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Defense > Riemannian Optimization > Motivation

What is Riemannian optimization?

Riemannian Optimization refers to the optimization of an objective function
over a Riemannian manifold.

Given a Riemannian manifold M and a smooth function
fM—=R,
the goal is to find an extreme point:

min f(z) o max f(x)
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Examples of Riemannian optimization problems

Riemannian optimization problems are best identified by the involvement of a
Riemannian manifold.
@ set of linear subspaces:
Grass(p,n, R) = p dimensional subspaces of R"
@ set of (orthonormal) linear bases
St(p,n,R) = {X e R™*?: XTX = I,,}
@ set of orthogonal matrices

O(n,R) ={Q eR™":QTQ =QQ" = I,}
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Examples of Riemannian problems

@ Hs-optimal model reduction of
MIMO systems [Absil, Gallivan, Van

Computing dominant singular

Dooren] Vectors/values

Computing optimal rank tensor

o Interpolation of linear ROMs S
factorizations

across parameter changes [Amsallem,
Farhat and Lieu] o ICA

@ Optimal linear subspace for face
recognition [Liu, Srivastava, Gallivan]
Pose estimation

(]

o Computing solutions of
generalized eigenvalue problems: Motion recovery
KX =MXA ’
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Isn’t this just constrained Euclidean optimization?

@ You have no choice.
o There may be no efficient embedding.
@ You don't like constrained optimization.

o Riemannian optimization methods are feasible.
o Unconstrained Riemannian optimization methods have “simpler” theory.

vy

Riemannian optimization can be thought of as an unconstrained optimization
in a constrained search space.
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Iterations on the manifold

Consider the following generic update for an iterative Euclidean optimization
algorithm:
Tk4+1 = Tk + Sk -
It is implemented in numerous ways, e.g.:
o Newton's method: =11 = 2 — g [VQf(:z:k)]fl YV f(zk)
o Steepest descent: zx11 = xx — apV [ (1)

We need Riemannian concepts describing directions and movement on the
manifold.
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What is a Riemannian manifold?

A Riemannian manifold is a differentiable manifold endowed with a
Riemannian metric.

The combination of these provides the tools necessary to conduct optimization
on a manifold:

o topology

@ calculus

@ geometry

http://www.scs.fsu.edu/~cbaker
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Tangent vectors to the rescue

@ The concept of direction is provided by
tangent vectors.

@ Intuitively, tangent vectors are tangent to
curves on the manifold.

@ Tangent vectors are an intrinsic property of a
differentiable manifold.

http://www.scs.Esu.edu/~cbaker
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Tangent vectors to the rescue

@ The concept of direction is provided by
tangent vectors.

@ Intuitively, tangent vectors are tangent to
curves on the manifold.

@ Tangent vectors are an intrinsic property of a
differentiable manifold.

The tangent space T, M is the vector space comprised of the tangent vectors
at x € M.

http://www.scs.Esu.edu/~cbaker
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What is a Riemannian metric?

A Riemannian metric is a symmetric bi-linear mapping on the tangent spaces,
which varies smoothly from point to point:

Go i TeM X Ty M — R
: (§7C) = gw(fa() = <§7C>

The metric provides an inner product for the tangent spaces and a Riemannian
geometric structure for the manifold M.
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Riemannian gradient and Riemannian Hessian

@ We have calculus and geometry at our disposal.
o First step: the Riemannian gradient
@ Second step: the Riemannian Hessian

The Riemannian gradient of f at x is the tangent vector in T, M satisfying

D f(z)[n] = (grad f(z),n) .

The Riemannian Hessian of f at x is a symmetric linear operator from T, M
to T, M defined as

Hess f(x)[] = D grad f(z)n]
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Geodesics: Straight lines in a curvy world

@ Tangent vectors describe directions on the manifold.

@ Geodesics describe a mechanism for movement.

A geodesic is a curve on the manifold with zero acceleration.

@ Geodesic v embodies many ideal properties:

o distance minimizing curve o Homogeneous:
between points v(t;z,m) = v(1;z, tn)
o uniquely defined w.r.t. a e analogous to
tangent vector straight lines
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The exponential map

A point z € M, the exponential mapping Exp,, is a one-to-one mapping
between a neighborhood of x and a subset of the tangent space T, M:

Exp,(n) = v(1;2,7)

@ The exponential map allows us to map
tangent vectors to nearby points on the
manifold.

o We are now fully equipped to describe
some iterations.
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Back to the old school

@ compute steepest descent direction s = —V f(z)
@ find step size «
Q@ zxy=2x+as

http://www.scs.fsu.edu/~cbaker



http://www.scs.fsu.edu/~cbaker 

Defense > Riemannian Optimization > Riemannian Geometry and Optimization

Back to the old school

on a manifold.
@ compute steepest descent direction 7 = —grad f(z)

@ find step size «

Q z,. =Exp, (an)
[HM94][Udr94]

http://www.scs.fsu.edu/~cbaker
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Back to the old school

@ compute steepest descent direction 7 = —grad f(z)
@ find step size «

Q =, =Exp, (an)
[HM94][Udr94]

@ compute Newton update s = — [V? f(x)]_1 V f(z)
Q find step size «
Q@ =2x+as

http://www.scs.fsu.edu/~cbaker
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Back to the old school

@ compute steepest descent direction 7 = —grad f(z)
@ find step size «

Q =, =Exp, (an)
[HM94][Udr94]

on a manifold.

@ compute Newton update 7 = — [Hess f(z)] " grad f(z)
Q find step size «
Q@ 1z, = Exp, (a7)

[Lue72, Gab82, Udr94, EAS98, MM02, ADM+02, DPMO03, HT04]
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Why Riemannian trust-region methods?

Why Euclidean trust-region methods?

@ Robust global convergence of steepest descent
@ Fast local convergence of Newton methods

@ Avoids expensive linear solves of Newton methods

http://www.scs.fsu.edu/~cbaker
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Trust-region methods

Work on a model inside a region of tentative trust J

1. At iterate z, construct (quadratic) model m, of f around x

2. Find (approximate) solution to

§* = argmin my(s)
llsll<A

3. Compute p,(s):
_f@) = flz+5)
) = )~ o)

4. Use p,(s) to adjust A and accept/reject proposed iterate:

Ty =2 +S

http://www.scs.fsu.edu/~cbaker
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Needs for Riemannian trust-region method

A Riemannian trust-region method needs:
@ theoretical setting for constructing model
@ tractable setting for conducting the model minimization

@ preservation of convergence theory

The exponential map provides some of this, with drawbacks:

@ computationally expensive

@ unnecessarily specific

http://www.scs.Esu.edu/~cbaker
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Relaxing the exponential: Retractions

A retraction is a mapping R from T'M to M satisfying the following:
@ R is continuously differentiable
o R, (0) ==z
@ DR,(0)[n] =n "First-order rigidity”

@ mapping tangent vectors back to the manifold
o lifting the objective function f from M to T, M, via the pullback

fo=foR,

http://www.scs.Esu.edu/~cbaker
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Retraction-based Riemannian optimization

Q: How do we conduct optimization on a manifold?
A: We do it in the tangent spaces.

@ Previously: exponential map conducts
movement on the manifold

http://www.scs.fsu.edu/~cbaker
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Retraction-based Riemannian optimization

Q: How do we conduct optimization on a manifold?
A: We do it in the tangent spaces.

@ Previously: exponential map conducts
movement on the manifold

@ Instead: Use a general retraction to lift
f to the tangent space

o Can easily employ classical
optimization techniques

o Less expensive than the exponential
map

o Generality does not compromise the
important theory

http://www.scs.fsu.edu/~cbaker
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Optimality conditions

| Exp, | Ro
grad f(z) = grad f,(0) yes | yes
Hess f(z) = Hess f,(0) yes | no

Hess f(z) = Hess f,(0) at critical points | yes | yes

If grad f,(0) = 0 and Hess f,(0) > 0,
then grad f(z) = 0 and Hess f(z) > 0,
so that z is a local minimizer of f.

http://www.scs.fsu.edu/~cbaker
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Generic Riemannian Optimization Algorithm

1. At iterate x € M, define fm =foR,
2. Find minimizer n of fm

3. Choose new iterate 1 = R, (n)

4. Goto step 1

A suitable setting

This paradigm is sufficient for describing trust-region methods.

http://www.scs.fsu.edu/~cbaker
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Riemannian trust-region method

RTR operates in an analogous manner to Euclidean trust-region methods. J

1. Construct quadratic model m, of f around x
2. Find (approximate) solution to

n = argmin m,(n)
Inll<a

3. Compute p.(n):

@) - fz )
Pel) = 0 = )

4. Use p;(n) to adjust A and accept/reject new iterate:
Ty =x+7

http://www.scs.Esu.edu/~cbaker
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Riemannian trust-region method

RTR operates in an analogous manner to Euclidean trust-region methods. J

la. At iterate z, define pullback f, = f o R,
1b. Construct quadratic model m,, of f,,,.
2. Find (approximate) solution to

7= argmin  mg(n)
n€Te M, |Inl[<A

3. Compute p.(n):

_ jﬁr(()) o jﬁr(77)
pe) = )~ ()

4. Use p,(n) to adjust A and accept/reject new iterate:
Ty = R.(n)

http://www.scs.Esu.edu/~cbaker
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How to solve the model minimization?

my (1)

min
n€TL M, HUHSA

Abstract Euclidean space supports many different algorithms:

@ exact solution [Moré and Sorensen,1983]
@ truncated conjugate gradient [Steihaug83][Toint81]
@ truncated Lanczos [Gould et al.,, 1999]

O oao

Simple modifications to the classical CG:
@ trust-region membership is actively monitored
o directions of negative curvature are followed to the edge

@ convergence tailored to the needs of the outer iteration

http://www.scs.fsu.edu/~cbaker
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Convergence properties of RTR

Convergence of RTR is equivalent to that of Euclidean trust-region methods.

vy

Under very mild smoothness assumptions:
@ Global convergence to a stationary point.

@ Stable convergence only to local minimizers.

For RTR/tCG:

@ Every non-degenerate local minimizer v € M has a neighborhood of
attraction.

o If m, =~ f,, asymptotic convergence is superlinear.

http://www.scs.fsu.edu/~cbaker
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Classical TR mechanism

@ Trust-region radius is heuristic
o TR radius is based on the performance of the previous iterations.

o radius too large — rejected iterates
@ radius too small — progress is impeded

o can take some time to adjust

@ Rejections are expensive!

The solutions involve modifying the trust-region mechanism while preserving
good convergence properties:

@ more complicated TR radius updates [Conn, Gould, Toint, 2000]
o filter trust-region method of [Gould, Sainvitu, Toint, 2005]

@ implicit trust-region [Baker, Absil, Gallivan, 2008]
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Implicit Riemannian Trust-Region Method

The implicit Riemannian trust-region (IRTR) method uses a different
trust-region definition:

TR at x = {7’] S TxM : p(l:(n) > ﬂ/}

where

~—

@ TR mechanism replaced by a meaningful measure of model performance
@ Accept/reject mechanism is discarded.

@ Modification to trust-region requires revisiting model minimization and
convergence theory.

http://www.scs.Esu.edu/~cbaker
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IRTR Model Minimization

Trust-region definition comes into play when:
o checking that an iterate is in the trust-region

/

pz(n) > p
o following a search direction to the edge

ﬁnd T > O S.t. [).’1:(77 + T6) - /)/

Requires an efficient relationship with p.(n):
@ an analytical formula for p,(n), or
o an efficient evaluation of p,(n) combined with direct search

The latter assumes that evaluating f is not expensive.

o’
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Ingredients for RTR/IRTR

Riemannian manifold (M, g), smooth function f: M — R
efficient representation for points x € M

efficient representation for points n € T, M

tractable retraction R from T, M to M

formula for grad f(x)
formula for Hess f,(0)

efficient formula for evaluating p..(n)

http://www.scs.fsu.edu/~cbaker
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Generalized eigenvalue problem

Symmetric A, s.p.d. B, give rise to n eigenpairs:
AUZ':BUZ)\Z', Alf)\zgf)\n
Many application require only p extreme eigenpairs:

(Uh)‘l)a ceey (viﬂa)‘P)

http://www.scs.fsu.edu/~cbaker
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Generalized eigenvalue problem

Symmetric A, s.p.d. B, give rise to n eigenpairs:
AUZ':BUZ)\Z', Alf)\zgf)\n
Many application require only p extreme eigenpairs:

(’Ul,)\l), coog (’Up,)\p)

Optimization

V= [vl vp] minimizes generalized Rayleigh quotient:

GRQ(X) = trace ((X"BX) ' X7 AX)

http://www.scs.fsu.edu/~cbaker
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Optimization approach to eigenvalue problem

Consider solving the optimization problem with Newton's method.
@ Newton's method fails!
@ Newton update at X yields 2.X.
0o X —2X 14X — ...
@ This is because GRQ(X) = GRQ(X M) for non-singular M.

http://www.scs.fsu.edu/~cbaker
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Optimization approach to eigenvalue problem

Consider solving the optimization problem with Newton's method.
o Newton's method fails!
@ Newton update at X yields 2.X.
o X —2X —4X — ...
@ This is because GRQ(X) = GRQ(X M) for non-singular M.

A. Introduce constraints on the domain of GRQ.

B. Recognize the Riemannian optimization problem and apply an appropriate
solver (e.g., RTR/IRTR).

4
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Riemannian Optimization Eigenvalue Problem

o GRQ is invariant to choice of basis, varies only with subspace
@ Manifold is the set of p-dimensional subspaces of R™
o This is the Grassmann manifold Grass(p,n)
e GRQ : Grass(p,n) — R : span(X) — trace ((XTBX)_1 (XTAX)>
o span(X) represented by any basis X
® Rypan(x)(S) =span(X + S)

The choice of representation allows significant variety in implementation:
o GRQ + Riemannian Newton = Jacobi-Davidson [svdvos]
o GRQ + Riemannian CG = LOBPCG [Kny2001]
o GRQ + Riemannian TR =- Exciting new eigensolvers!!!

vy
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Riemannian Trust-Region + GRQ

Tipan(x) Grass(p,n) = {S e R"*? : STBX =0}
Gspan(x) (S, U) = trace ((XTBX)ASTU)

grad fupan(x)(0) = 2Ppx AX

Hess fopan(x) (0)[S] = 2Ppx (AS — BSXTAX)

Conditions on f and R are satisfied for global convergence.

tCG solver enables superlinear (cubic!) rate of local convergence.

Efficient implementation of IRTR requires analysis of px (.5)

@ This requires choosing a quadratic model.

v
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A Tale of Two Models

Quadratic model mx ~ fX leaves freedom:
1
mx(8) = GRQ(X) + (S, grad GRQ(X)) + (S, HxS])

= trace (X7 AX) + 2trace (STPBXAX) e %trace (STHx[9))

@ Newton model:
Hx[S]=2Ppx (AS — BSXTAX)

o TRACEMIN model:

Hx[S} = QPB)(APB)(S

http://www.scs.fsu.edu/~cbaker
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TRACEMIN Model Analysis

Authors of Trace Minimization method [sws2][ST00] show that
GRQ(X + S) < mx(S)
for all S producing a decrease in mx. This implies

px(S) = GRQ(X) - GRQ(X +5) _ |

GRQ(X) —mx(S)

o TRACEMIN can be easily and efficiently implemented in the context of
the IRTR.

@ The minimization of this model is easily preconditioned.

o Asymptotic convergence is only linear.

http://www.scs.fsu.edu/~cbaker
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Newton Model Analysis

trace ((I + STBS)_l (M))
trace (M)
M=STBSXTAX —25TAX — STAS

px(S) =

o p=1: Easy case
pa(s) = (1+s"Bs)™

so that |
/71:(3) > /7/ < ||S“%3 < ;;7 -1

@ p > 1: Hard case yields no tractable formula

4
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Newton Model IRTR

o If XTAX = diag(61,...,0,), we can decouple model:
($) = ma,(s))
J

@ Then use p = 1 formula and approximate px (.5) via

;ALY (e, (0) = may (s))) Foy0) = fuy (55))
Z]‘ (mwg(o) mw](sj)) ZJ (mw](O) mw,(sj))

CFx0) = X Fa (s) | Fx(0)— fx(S)

= X0 —mx(S)~ mx(0) —mx(s) ~ X

@ This gives an IRTR-like eigensolver.

http://www.scs.Esu.edu/~cbaker
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Newton Model IRTR

o If XTAX = diag(61,...,0,), we can decouple model:

(8) = 3 ma (57)

= P32 (may (0) = may (s5)) 2oy (fa;(0) =

Z] (mwg (0) = mag, (SJ))
. fX(O) - z]‘ ij(sj) o fX(O)
B mx(O) —mx(S) - mx(O)

@ This gives an IRTR-like eigensolver.
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Adaptive Model IRTR

Compute in two stages [ABGS05]:
@ Stage 1: Use TRACEMIN-model

o quickly purge large eigenvalues
o easily preconditioned

Stage 2: Use Newton model

o fast local convergence
o heuristic-safe

easy and efficient iterations in stage 1
stage 2 has fast convergence to the solution

globally convergent by construction

efficiency is tied to switching criteria

http://www.scs.fsu.edu/~cbaker
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RTRvs. IRTR: BCSST24 (n=3562,p=5)

——RTR
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notm of gradient
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The trust-region radius can limit effectiveness of a good preconditioner, and
rejections can stall progress.



norm of gradient
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’ Problem \ Size \ p \ Prec \ RTR \ IRTR \ LOBPCG ‘
BCSST22 138 5 none 2.64 1.90 39.03
BCSST22 138 5 | inexact 111 1.03 3.17
BCSST22 138 5 | exact 0.29 0.24 0.45
BCSST20 485 5 | inexact | 49.04 | 34.40 *151.00
BCSST20 485 5 | exact 0.11 0.08 0.14
BCSST13 | 2,003 | 25| exact 12.86 7.81 6.20
BCSST13 | 2,003 | 100 | exact 79.41 | 56.95 56.12
BCSST23 | 3,134 | 25| exact 28.25 | 22.10 16.86
BCSST23 | 3,134 | 100 | exact | 168.76 | 129.06 180.40
BCSST24 | 3,562 | 25 | exact 9.34 8.17 7.76
BCSST24 | 3,562 | 100 | exact 98.23 | 69.83 108.20
BCSST25 | 15,439 | 25 | exact | 361.40 | 85.25 | *3218.00

Timings (in seconds) in Trilinos/Anasazi (C++). Average speedup of IRTR w.r.t.
RTR is 1.33; IRTR w.r.t. LOBPCG is 3.46.



Defense > Summary

Summary and Future work

@ Described the retraction-based paradigm for Riemannian optimization

@ Described the Riemannian trust-region method and its convergence
properties

@ Described the implicit Riemannian trust-region method and its
convergence properties

o Applied the trust-region solvers to the computation of extreme
eigenspaces

@ Need more applications where IRTR can be put to efficient use

o Further analysis of px(.S) for eigenvalue problem

e may yield workable formula
o should show current approximation is sufficient for convergence

http://www.scs.fsu.edu/~cbaker
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Impact

@ Generic RTR (GenRTR) package (MATLAB)
http://www.scs.fsu.edu/~cbaker/GenRTR/

@ RTR/ESGEV solvers (MATLAB and Anasazi/C++)
http://www.scs.fsu.edu/~cbaker/RTRESGEV/

@ RTR/TSVD solvers (RBGen/C++)
http://trilinos.sandia.gov/

@ Absil, Baker, Gallivan: “A truncated-CG style method for symmetric generalized
eigenvalue problems” (JCAM,2006)

@ Absil, Baker, Gallivan: “Trust-region methods on Riemannian manifolds”
(FoCM,2007)

@ Baker, Absil, Gallivan: “An implicit trust-region method on Riemannian
manifolds” (IMAJNA,2008)

4
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