = x

DRx(0)[η] = η ”First-order rigidity”

What is it good for?

mapping tangent vectors back to the manifold

lifting the objective function f from M to TxM, via the pullback

f̂x = f ◦Rx
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Retraction-based Riemannian optimization

A novel optimization paradigm

Q: How do we conduct optimization on a manifold?
A: We do it in the tangent spaces.

Exponential vs. Retraction

Previously: exponential map conducts
movement on the manifold

Instead: Use a general retraction to lift
f to the tangent space

Can easily employ classical
optimization techniques
Less expensive than the exponential
map
Generality does not compromise the
important theory

M

x
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Retraction-based Riemannian optimization

A novel optimization paradigm

Q: How do we conduct optimization on a manifold?
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Instead: Use a general retraction to lift
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M

TxM

0x
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Optimality conditions

Equivalence of the pullback f̂x = f ◦Rx
Expx Rx

grad f(x) = grad f̂x(0) yes yes

Hess f(x) = Hess f̂x(0) yes no

Hess f(x) = Hess f̂x(0) at critical points yes yes

Riemannian Sufficient Optimality Conditions

If grad f̂x(0) = 0 and Hess f̂x(0) > 0,
then grad f(x) = 0 and Hess f(x) > 0,

so that x is a local minimizer of f .
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New approach

Generic Riemannian Optimization Algorithm

1. At iterate x ∈M, define f̂x = f ◦Rx
2. Find minimizer η of f̂x

3. Choose new iterate x+ = Rx(η)
4. Goto step 1

A suitable setting

This paradigm is sufficient for describing trust-region methods.

Tx0M
Tx1M

Tx2M

η2

x0

x3

η1

x1 = Rx0(η0)

η0 x2
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Riemannian trust-region method

Operation of RTR

RTR operates in an analogous manner to Euclidean trust-region methods.

1a. At iterate x, define pullback f̂x = f ◦Rx
1. Construct quadratic model mx of f around x

2. Find (approximate) solution to

η = argmin
‖η‖≤∆

mx(η)

3. Compute ρx(η):

ρx(η) =
f(x)− f(x+ η)
mx(0)−mx(η)

4. Use ρx(η) to adjust ∆ and accept/reject new iterate:

x+ = x+ η
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Riemannian trust-region method

Operation of RTR

RTR operates in an analogous manner to Euclidean trust-region methods.

1a. At iterate x, define pullback f̂x = f ◦Rx
1b. Construct quadratic model mx of f̂x

2. Find (approximate) solution to

η = argmin
η∈TxM, ‖η‖≤∆

mx(η)

3. Compute ρx(η):

ρx(η) =
f̂x(0)− f̂x(η)
mx(0)−mx(η)

4. Use ρx(η) to adjust ∆ and accept/reject new iterate:

x+ = Rx(η)
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How to solve the model minimization?

min
η∈TxM, ‖η‖≤∆

mx(η)

Possible choices

Abstract Euclidean space supports many different algorithms:

exact solution [Moré and Sorensen,1983]

truncated conjugate gradient [Steihaug83][Toint81]

truncated Lanczos [Gould et al., 1999]

...

Truncated Conjugate Gradient

Simple modifications to the classical CG:

trust-region membership is actively monitored

directions of negative curvature are followed to the edge

convergence tailored to the needs of the outer iteration
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Convergence properties of RTR

Preserves convergence

Convergence of RTR is equivalent to that of Euclidean trust-region methods.

Global convergence

Under very mild smoothness assumptions:

Global convergence to a stationary point.

Stable convergence only to local minimizers.

Local convergence

For RTR/tCG:

Every non-degenerate local minimizer v ∈M has a neighborhood of
attraction.

If mx ≈ f̂x, asymptotic convergence is superlinear.
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Classical TR mechanism

Drawbacks of classical trust-region mechanism

Trust-region radius is heuristic
TR radius is based on the performance of the previous iterations.

radius too large → rejected iterates
radius too small → progress is impeded

can take some time to adjust

Rejections are expensive!

Solutions

The solutions involve modifying the trust-region mechanism while preserving
good convergence properties:

more complicated TR radius updates [Conn, Gould, Toint, 2000]

filter trust-region method of [Gould, Sainvitu, Toint, 2005]

implicit trust-region [Baker, Absil, Gallivan, 2008]
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Implicit Riemannian Trust-Region Method

A new optimization algorithm

The implicit Riemannian trust-region (IRTR) method uses a different
trust-region definition:

TR at x = {η ∈ TxM : ρx(η) ≥ ρ′}

where

ρx(s) =
f̂x(0)− f̂x(s)
mx(0)−mx(s)

Effect

TR mechanism replaced by a meaningful measure of model performance

Accept/reject mechanism is discarded.

Modification to trust-region requires revisiting model minimization and
convergence theory.
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IRTR Model Minimization

Interplay between trust-region and truncated CG

Trust-region definition comes into play when:

checking that an iterate is in the trust-region

ρx(η) ≥ ρ′

following a search direction to the edge

find τ > 0 s.t. ρx(η + τδ) = ρ′

The practical significance?

Requires an efficient relationship with ρx(η):

an analytical formula for ρx(η), or

an efficient evaluation of ρx(η) combined with direct search

The latter assumes that evaluating f is not expensive.
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Ingredients for RTR/IRTR

What do we need to apply RTR?

Riemannian manifold (M, g), smooth function f :M→ R
efficient representation for points x ∈M
efficient representation for points η ∈ TxM
tractable retraction R from TxM to M
formula for grad f(x)

formula for Hess f̂x(0)

Additional requirements for IRTR

efficient formula for evaluating ρx(η)
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Generalized eigenvalue problem

Generalized Eigenvalue Problem

Symmetric A, s.p.d. B, give rise to n eigenpairs:

Avi = Bviλi, λ1 ≤ λ2 ≤ . . . ≤ λn

Many application require only p extreme eigenpairs:

(v1, λ1), . . . , (vp, λp)

Generalized Eigenvalue Optimization Problem

V =
[
v1 . . . vp

]
minimizes generalized Rayleigh quotient:

GRQ(X) = trace
((
XTBX

)−1
XTAX

)
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Optimization approach to eigenvalue problem

Newton’s method for GRQ

Consider solving the optimization problem with Newton’s method.

Newton’s method fails!

Newton update at X yields 2X.

X 7→ 2X 7→ 4X 7→ . . .

This is because GRQ(X) = GRQ(XM) for non-singular M .

Solutions?

A. Introduce constraints on the domain of GRQ.

B. Recognize the Riemannian optimization problem and apply an appropriate
solver (e.g., RTR/IRTR).
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Riemannian Optimization Eigenvalue Problem

Riemannian setting

GRQ is invariant to choice of basis, varies only with subspace

Manifold is the set of p-dimensional subspaces of Rn
This is the Grassmann manifold Grass(p, n)

GRQ : Grass(p, n)→ R : span(X) 7→ trace
((
XTBX

)−1 (XTAX)
)

span(X) represented by any basis X

Rspan(X)(S) = span(X + S)

Tangent vectors and Riemannian metric

The choice of representation allows significant variety in implementation:

GRQ + Riemannian Newton ⇒ Jacobi-Davidson [SVdV96]

GRQ + Riemannian CG ⇒ LOBPCG [Kny2001]

GRQ + Riemannian TR ⇒ Exciting new eigensolvers!!!
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Riemannian Trust-Region + GRQ

Setting

Tspan(X) Grass(p, n) =
{
S ∈ Rn×p : STBX = 0

}
gspan(X)(S,U) = trace

(
(XTBX)−1STU

)
grad f̂span(X)(0) = 2PBXAX

Hess f̂span(X)(0)[S] = 2PBX
(
AS −BSXTAX

)
RTR

Conditions on f and R are satisfied for global convergence.

tCG solver enables superlinear (cubic!) rate of local convergence.

IRTR

Efficient implementation of IRTR requires analysis of ρX(S)
This requires choosing a quadratic model.
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A Tale of Two Models

Quadratic Model

Quadratic model mX ≈ f̂X leaves freedom:

mX(S) = GRQ(X) + 〈S, grad GRQ(X)〉+
1
2
〈S,HX [S]〉

= trace
(
XTAX

)
+ 2 trace

(
STPBXAX

)
+

1
2

trace
(
STHX [S]

)
Model Hessian

Newton model:

HX [S] = 2PBX
(
AS −BSXTAX

)
TRACEMIN model:

HX [S] = 2PBXAPBXS
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TRACEMIN Model Analysis

ρ Analysis: TRACEMIN

Authors of Trace Minimization method [SW82][ST00] show that

GRQ(X + S) ≤ mX(S)

for all S producing a decrease in mX . This implies

ρX(S) =
GRQ(X)−GRQ(X + S)

GRQ(X)−mX(S)
≥ 1

TRACEMIN Eigensolver

TRACEMIN can be easily and efficiently implemented in the context of
the IRTR.

The minimization of this model is easily preconditioned.

Asymptotic convergence is only linear.

http://www.scs.fsu.edu/~cbaker
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Newton Model Analysis

ρ Analysis: Newton

ρX(S) =
trace

((
I + STBS

)−1
(
M̂
))

trace
(
M̂
)

M̂ = STBSXTAX − 2STAX − STAS

Two cases

p = 1: Easy case
ρx(s) = (1 + sTBs)−1

so that

ρx(s) ≥ ρ′ ⇔ ‖s‖2B ≤
1
ρ′
− 1

p > 1: Hard case yields no tractable formula
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Newton Model IRTR

Approximation for p > 1

If XTAX = diag(θ1, . . . , θp), we can decouple model:

mX(S) =
∑
j

mxj
(sj)

Then use p = 1 formula and approximate ρX(S) via

ρ′ =
ρ′
∑
j

(
mxj

(0)−mxj
(sj)

)∑
j

(
mxj

(0)−mxj
(sj)

) ≤ ∑
j

(
f̂xj

(0)− f̂xj
(sj)

)
∑
j

(
mxj

(0)−mxj
(sj)

)
=
f̂X(0)−

∑
j f̂xj

(sj)
mX(0)−mX(S)

≈ f̂X(0)− f̂X(S)
mX(0)−mX(S)

= ρX(S)

This gives an IRTR-like eigensolver.
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Newton Model IRTR

Approximation for p > 1

If XTAX = diag(θ1, . . . , θp), we can decouple model:

mX(S) =
∑
j

mxj
(sj)

Then use p = 1 formula and approximate ρX(S) via

ρ′ =
ρ′
∑
j

(
mxj

(0)−mxj
(sj)

)∑
j

(
mxj

(0)−mxj
(sj)

) ≤ ∑
j

(
f̂xj

(0)− f̂xj
(sj)

)
∑
j

(
mxj

(0)−mxj
(sj)

)
=
f̂X(0)−

∑
j f̂xj

(sj)
mX(0)−mX(S)

≈ f̂X(0)− f̂X(S)
mX(0)−mX(S)

= ρX(S)

This gives an IRTR-like eigensolver.
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Adaptive Model IRTR

A Hybrid Method

Compute in two stages [ABGS05]:

Stage 1: Use TRACEMIN-model

quickly purge large eigenvalues
easily preconditioned

Stage 2: Use Newton model

fast local convergence
heuristic-safe

The Best of Both...

easy and efficient iterations in stage 1

stage 2 has fast convergence to the solution

globally convergent by construction

efficiency is tied to switching criteria
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BCSST24 with Cholesky preconditioner



The trust-region radius can limit effectiveness of a good preconditioner, and
rejections can stall progress.



BCSST20 with Cholesky preconditioner



Problem Size p Prec RTR IRTR LOBPCG

BCSST22 138 5 none 2.64 1.90 39.03
BCSST22 138 5 inexact 1.11 1.03 3.17
BCSST22 138 5 exact 0.29 0.24 0.45
BCSST20 485 5 inexact 49.04 34.40 *151.00
BCSST20 485 5 exact 0.11 0.08 0.14
BCSST13 2,003 25 exact 12.86 7.81 6.20
BCSST13 2,003 100 exact 79.41 56.95 56.12
BCSST23 3,134 25 exact 28.25 22.10 16.86
BCSST23 3,134 100 exact 168.76 129.06 180.40
BCSST24 3,562 25 exact 9.34 8.17 7.76
BCSST24 3,562 100 exact 98.23 69.83 108.20
BCSST25 15,439 25 exact 361.40 85.25 *3218.00

Timings (in seconds) in Trilinos/Anasazi (C++). Average speedup of IRTR w.r.t.
RTR is 1.33; IRTR w.r.t. LOBPCG is 3.46.
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Summary and Future work

Summary

Described the retraction-based paradigm for Riemannian optimization

Described the Riemannian trust-region method and its convergence
properties

Described the implicit Riemannian trust-region method and its
convergence properties

Applied the trust-region solvers to the computation of extreme
eigenspaces

Future work

Need more applications where IRTR can be put to efficient use

Further analysis of ρX(S) for eigenvalue problem

may yield workable formula
should show current approximation is sufficient for convergence
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Impact

Software Efforts

Generic RTR (GenRTR) package (MATLAB)
http://www.scs.fsu.edu/∼cbaker/GenRTR/

RTR/ESGEV solvers (MATLAB and Anasazi/C++)
http://www.scs.fsu.edu/∼cbaker/RTRESGEV/

RTR/TSVD solvers (RBGen/C++)
http://trilinos.sandia.gov/

Papers

Absil, Baker, Gallivan: “A truncated-CG style method for symmetric generalized
eigenvalue problems” (JCAM,2006)

Absil, Baker, Gallivan: “Trust-region methods on Riemannian manifolds”
(FoCM,2007)

Baker, Absil, Gallivan: “An implicit trust-region method on Riemannian
manifolds” (IMAJNA,2008)
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