
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

RIEMANNIAN MANIFOLD TRUST-REGION METHODS WITH
APPLICATIONS TO EIGENPROBLEMS

By

CHRISTOPHER G. BAKER

A Treatise submitted to the
School of Computational Science

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Degree Awarded:
Summer Semester, 2008

The members of the Committee approve the Treatise of Christopher G. Baker defended

on May 22, 2008.

Kyle Gallivan
Professor Co-Directing Treatise

Pierre-Antoine Absil
Professor Co-Directing Treatise

Anjaneyulu Krothapalli
Outside Committee Member

Gordon Erlebacher
Committee Member

Anuj Srivastava
Committee Member

Yousuff Hussaini
Committee Member

The Office of Graduate Studies has verified and approved the above named committee members.

ii

This work is dedicated to my parents, for their constant encouragement...

And to Kelly, my partner and greatest supporter. I love you.

iii

ACKNOWLEDGEMENTS

I must first acknowledge my dissertation committee. It has been my pleasure to interact

with them over my decade at Florida State, both in and outside of the classroom.

The largest influence on my scholarship comes from Kyle Gallivan. It has been over

eight years since I sat for my first lecture with Kyle. Five courses and three diplomas later,

I know that if only a fraction of his insight and intuition have rubbed off on me, then I

will never want for an interesting problem to occupy my whiteboard. His precision seemed

nearly infinite, and it was only his willingness to be distracted to one of a multitude of

other conversations that saved me from madness—albeit a madness exhibiting perfect prose,

exhaustive analysis and just one more set of experiments. I look forward to both our future

collaborations and conversations.

And here it can’t be helped but to rely on cliché: this dissertation would never have

happened without the guidance of Pierre-Antoine Absil. He was both my advisor and

my friend through all of the nonlinearities that define Riemannian geometry, publication,

dissertation writing... graduate school. He has been a constant source of reassurance and

encouragement during this process; a role model; my Belgian big brother.

I must acknowledge both the Department of Computer Science and the School of

Computational Science, the places that I called home over the years, and the people who kept

everything running there: Eleanor McNealy, Michele Locke, Anne Johnson, Lynn Lacombe,

Cecelia Farmer, and Debra Crews. Mimi Burbank devoted sweat and tears to assemble this

LaTeX template, so that the rest of us wouldn’t have to work so hard. Many thanks go

to the system administrators who kept the computers and networks running: Chris Cprek,

Tom Green, Dana Lutton, Jeff McDonald, Daniel Whelan and Ryan Carlyle at SCS; Bill

Goldman and Roger Retallack at Sandia.

The majority of my past three years was spent at the Computer Science Research Institute

of Sandia National Laboratories. I am grateful for the opportunity to have worked in such

iv

an encouraging environment, with such wonderful and talented people. Special thanks go

to my managers: Scott Collis, Ken Alvin and David Womble. But very special thanks go

to Rich Lehoucq, the best mentor that a student could ask for. His advice on writing, on

career, on finding and fixing the ugliest bugs; his support and understanding as I juggled

work, school and life; and his willingness to share his own experience. The training I’ve

received under Rich’s supervision will undoubtedly benefit me for the rest of my career.

To my home away from home in the Department of Religious Studies and the support

and encouragement of many people there, especially Dr. John Kelsay and my advisor-in-law,

Dr. John Corrigan. Thanks for letting me pretend to be a religion major every once in a

while.

I would be remiss not to mention all of the friends who helped me maintain my sanity

over the years, in the humidity and the high desert: Mike and Kristin Pasquier, Michael and

Shaynna Gueno, Howell Williams and Steve Bryant, Brian Adams and Judy Hill. To Kelly

Dickson, always stand by your NaN. Many thanks to Dr. Clayton Webster, for all of the

advice, assistance and coffee; and for having my back, buddy. Most of all, thanks to Heidi

Thornquist and Denis Ridzal: without them, my code would not compile, my proofs would

never have been proven and I likely would have starved to death years ago.

To my family, in particular my parents, Lynn and Frank and Steve and Dottie; and

my grandparents, Dorothy and Lois and Earl. They instilled in me an appreciation for the

importance of education, as well as the curiosity and persistence without which any research

would ever be accomplished.

And to Kelly: for encouragement, understanding, support and peace. For being my

unconditional partner through the whole thing. For being a reminder that there are more

important things than research and for making me want to be a better person.

— CGB, 2008

This research benefited from funding from NSF Grants OCI0324944 and CCR9912415.

A portion of this work was conducted while employed at Sandia National Laboratories. Sandia is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United

States Department of Energy; contract/grant number: DE-AC04-94AL85000.

v

TABLE OF CONTENTS

List of Tables . viii

List of Figures . ix

List of Algorithms . x

Abstract . xi

INTRODUCTION . 1

1. RIEMANNIAN OPTIMIZATION . 3
1.1 Euclidean Optimization . 3
1.2 Methods for Euclidean Optimization . 4
1.3 Riemannian Optimization . 11
1.4 Retraction-based Riemannian Optimization 21
1.5 Riemannian Manifolds of Interest . 25

2. THE RIEMANNIAN TRUST-REGION METHOD 32
2.1 RTR algorithm . 33
2.2 Solving the model minimization . 37
2.3 Convergence analysis for RTR . 39
2.4 Implementing the RTR . 59

3. THE IMPLICIT RIEMANNIAN TRUST-REGION METHOD 60
3.1 IRTR Algorithm . 61
3.2 Solving the model minimization . 64
3.3 Convergence Analysis for IRTR . 66
3.4 Implementing the IRTR . 77

4. COMPUTING EXTREME SYMMETRIC GENERALIZED EIGENSPACES 78
4.1 The Symmetric Generalized Eigenvalue Problem 78
4.2 Specialized Generalized Eigensolvers . 86
4.3 Riemannian Optimization and ESGEV 95
4.4 Numerical Experiments . 119

5. CONCLUDING REMARKS AND FUTURE RESEARCH 133

vi

REFERENCES . 136

BIOGRAPHICAL SKETCH . 142

vii

LIST OF TABLES

4.1 Memory cost in n × p multivectors for caching (“Hefty”) and non-caching
(“Skinny”) versions of RTR/ESGEV and IRTR/ESGEV (Algorithm 14 and
Algorithm 16). B denotes that storage for the variable is required only if
B 6= I, whereas N denotes that storage for the variable is required only if
N 6= I. 108

4.2 Select Matrix Market benchmark problems. 119

4.3 MATLAB timings (in seconds) for Matrix Market problems. Each timing is
the mean of three tests. “—” indicates no progress towards convergence. IC
denotes incomplete Cholesky preconditioner, while EC denotes exact Cholesky
preconditioner. Bold face indicates the fastest time for each problem. 124

4.4 MATLAB number of iterations for Matrix Market problems. Each count is
the mean of three tests. “—” indicates no progress towards convergence. IC
denotes incomplete Cholesky preconditioner, while EC denotes exact Cholesky
preconditioner. Bold face indicates the smallest number of iterations for each
problem. 125

4.5 MATLAB flops counts (excluding operator applications) for Matrix Market
problems. Each count is the mean of three tests. IC denotes incomplete
Cholesky preconditioner, while EC denotes exact Cholesky preconditioner. . 126

4.6 MATLAB timings comparison skinny and hefty solvers for a p = 1 dense
eigenvalue problem. Each count is the mean of three tests. 126

4.7 Average ρ violations for a subset of Harwell-Boeing problems for IRTR/ESGEV
with ρ′ = 0.5. EC denotes exact Cholesky preconditioner. 130

4.8 Anasazi/C++ timings (in seconds) comparing RTR solvers and LOBPCG.
Each timing is the mean of three tests. Average speedup of IRTR is 1.33 over
RTR, 3.46 over LOBPCG. * denotes time-out before convergence. 131

viii

LIST OF FIGURES

1.1 Illustration of retractions. 21

4.1 Figure illustrating the speedups of IRTR over RTR. Average speedup: 1.512. 121

4.2 Figure illustrating the potential improvement of the IRTR/ESGEV solver over
the RTR/ESGEV solver on Matrix Market problem BCSST24. The annotated
version highlights the predicted drawbacks of the trust-region mechanism. . . 123

4.3 Figure illustrating the speedups of skinny solvers over hefty solvers for
Harwell-Boeing benchmark problems. Average speedup is .999 for RTR and
1.01 for IRTR. 127

4.4 Figures comparing TRACEMIN, IRTR/ESGEV and the Adaptive Model
hybrid. 128

4.5 Figures comparing TRACEMIN, IRTR/ESGEV and the Adaptive Model
hybrid. 129

ix

LIST OF ALGORITHMS

1 Euclidean Trust-Region Algorithm . 10

2 Riemannian Newton Algorithm . 20

3 Generic Riemannian Optimization Algorithm 23

4 Basic Riemannian Trust-Region Algorithm 36

5 Preconditioned Truncated CG for RTR . 38

6 Basic Implicit Riemannian Trust-Region Algorithm 63

7 Preconditioned Truncated CG for IRTR . 65

8 Rayleigh-Ritz Process . 84

9 Simplified Jacobi-Davidson Eigensolver . 88

10 Jacobi-Davidson Eigensolver . 90

11 Basic TRACEMIN Eigensolver . 91

12 Subspace-Accelerated TRACEMIN Eigensolver 93

13 Locally Optimal Block Preconditioned Conjugate Gradient Method 94

14 RTR/ESGEV . 106

15 Preconditioned Truncated CG for RTR/ESGEV 107

16 IRTR/ESGEV . 114

17 Preconditioned Synchronized Truncated CG for IRTR/ESGEV 115

x

ABSTRACT

This dissertation proposes a new class of methods for optimizing smooth functions

over Riemannian manifolds. A novel optimization paradigm, retraction-based Riemannian

optimization, is proposed. This paradigm uses mappings called retractions to lift the

objective function from the Riemannian manifold to the tangent space, an abstract Euclidean

space, where methods from Euclidean optimization can be easily applied. The retraction is

then used to move back to the Riemannian manifold, where the process repeats. We justify

this approach through the derivation of second-order optimality conditions for a solution

computed in this manner.

This framework allows for the description of two novel Riemannian optimization methods.

The Riemannian Trust-Region (RTR) method adapts the mechanisms of Euclidean trust-

region methods to a Riemannian setting. Analysis shows that the RTR method retains the

global and local convergence properties of its Euclidean counterparts. The combination

of robust global convergence and fast local convergence provides superior performance

not available with previously described Riemannian optimization methods. The Implicit

Riemannian Trust-Region (IRTR) method improves on the classical trust-region mechanism

by eliminating its inherent inefficiencies: an over-constraining trust-region radius or a

wasteful rejection mechanism.

These solvers are applied to the problem of computing extreme eigenspaces of a symmetric

matrix pencil. This problem can be characterized as a Riemannian optimization problem, the

optimization of the generalized Rayleigh quotient over the Grassmann manifold. Standard

solvers for the eigenvalue problem are analyzed in the context of Riemannian optimization.

A performance analysis of the RTR and IRTR methods applied to the eigenvalue problem

demonstrates that they are competitive with these standard solvers.

xi

INTRODUCTION

Numerical optimization is at the root of many problems in computer science, engineering,

physics, and other computational sciences. Consider a function f : D → R, mapping

elements from a set D to the real numbers. The task of optimization is to find elements

in the set D whose image under f is extreme compared to surrounding elements. When

the set D is the vector space Rn, there is an extensive collection of theory and methodology

available to solve the problem. In this case, the problem is referred to as an unconstrained

Euclidean optimization problem. If there are constraints on the search space for minimizers

(i.e., D ⊂ Rn), the problem is a constrained Euclidean optimization problem.

Many problems of significant importance can be cast as optimization problems where

the objective function is defined over a Riemannian manifold. We refer here to these as

problems of Riemannian optimization. In the case that the Riemannian manifold is an

embedded submanifold of Rn, the problem may be rewritten as a constrained optimization

problem, so that Euclidean solvers can be applied. However, there may be multiple reasons

why this is not optimal. In some cases, the Riemannian manifold may have no tractable

embedding in Euclidean space. In the case that there is an efficient embedding, a Euclidean

characterization may increase the dimensionality so as to make a Riemannian approach more

attractive. Furthermore, the theory and practice of constrained optimization requires more

effort than unconstrained Euclidean optimization. The Riemannian optimization methods

discussed in this dissertation resemble unconstrained Euclidean methods; they should be

thought of as unconstrained search in a constrained search space.

In response to this situation, a number of efforts [Shu86, Mah96, EAS98, OW00, Man02,

ADM+02, DPM03, HT04] have focused on the development of general techniques for

conducting optimization over Riemannian manifolds. Most of the literature is concerned

with transferring traditional Euclidean optimization methods to Riemannian manifolds.

This dissertation is similar in that regard: it proposes a class of trust-region methods

1

on Riemannian manifolds. However, the main interest here is in producing efficient

algorithms for solving large-scale optimization problems. For that reason and to assist in

the development of the Riemannian trust-region methods to follow, we begin by proposing a

new paradigm for Riemannian optimization: the retraction-based Riemannian optimization

approach.

Following a review of Euclidean optimization, Chapter 1 presents the material from

Riemannian geometry necessary for the development of optimization methods on Riemannian

manifolds. The concept of retractions is introduced and formalized, allowing the description

of retraction-based Riemannian optimization. Chapter 2 describes the Riemannian Trust-

Region method and analyzes its convergence. Chapter 3 discusses the Implicit Riemannian

Trust-Region method and proves that it retains the convergence of the RTR method. Finally,

Chapter 4 illustrates the potential of these methods by applying them to the computation

of selected eigenvalues and eigenvectors of a symmetric/definite matrix pencil.

2

CHAPTER 1

RIEMANNIAN OPTIMIZATION

Much of the current work in Riemannian optimization derives from work in Euclidean

optimization. By constructing analogous concepts in a Riemannian setting for the familiar

concepts of Euclidean space, a large amount of material can be transferred from the latter

setting to the former. In particular, our goals include a body of optimization theory on

Riemannian manifolds along with a group of algorithms for solving Riemannian optimization

problems.

This chapter begins with a brief review of the necessary material from unconstrained

Euclidean optimization. The prerequisite theory, as well as the selected algorithms in

Section 1.2, will illustrate the machinery needed for Riemannian optimization. Section 1.3

will introduce the topic of Riemannian optimization and review Riemannian geometry and

the necessary concepts. Section 1.4 describes the retraction-based Riemannian optmization

paradigm, the setting for the Riemannian trust-region methods developed in this dissertation.

Section 1.5 describes the manifolds of interest in this dissertation.

1.1 Euclidean Optimization

Numerical optimization consists of a collection of theory and algorithms for finding extreme

points of real-valued functions. Take a function f : Rn → R. The function f is referred to as

the objective function. The goal of the optimization is to find points in Rn which are extreme

under f . These extreme points are minimizers and maximizers. A local minimizer is a point

which is minimal under f within a certain neighborhood. A formal definition follows.

Definition 1 (Local Minimizer). Take a function f : Rn → R and a point x ∈ Rn. If there

exists ε > 0 such that

f(x) ≤ f(y) (1.1)

3

for all y 6= x satisfying ‖y − x‖ < ε, then x is a local minimizer of f .

A strict local minimizer is defined by making strict the inequality (1.1). A (strict) local

maximizer is defined as in Definition 1, by making the appropriate changes to (1.1). The

concepts of (strict) global maximizers and minimizers come from replacing the neighborhood

of the extreme point in Definition 1 by the entire domain of f . It is easily shown that the local

maximizers (minimizers) of f are exactly the local minimizers (maximizers) of the objective

function −f . Therefore, most discussion of optimization is limited to the minimization of

the objective function. This dissertation follows that tradition.

The search for minimizers of a function is aided by the necessary and critical conditions on

minimality. Assume that x∗ is a local minimizer. Then x∗ necessarily satisfies the following:

∇f(x∗) = 0 (1.2)

∇2f(x∗) is positive semidefinite . (1.3)

Equation (1.2) is the first-order necessary condition for optimality. Points satisfying this

condition are called critical points or stationary points. Equation (1.3) is the second-order

necessary condition for optimality. In this dissertation, the terms ∇f(x) and ∇2f(x) are

referred to as the gradient and the Hessian of f at x. Unless stated otherwise, all functions

are assumed to be twice continuously differentiable.

To prove that a point x∗ is a local minimizer requires a slightly stronger result, the

sufficient conditions for optimality :

∇f(x∗) = 0 and ∇2f(x∗) is positive definite . (1.4)

The requirement of positive definiteness for ∇2f(x∗) is the source of much difficulty for

large-scale numerical optimization. This requirement is usually too expensive to be verified in

practice. However, the requirement that x∗ is a critical point is alone not enough to guarantee

optimality of x∗; x∗ could be a local minimizer, a local maximizer, or neither. Nevertheless,

many numerical algorithms for optimization are concerned with the discovery of critical

points. The next section outlines some popular methods for Euclidean optimization.

1.2 Methods for Euclidean Optimization

Numerical optimization methods typically employ an iteration like

xk+1 = xk + αkpk ,

4

where the step length αk and the search direction pk are chosen by various methods. The

goal is to produce a sequence {xk} which converges to a local minimizer. Finding a global

minimizer of a function with multiple local minimizers is significantly more difficult; this

problem is the focus of global optimization. We will not address this topic in this thesis.

It is typical to assume the search direction is a descent direction:

pTk∇f(xk) < 0 .

This guarantees that, for a small enough step size αk, the inequality f(xk+1) < f(xk) can be

satisfied. One intuitive and commonly used choice is the direction of steepest descent, given

by

pk = − ∇f(xk)

‖∇f(xk)‖
.

The direction of steepest descent is the search direction which produces the greatest decrease

under f in the immediate vicinity of xk. This is the search direction used in the Steepest

Descent optimization method.

Other popular choices for search directions often take the form

pk = −B−1
k ∇f(xk) .

If Bk is positive definite, it can be shown that pk is descent direction:

pTk∇f(xk) = −∇f(xk)
TB−1

k ∇f(xk) < 0 .

Choosing Bk as the identity clearly recovers the method of Steepest Descent. Newton’s

Method uses the choice Bk = ∇2f(xk), whereas quasi-Newton methods will choose Bk as

some (positive-definite) approximation to the Hessian that is computed using lower-order

information about the objective function.

After choosing a search direction pk, it still remains to choose a step size αk. If the

search direction is a descent direction, then it is possible to choose a value for αk such that

f(xk+1) < f(xk). In this way, it can be guaranteed that the sequence {xk} decreases under

f , i.e., the iteration moves “downhill”.

However, it is not enough to require that our objective function decreases. When

attempting to ensure convergence, most methods attempt to give some sufficient decrease in

the objective function. One condition on decrease is the so-called Armijo condition:

f(xk + αpk) ≤ f(xk) + c1α∇f(xk)
Tpk , (1.5)

5

for some c1 ∈ (0, 1). This condition alone is not enough to ensure convergence. A second

condition, known as the curvature condition, requires αk to satisfy

∇f(xk + αkpk)
Tpk ≥ c2 , (1.6)

where c2 ∈ (c1, 1). These conditions, the Armijo condition and the curvature condition, are

collectively known as the Wolfe conditions. It can be proven that if f is smooth and bounded

below, there exist step lengths which satisfy the Wolfe conditions.

The search directions prescribed above (Steepest Descent and Newton’s Method) are

often coupled with algorithms that guarantee some sufficient decrease condition. Trust-

region implementations usually include a similar sufficient decrease mechanism in order to

establish a global convergence theory.

Steepest Descent and Newton’s Method are two of the conceptually simplest optimization

algorithms. For this reason they have typically been the initial targets when translating

Euclidean optimization methods to a Riemannian paradigm. Descriptions of these methods

follow. As this dissertation is concerned with the description of and application of trust-

region methods on Riemannian manifolds, a review of‘ion methods will follow.

1.2.1 Steepest Descent Method

As noted above, choosing a descent direction pk at iterate xk allows us to guarantee a

descent in the objective function, in some neighborhood of xk. For small enough distances,

the amount of the decrease is proportional to the cosine of the angle between the search

direction and the gradient

cos θ =
pTk∇f(xk)

‖pk‖‖∇f(xk)‖
.

Therefore, nearby xk, the direction maximizing the decrease (the “direction of steepest

descent”) is pk = −∇f(xk).

This choice of search direction defines the method of steepest descent or gradient descent.

Approaches requiring the Hessian may not be practical if the Hessian is expensive or

unavailable. Steepest descent is attractive for requiring only first-order information about

the objective function, namely the gradient. Under assumptions of sufficient decrease (such

as those discussed above), steepest descent has provable global convergence to a critical

point. Furthermore, only local minimizers are stable attractors of such an implementation,

6

so steepest descent will converge to a local minimizer in all situations except the most

pathological.

In some cases, sufficient knowledge about the objective function may even make it possible

to choose an optimal step size, i.e., some αk minimizing the one-dimensional function

φk(α)
.
= f(xk + αpk) .

(In particular, the eigenvalue problem considered in Chapters 4 permits this optimization.)

In general, this may not be possible. Inexpensive functions may permit a thorough search

along pk; more expensive functions may require more sophisticated search (e.g., interpolation

of φk). Choosing a step size to satisfy sufficient decrease is commonly done via back-tracking

methods [NW99].

Unfortunately, the convergence of steepest descent can be an obstacle to employment of

the method. The asymptotic rate of convergence is linear, with a coefficient depending on

the eccentricity of the Hessian of the objective function.

The characterization of the search for αk suggests an illustrative interpretation of steepest

descent: first-order information about the objective function is exploited to formulate a one-

dimensional problem at each iteration. In order to improve the convergence, it is necessary

to include higher-order information about the objective function.

1.2.2 Newton’s Method

Newton’s method was originally described as a technique for root finding. Given a function

F : Rn → Rn, Newton’s method uses the approximation

F (xk + p) ≈ F (xk) +DxkF (xk)[p] (1.7)

and chooses a search direction pk which sets the right hand side to zero.

The first-order necessary optimality condition (Equation (1.2)) requires that a local

minimizer x∗ of f satisfies ∇f(x∗) = 0, i.e., it is a root of the function F (x) = ∇f(x). It

is possible therefore to apply Newton’s method to this F (x) in an attempt to find a critical

point of the objective function; this is done in the hope that it is also a local minimizer.

Inserting F (xk) = ∇f(xk) into Equation (1.7), setting the right hand side to zero and solving

for p yields

pk = −∇2f(xk)
−1∇f(xk) .

7

It should first be noted that the method involves the solution of a linear system of order n.

Even in the scenario where ∇2f(xk) is invertible, the cost of solving this system exactly may

be prohibitive.

When the matrix is invertible, it may still be indefinite. It was stated earlier that

pk = −B−1
k ∇f(xk) is guaranteed to be a descent direction only if Bk is positive definite.

Newton’s method attempts to find a critical point of the second-order Taylor expansion

of f around xk. An indefinite Hessian means that this quadratic expansion has no local

minimizer; ergo, finding a critical point does not necessarily find a local minimizer.

However, in the case where xk is “close enough” to a local minimizer and the Hessian

∇2f(xk) is positive definite, Newton’s method will converge to the local minimizer. In the

special case that the objective function is quadratic and convex, Newton’s method will find

the local minimizer after one iteration. Furthermore, when Newton’s method converges, it

does so with a quadratic rate of convergence.

In considering the quadratic expansion of the objective function around the current

iterate, note that Newton’s method performs best in the case that the Hessian is positive

definite. In this case, finding a critical point is equivalent to minimizing the quadratic

expansion. One common strategy for employing Newton’s method requires first using another

optimization method (such as steepest descent) to bring the iteration close enough to a local

minimizer that Newton’s method will converge.

1.2.3 Trust-region Methods

Newton’s method is most successful when the Hessian is positive definite, in which case it is

(implicitly) minimizing a quadratic expansion of the function. The second-order information

permits a higher rate of convergence than that achieved by steepest descent. However, the

global convergence properties of steepest descent are desirable as well, in the cases where

the Hessian is not positive definite or invertible. Trust-region methods use ideas from both

of these, and they have the ability to capture the beneficial convergence properties of each.

Trust-region methods operate by forming a (usually) quadratic expansion of the objective

function, referred to as a model :

f(xk + s) ≈ mxk(s)
.
= f(xk) + sT∇f(xk) +

1

2
sTHks , (1.8)

where Hk is some symmetric operator called the model Hessian, that may or may not be

8

equivalent to the Hessian of the objective function.

The update sk = xk+1−xk to the current iterate is chosen by conducting a minimization of

mxk . Taylor’s theorem instructs us that such an expansion is only valid nearby the expansion

point (i.e., the current iterate xk). Trust-region methods encode this advice by limiting

the maximum step size allowed for sk. This is done in an adaptive way which limits user

interaction while still providing robust convergence. The model mxk is intended to provide

a well understood adjunct for the objective function, and the trust-region mechanism works

by comparing the accuracy of this approximation against the objective function.

After the model minimization is complete, the performance of the model at the computed

update sk is analyzed by comparing the model decrease to the decrease in the objective

function:

ρxk(sk) =
f(xk)− f(xk + sk)

mxk(0)−mxk(sk)
. (1.9)

The value of ρxk(sk) is used to adjust the trust-region radius; a small value indicates that

the quadratic model performed poorly and should be considered over a smaller area, while

a larger value (e.g., closer to 1) indicates that the model minimization is serving well the

objective of minimizing f . The value of ρxk(sk) is also used an as acceptance criterion for

the proposal xk + sk. A simple version of a trust-region method is presented in Algorithm 1.

More sophisticated techniques exist for updating the trust-region radius which take into

account the fidelity of the previous model [NW99, CGT00].

One significant difference between trust-region methods and Newton’s method is charac-

terized by the kernel step: Newton’s method chooses the update

xk+1 − xk = sNEWTON
k = −∇2f(xk)

−1∇f(xk) ,

while the trust-region method chooses sk as an approximate minimizer of mxk (subject to the

trust-region constraint). If the Hessian ∇2f(xk) is positive definite, the model minimization

is performed exactly, and ‖∇2f(xk)
−1∇f(xk)‖ ≤ ∆k, then the two algorithms produce

the same update. However, many trust-region implementations will not solve the model

minimization exactly; this results in a less expensive update than the exact linear system

solve dictated by Newton’s method. Furthermore, the singularity and definiteness of the

Hessian dictate whether the Newton update exists and whether it is a descent direction. In

contrast, the model minimization step of the trust-region method is always well-posed. In

9

Algorithm 1 Euclidean Trust-Region Algorithm

Require: smooth function f : Rn → R
Require: ∆̄ > 0, ∆0 ∈ (0, ∆̄), and ρ′ ∈ [0, 1

4
), initial iterate x0 ∈ Rn.

1: for k = 0, 1, 2, . . . do
2: Obtain sk by (approximately) minimizing mxk(s) subject to ‖s‖ ≤ ∆k

3: Evaluate ρk = ρxk(sk) as in (1.9)
4: if ρk <

1
4

then
5: Set ∆k+1 = 1

4
∆k

6: else if ρk >
3
4

and ‖sk‖ = ∆k then
7: Set ∆k+1 = min(2∆k, ∆̄)
8: else
9: Set ∆k+1 = ∆k

10: end if
11: if ρk > ρ′ then
12: Set xk+1 = xk + sk
13: else
14: Preserve xk+1 = xk
15: end if
16: end for
Output: Sequences of iterates {xk}.

fact, indefiniteness in the Hessian implies existence of at least one direction which can reduce

the model infinitely. In this case, the trust-region radius ∆k acts as a guide for how far this

direction should be followed.

The acceptance mechanism in the trust-region method enforces its operation as a

descent method, which enables a much stronger global convergence analysis than is possible

for Newton’s method. Under very mild conditions, trust-region methods enjoy global

convergence to a critical point. Similar to steepest descent, there is stable convergence

only to local minimizers. Furthermore, methods exist for solving the model minimization

which enable superlinear convergence. This combination of strong global convergence along

with fast local convergence makes trust-region methods very appealing for a large class of

problems.

10

1.3 Riemannian Optimization

The previous sections discussed unconstrained Euclidean optimization, where given a func-

tion f : Rn → R, the goal was to solve

min
x∈Rn

f(x) .

It is often the case that the objective function is not defined over all of Rn or that our interest

only covers some subset of Rn. Constrained optimization considers this problem:

min
x∈Rn, c(x)=0

f(x) ,

where c : Rn → Rd is the constraint function. The goal now is to minimize the function

for all x which also satisfy c(x) = 0. The nature of extreme points differs from that of

unconstrained optimization; the theory and algorithms must be adapted [NW99, NS95].

This dissertation is concerned with the optimization of functions defined on Riemannian

manifolds. In some cases, this can be described as a constrained optimization problem. For

example, if the manifold in question is the unit sphere,

Sn−1 =
{
x ∈ Rn : xTx = 1

}
,

then the minimization of the function f : Sn−1 ⊂ Rn → R can be posed as a constrained

minimization problem:

min
x∈Rn, c(x)=0

f(x) , with c(x) = xTx− 1 .

Many of the Riemannian manifolds discussed in this dissertation and in the literature

can, like the unit sphere, be described as constrained sets in some Euclidean space, allowing

the rich methodology of constrained optimization to be applied. However, one purpose

of this dissertation and literature is to describe a unifying theory and set of algorithms

for optimizing functions defined on general Riemannian manifolds, taking advantage of

the unique geometric features available and providing well-motivated, black-box numerical

methods for problems not easily described under the constrained optimization paradigm.

In this regard, the Riemannian optimization methods discussed in this dissertation seek

to perform an unconstrained optimization of a function on a Riemannian manifold; this

11

should be contrasted with using a constrained Euclidean optimization to solve a Riemannian

optimization problem.

To illustrate, consider again the example of the unit sphere Sn−1 ⊂ Rn. Recall the generic

update described for iterative optimization methods:

xk+1 = xk + αksk .

Note that for some xk ∈ Sn−1, xk+1 is a member of Rn for any choice of αksk; Rn is a

vector space, so that xk + αksk is well-defined. However, there are relatively few choices of

αk and sk which place xk+1 on the sphere Sn−1. Constrained optimization approaches when

applied to this problem take one of two approaches. Feasible point methods constrain the

selection of αk and sk so that all of the iterates {xk} are members of Sn−1—specifically, so

that they satisfy c(xk) = 0. Infeasible point methods allow the iteration sequence {xk} to

leave the sphere, but enact measures to guarantee that limit points x∗ of the sequence satisfy

c(x∗) = 0. Methods of the latter type typically need the ability to evaluate the fitness1 of

infeasible points (points not satisfying c(x) = 0) and therefore assume that the objective

function is defined off the sphere; the former does not.

There is clearly a link between techniques of optimization on manifolds and standard

constrained optimization approaches. However, there are manifolds that are not defined as

constrained sets2 in Rn; an important example is the Grassmann manifold (see Section 1.5.2).

Also, there are constrained sets that do not admit a regular manifold structure; a simple

example is {x ∈ Rn : ‖x‖∞ = 1}. The application areas thus overlap, but are not

identical. On the problems that can be tackled by both approaches, an interesting feature

of Riemannian optimization schemes is that they are feasible point methods. Feasibility is

advantageous in several cases. For example, the cost function is sometimes undefined outside

the feasible set; or, the value of the cost function may have little if any relevance outside the

feasible set; moreover, if the algorithm runs out of time or computing resources, it should be

able to terminate and return a feasible point.

A Riemannian optimization technique considers a function described on a Riemannian

manifold and produces a sequence of iterates on the manifold which targets a local minimizer.

1with respect to f
2Clearly, by Nash’s embedding theorem [Nas56], every Riemannian manifold can be smoothly isometrically

embedded in a Euclidean space; but this is only an existence theorem, and such an embedding may be elusive
or computationally intractable.

12

Describing these methods requires reviewing some theory from Riemannian manifolds. This

is a brief overview; a more thorough treatment of this theory can be found in [dC92, Boo75].

A Riemannian manifold is a real differentiable manifold endowed with a Riemannian metric.

This is one of many types of manifold, but it provides us the tools needed to perform

optimization: differentiability to perform calculus and a Riemannian metric to perform

geometry.

A manifold is a set of points which is locally Euclidean. Consider a setM. This set is a

d-dimensional manifold if every point x ∈M has a neighborhood which resembles Euclidean

space, i.e., there exists a subset U ⊂ M, x ∈ U , and a homeomorphism φ : U → Rd. The

subset U is a coordinate neighborhood of x, and the pair (U, φ) is a chart. A collection of

such pairs A = {(Uα, φα)} which cover M is an atlas on M. The homeomorphic nature of

the charts allows us to do topology on the manifold.

Additional requirements on the atlas allow us to perform calculus. Consider two charts,

{(Uα, φα)} and {(Uβ, φβ)}. The composition φαβ = φα ◦ φ−1
β is called a transition map:

φαβ : φβ(Uα ∩ Uβ) ⊂ Rd → φα(Uα ∩ Uβ) ⊂ Rd .

If all of the transition maps of the manifold M are differentiable, then the atlas A provides

a differentiable structure for M. Therefore, we refer to (M,A) as a differentiable manifold.

When the atlas is clear from context, we may simply refer toM as a differentiable manifold.

1.3.1 Tangent Spaces

The sphere Sn−1 example illustrated that, even for an embedded submanifold of Rn, the

usual notion of movement between two points must be reconsidered. The foundation of our

generic iterative method is the update equation

xk+1 = xk + αksk .

To construct a meaningful manifold analogue it is necessary to find representations of the

constituents of this equation. The points xk+1 and xk are members of manifold M; the αk

is a real scalar; and the search direction sk is a member of the tangent space TxkM.

For any differentiable manifold M, one can attach to every point x ∈ M a tangent

space TxM. This space serves to describe first-order variations of the manifold at x; i.e., the

directions moving through a point on the manifold.

13

Consider a smooth mapping, γ : R →M, satisfying γ(τ) = x. This mapping is a curve

onM that passes through x. A first attempt at describing a “direction at x” might consider

the derivative γ′(τ):

γ′(τ) = lim
h→0

γ(τ + h)− γ(τ)

h
.

However, this definition includes the term γ(τ +h)−γ(τ), the “subtraction” of two manifold

points. This operation requires a vector space and is not defined for a general manifold.

A solution to this problem is to consider a smooth function f :M→ R and to note that

f ◦γ is a smooth function from R to R. This function therefore has a well-defined derivative:

(γ ◦ f)′(0) = lim
h→0

f(γ(h))− f(γ(0))

h
.

This approach, combining curves and smooth functions on differentiable manifolds, allows

us to define the concept of a tangent vector. Let Fx(M) be the set of smooth functions

defined on a neighborhood of x ∈M, and let γ be a curve onM satisfying γ(0) = x. Define

γ̇(0) as the mapping from Fx(M) to R satisfying

γ̇(0)f
.
=

df(γ(t))

dt

∣∣∣
t=0
, f ∈ Fx(M) .

This mapping is a tangent vector to the curve γ at t = 0. The formal definition of tangent

vectors follows.

Definition 2 (tangent vector). A tangent vector ξx to a manifold M at a point x is a

mapping from Fx(M) to R such that there exists a curve γ on M with γ(0) = x, satisfying

ξxf = γ̇(0)f
.
=

df(γ(t))

dt

∣∣∣
t=0

for all f ∈ Fx(M). The curve γ is said to realize the tangent vector ξx. The point x is

called the foot of the tangent vector ξx.

This definition, while initially seeming overly complex, has many useful properties. To

begin with, it is available for a general differentiable manifold, relying on no particular

knowledge of the manifold (e.g., embedding in Rn). In this way, the tangent vector is shown

to be intrinsic to differential manifolds, independent of our Euclidean intuition. Furthermore,

the definition rests on the concept of directional derivatives of a smooth function. In addition

to describing directions on the manifold, these derivatives are one of the motivating factors

14

for developing tangent vectors, and they will be crucial to the description of the Riemannian

gradient vector.

Note that this definition of a tangent vector ξx = γ̇ relies on the curve γ. In fact, there

are infinitely many curves which realize a particular tangent vector, as defined above. Two

curves γ1 and γ2, γ1(0) = x = γ2(0), are said to be tangent at x if, given a chart (U, φ) at x,

they satisfy
dφ(γ1(t))

dt

∣∣∣
t=0

=
dφ(γ2(t))

dt

∣∣∣
t=0

.

This implies that the mappings γ̇1(0) and γ̇2(0) are equivalent. This definition can be used to

define equivalence classes on all curves through x; these equivalence classes are the tangent

vectors at x, and the collection TxM of all tangent vectors to x ∈M is the tangent space to

M at x.

For a manifoldM of dimension d, the tangent space TxM is a vector space of dimension

d. In addition to providing a home for search directions (and in particular, the gradient of

a function), the tangent space provides a friendly setting for us to conduct optimization, as

discussed later with the introduction of retractions.

1.3.2 Riemannian Metric

The tangent space provides us with a vector space that approximates the manifold. Tangent

vectors allow us to take directional derivatives of a function on M. A Riemannian metric

will allow us to compute angles and vector lengths on the tangent plane; these are the

underpinnings of geometry.

A Riemannian metric g is a correspondence between each point x ∈M and a symmetric

bilinear form gx : TxM×TxM→ R, with some smoothness requirements (see [dC92, Boo75]

for more info). This inner product, defined at each point on the manifold, turns each tangent

space into an abstract Euclidean space capable of supporting a wide variety of algorithms. A

Riemannian manifold is the combination (M, g) of a differential manifold and a Riemannian

metric; the metric g is said to provide a Riemannian structure for the differentiable manifold

M. When the metric g is unclear or unimportant, we may refer to M as a Riemannian

manifold.

Due to the presence of the word “metric”, the Riemannian metric is sometimes mistaken

as a tool for measuring the lengths of curves on a Riemannian manifold. Whereas the

15

Riemannian metric directly provides only an inner product on the tangent spaces, the norm

induced by this inner product can be used to define a distance metric on M as follows:

d(x, y) = inf
γ

{∫ 1

0

‖γ̇(t)‖gγ(t)dt
}
, (1.10)

where γ is a curve onM with γ(0) = x and γ(1) = y. This definition of distance, as well as

the concept of a distance minimizing curve, is significant to the discussion of geodesics.

This definition of distance on the manifold allows another definition of neighborhoods on

the manifold. We denote by Bδ(x) the open ball of radius δ around x:

Bδ(x) = {y ∈M : d(x, y) < δ} .

This definition of neighborhoods is used to define local minimizers for a function defined on

a manifold. Given a function f : M → R, a point x∗ is a strict local minimizer if there

exists some δ > 0 such that

f(x) < f(y) for all y ∈ Bδ(x) .

In order to clarify different types of equations, various notations will be used for the

Riemannian metric:

gx(η, ξ) = g(η, ξ) = 〈 η, ξ〉x = 〈 η, ξ〉 .

1.3.3 Affine Connections, Geodesics and the Exponential Map

Straight lines in Euclidean space can be defined in a number of ways: a straight line defines

the shortest path between points; or a straight line is a curve with zero acceleration (“a

straight curve”). The intuitive role of straight lines is played out on Riemannian manifolds

by geodesics. A geodesic γ on a manifoldM is a curve with zero acceleration, i.e., satisfying

D2

dt2
γ(t) = 0 (1.11)

for all t in the domain of the geodesic. An explanation of this equation follows.

The term D2

dt2
γ refers to the acceleration vector of the curve γ. Given a curve γ, there is

a well-defined tangent vector γ̇(t) at each point γ(t) along the curve. The curve defines

a vector field γ̇, a smooth mapping between the interval domain of the curve and the

tangent plane at each point along the curve. The acceleration of the curve indicates the

16

the instantaneous change of γ̇. However, each tangent vector γ̇(t) resides in the tangent

space Tγ(t)M; differentiating γ̇ requires working with tangent vectors from different tangent

spaces. This is enabled by a differetial tool called the affine connection.

An affine connection is so named because it “connects” local tangent spaces, allowing the

differentiation of tangent vectors to be performed. Let X (M) be the set of all smooth vector

fields on M. An affine connection ∇ is a mapping from X (M)×X (M) to X (M). This is

a differential operator, and is required to satisfy the following for all x ∈ M, f ∈ Fx(M),

a, b ∈ R, and η, ξ, ζ ∈ Xx(M):

1. ∇fηξ = f∇ηξ: F(M)-linearity in the first argument;

2. ∇η(aξ + bζ) = a∇ηξ + b∇ηζ: R-linearity in the second argument; and

3. ∇η(fξ) = (ηf)ξ + f∇ηξ: Product rule/Leibniz’s law.

At a point x onM, the connection maps tangent vectors (η, ξ) ∈ TxM× TxM to a tangent

vector ∇ηξ ∈ TxM. The result ∇ηξ is the covariant derivative of ξ with respect to η.

For a general differential manifoldM, there exist an infinite number of affine connections.

However, for a Riemannian manifold (M, g), there exists a unique connection, called the

Riemannian connection or the Levi-Civita connection, which exhibits compatibility with the

Riemannian metric [dC92, Boo75]. This dissertation assumes the use of the Riemannian

connection.

Returning to the discussion of the geodesic, it is now possible to state the form of the

acceleration vector of a curve γ at t:

D2

dt2
γ(t) =

D

dt
γ̇(t) = ∇γ̇(t)γ̇(t) .

For the geodesic constraint (1.11) to be satisfied, the change of the tangent vector along the

curve must be zero, with respect to the affine connection.

It should be noted that geodesics are also length minimizing curves, so that they satisfy

both intuitive definitions of straight lines. Similar to straight lines in Euclidean space, a

geodesic is uniquely determined by its starting point and direction. Given a point x ∈ M
and a tangent vector ξ at x, there is a unique geodesic γ(t;x, ξ) satisfying γ(0) = x and

γ̇(0) = ξ. Furthermore, geodesics satisfy a homogeneity property; given scalar a, the geodesic

γ satisfies

γ(t;x, aξ) = γ(at;x, ξ) .

17

The tangent vector has already been introduced as a notion of direction on the manifold.

The properties, that a geodesic is the shortest path between two points and uniquely

determined by tangent vector, suggests these curves may be useful for movement along

the manifold. The mapping

Expx : TxM→M : η 7→ γ(1;x, η) , (1.12)

called the exponential map, is a one-to-one mapping between a neighborhood of x and the

tangent space TxM.

The exponential map is useful in that it underpins the concept of normal coordinates.

Given a point x in M, there is a ball Bε(0x) in TxM of radius ε around the origin 0x

of TxM such that Expx is a diffeomorphism of Bε(0x) onto an open subset of M. Then

Expx(Bε(0x)) = U is called a normal neighborhood of x, and Expx defines a diffeomorphism

between the Euclidean space TxM and U . The supremum of these ε’s is the injectivity radius

ix(M) at x, and i(M) := infx∈M ix is the injectivity radius of M. Normal coordinates are

defined in a normal neighborhood U by considering an orthonormal basis {ei} of TxM and

taking (u1, . . . , ud) as the coordinates of y = Expx (
∑n

i=1 uiei). These coordinates provide

one way of uniquely representing points in a neighborhood of x.

1.3.4 Gradients and Hessians

The concepts presented in the previous sections allow us to begin to adapt the theory from

Euclidean optimization to Riemannian optimization. The first and second-order necessary

conditions for optimality, Equations 1.2 and 1.3, depend on the concepts of the gradient and

the Hessian of an objective function. The equivalent terms for a function on a Riemannian

manifold are defined here.

The gradient for a Euclidean objective function is defined as the direction of steepest

ascent. Because the gradient encodes information about the first-order derivatives of a

function, it also provides the information necessary for computing the directional derivatives

of a function. The definition of tangent vectors was based upon computing directional

derivatives of Riemannian functions. Therefore, it should not be surprising that the

Riemannian gradient is a tangent vector.

For a function f defined on a Riemannian manifold (M, g), the Riemannian gradient

18

grad f(x) of f at x is the unique tangent vector satisfying

〈 grad f(x), η〉x = Df(x)[η], ∀η ∈ TxM .

Recall that the definition of a tangent vectors identifies Df(x)[η] = ηf . Note that the

notation grad f(x) is used to differentiate between the Euclidean gradient ∇f(x) and that

the identity of the gradient is tied to the Riemannian metric. The differentiability of the

manifold allows us to conduct calculus on the manifold, computing directional derivatives.

However, identifying the gradient requires the ability to perform geometry, which requires

the Riemannian metric.

Implementing methods utilizing second-order information about f , such as Newton’s

method or a trust-region method, requires the Riemannian Hessian. The Euclidean Hessian

contains the second derivative information of the objective function, i.e., it gives an idea

about the changes in the gradient in a particular direction. The Riemannian Hessian does

the same: given a direction η, it indicates the instantaneous change to the Riemannian

gradient. The affine connection provides the ability to conduct differentiation of tangent

vectors. In this way, the identity of the Riemannian Hessian is tied to the chosen affine

connection.

The Riemannian Hessian of f at x is the linear mapping from TxM to TxM defined by

Hess f(x)[η] = ∇ηgrad f(x) ,

for all η ∈ TxM, where ∇ is the Riemannian connection chosen for M. The requirement

that ∇ is the Riemannian connection (instead of an arbitrary affine connection) ensures that

the Riemannian Hessian is symmetric with respect to the Riemannian metric:

〈Hess f(x)[η], ξ〉x = 〈Hess f(x)[ξ], η〉x

for all η, ξ ∈ TxM.

1.3.5 Some Methods for Riemannian Optimization

Recall the generic iteration from earlier:

xk+1 = xk + αksk .

19

The previous section introduced the tools necessary to describe this iteration on a Rieman-

nian manifold. The iterates xk and xk+1 a manifold points, the update vector sk is a tangent

vector, and the addition operation can be implemented via the exponential map. This results

in a new, generic iteration of the form

xk+1 = Rxk(αksk) .

In this fashion, we can describe the steepest descent and Newton methods from Section 1.1

on the Riemannian manifold. Algorithm 2 outlines the Riemannian Newton method. The

history of Newton’s method on manifolds can be traced back to Luenberger [Lue72], if

not earlier. Gabay [Gab82] proposed a Newton method on embedded submanifolds of Rn.

Smith [Smi93, Smi94] and Udrişte [Udr94] formulated and analyzed the method on general

Riemannian manifolds. Related work includes [Shu86, EAS98, OW00, Man02, MM02,

ADM+02, DPM03, HT04].

Algorithm 2 Riemannian Newton Algorithm

Require: Complete Riemannian manifold (M, g); scalar field f on M
Input: Initial iterate x0 ∈M.

1: for k = 0, 1, 2, . . . do
2: {Compute Newton step}
3: Obtain ηk by solving

Hess f(xk)[η] = −grad f(xk)

4: {Compute next iterate}
5: Compute step-size αk
6: Set xk+1 = Expxk(αkηk)
7: end for

Output: Sequences of iterates {xk}.

Now let (M, g) be a Riemannian manifold of dimension d. Recall the trust-region method

of Section 1.2, and consider defining a trust-region method for a cost function f on M.

Given a current iterate x, it is tempting to choose a coordinate neighborhood Uα containing

x, translate the problem to Rd through the chart φα, build a quadratic model m, solve the

trust-region problem in Rd and bring back the solution to M through φ−1
α . One difficulty

is that there are in general infinitely many α such that x ∈ Ωα. Each choice will yield a

different model function m ◦ φα and a different trust region {y ∈ M : ‖φα(y)‖ ≤ ∆}, hence

a different next iterate x+. This kind of situation is pervasive in numerics on manifolds; it

is usually addressed by exploiting the exponential map to work in normal coordinates.

20

1.4 Retraction-based Riemannian Optimization

The exponential map is useful because it can be used to map between points in a neighbor-

hood of x ∈M and the tangent space TxM. Unfortunately, the strengths of the exponential

map, coming from its strict definition, can also be a weakness from a computational point

of view. In practice, the zero-acceleration condition (1.11) defining the geodesic can be

very expensive to ensure. As pointed out in [Man02], the systematic use of the exponential

mapping may not be desirable in all cases: other local mappings to TxM may reduce the

computational cost while preserving the useful convergence properties of the considered

method.

Much as in the work of Shub [Shu86, ADM+02] and some recent work [AMS08], this

dissertation forgoes the stricture of the exponential map in favor of an alternative mechanism

called a retraction. Retractions relax the exponential map to provide a slightly less powerful,

yet significantly more flexible tool. A formal definition follows.

Definition 3 (retraction). A retraction on a manifold M is a mapping R on the tangent

bundle TM into M with the following properties. Let Rx denote the restriction of R to

TxM.

1. R is continuously differentiable.

2. Rx(0x) = x, where 0x denotes the zero element of TxM.

3. DRx(0x) = idTxM, the identity mapping on TxM, with the canonical identification

T0xTxM' TxM.

Figure 1.1: Illustration of retractions.

Similar to the exponential map, a retraction maps vectors in the tangent plane TxM to

points on the manifold M near x, as illustrated in Figure 1.1. It follows from the inverse

21

function theorem (see [dC92, Ch. 0, Th. 2.10]) that Rx is a local diffeomorphism at 0x,

namely, Rx is not only C1 but also bijective with differentiable inverse on a neighborhood

V of 0x in TxM. In particular, the exponential mapping is a retraction (see Proposition 2.9

in [dC92, Ch. 3] and the proof thereof), the Riemannian exponential retraction. The

Riemannian exponential retraction exists for every Riemannian manifold, so that every

Riemannian manifold is guaranteed to have at least one retraction.

Any other retraction can be thought of as a first-order approximation of the exponential

mapping. However, the constraints on the retraction are less stringent than those on the

manifold. Both the exponential map Expx and a general retraction Rx agree that

Expx(0x) = x = Rx(0x) and D Expx(0x) = idTxM = DRx(0x).

However, no assumption is made on the second and higher derivatives of the retractions; in

particular, D2(Exp−1
x ◦Rx)(0x) need not vanish. Where the exponential retraction satisfies the

zero-acceleration constraint (1.11), a general retraction is required only to satisfy the local

rigidity condition DRx(0x) = idTxM. This condition ensures that the curve γη = Rx(tη)

satisfies γ̇(0) = η. That is, the retraction, which may have nonzero acceleration, defines

a curve on the manifold which initially “moves” in the direction specified by the tangent

vector. This is contrasted by the exponential map, which moves in a straight line.

To illustrate the distinction between the exponential map and a general retraction,

consider analogous mechanisms in Euclidean space. The exponential map is equivalent to

moving along a certain direction in a straight line, resulting from the connection between

exponential maps and geodesics. However, a retraction, which has a local rigidity condition

but no second-order requirements, is equivalent to moving along a curve that initially moved

in the specified direction. The benefit of the retraction is that for many manifolds of interest,

there exist retractions which are significantly cheaper to compute than the exponential map,

as will be discussed in Section 1.5.

A retraction can be used as a mechanism for mapping tangent vectors to nearby manifold

points. In this regard, it can be used for movement on the manifold, just as the exponential

map was used in Algorithm 2. In addition, this dissertation follows [ABG07] and considers

another use of the retraction. By creating a correspondence between the manifold and the

tangent plane, the retraction can be used to “lift” a function f defined on the manifold to

22

the tangent plane as follows:

f̂x : TxM→ R : η 7→ f(Rx(η)) .

The function f̂x is the pullback of f through Rx.

The significance of this is that the pullback f̂x is defined on the tangent space, an abstract

Euclidean space. As a result, a large number of algorithms from Euclidean optimization

can be easily moved to the manifold. The use of retractions to move the optimization

problem from the manifold to the tangent bundle constitutes retraction-based Riemannian

optimization. Algorithm 3 illustrates a generic Riemannian optimization algorithm using

retractions.

Algorithm 3 Generic Riemannian Optimization Algorithm

Require: smooth function f :M→ R, retraction R
Require: initial iterate x0 ∈M.

1: for k = 0, 1, 2, . . . do
2: Compute pullback f̂xk : TxkM→ R
3: Conduct optimization of f̂xk on TxkM to produce sk
4: Compute next iterate xk+1 = Rxk(sk)
5: end for

Output: Sequences of iterates {xk}.

The “lift-solve-retract” technique can be applied to generalize a wide variety of Euclidean

optimization methods to optimization on manifolds. This approach, which finds its roots

in the work of Shub [Shu86], seems to have received little attention in the literature until

recently [ADM+02, ABG04]. Previous efforts focused on the exponential map as a mechanism

for mapping tangent vectors back to the manifold.

Note that it is theoretically possible to choose once and for all the retraction as the

Riemannian exponential mapping. This corresponds to the strategy used by numerous

Riemannian optimization methods when they compute the exponential of a tangent update

vector in order to obtain a new iterate on the manifold; see [Smi94, Udr94, EAS98, Yan07].

However, the use of a retraction may be more computationally feasible. Furthermore,

because it has the tangent plane as its domain, the optimization of the pullback f̂ is in general

significantly easier than the optimization of f on the manifold. In this way, retraction-based

approaches explicitly optimize f̂ instead of f . The following results justify this approach.

23

As with most gradient-based Euclidean optimization methods, our optimization strategy

is to search for points which satisfy the second-order optimality conditions, i.e., those

critical points with a positive-definite Hessian. By choosing to optimize f̂ in place of f ,

we need reassurance that this approach makes sense. This reassurance comes by showing

that satisfaction of the optimality conditions for f̂ imply satisfaction of those conditions for

f . This requires understanding the correspondence between the gradients and Hessians of f̂

and f .

The correspondence between the grad f̂ and grad f is simple. For a general retraction R

and pullback f̂
.
= f ◦R, it holds that

grad f(x) = grad f̂x(0x) . (1.13)

The result of Equation (1.13) is that the search for a critical point of f̂ results in a critical

point of f .

The gradient vector contains the first order information about a function. The equivalence

of the gradients exists because the retraction approximates the exponential map to the first-

order. However, for a general retraction R and pullback f̂ = f ◦ R, there is little that can

be said to relate the mappings Hess f(x) and Hess (f ◦ Rx)(0x). Two situations exist which

alleviate this problem. They are described in the following lemmas. Proofs can be found

in [ABG07, AMS08].

Lemma 4. Suppose that

D

dt

(
d

dt
R(tξ)

)
|t=0 = 0, for all ξ ∈ TM, (1.14)

where D
dt

denotes the covariant derivative along the curve t 7→ R(tξ) (see [dC92, Ch. 2,

Prop. 2.2]). Then Hess f(x) = Hess f̂x(0x).

Lemma 4 places an additional constraint on a retraction. Equation (1.14) is the zero

initial acceleration condition, and a retraction satisfying this equation is a second-order

retraction. Note that this is trivially satisfied by the exponential retraction, which by

definition has zero acceleration everywhere.

Lemma 5. Let R be a C2 retraction, let f be a C2 cost function, and let v be a stationary

point of f (i.e., grad f(v) = 0). Then Hess f̂v(0v) = Hess f(v).

24

In the case that the chosen retraction does not satisfy Equation (1.14), Lemma 5 shows

that Hess f(x) = Hess (f ◦ Rx)(0x) at critical points. Because we are interested in the use

of general retractions for the purpose of optimization, this is the more significant result. It

implies that if a point x satisfies the sufficient conditions for optimality for f̂ = f ◦R, i.e.,

grad f̂x(0x) = 0x Hess f̂x(0x) > 0 ,

then x satisfies the sufficient conditions for optimality of f , i.e.,

grad f(x) = 0x Hess f(x) > 0 .

This development provides the theoretical basis for retraction-based Riemannian optimiza-

tion.

1.5 Riemannian Manifolds of Interest

The theory presented thus far relates to general Riemannian manifolds, and the algorithms

presented in this dissertation are applicable to general Riemannian manifolds. However,

the application studied in Chapter 4 will consider the Grassmann manifold and the related

Stiefel manifold. The orthogonal Stiefel manifold is the set

St(p, n) =
{
X ∈ Rn×p : XTX = Ip

}
.

This is the set of rank-p orthonormal bases for Rn. The manifold is of particular interest

here as its elements form the foundation for matrix factorizations, such as the SVD.

The Grassmann manifold Grass(p, n) is the set of p-dimensional subspaces of Rn. Whereas

the Stiefel matrix has a direct matrix representation, the Grassmann manifold admits many

different representations, some being more amenable to computation than others. For

example, an element of Grass(p, n) can be uniquely represented by its projector [MS85].

However, this requires n2 parameters to represent a point on the Grassmann manifold, a

manifold of dimension np− p2. Another possibility is to rely on the definition of Grass(p, n)

as a quotient of Lie groups; see [EAS98] and references therein. Yet another possibility is

to use the coordinate charts; see, e.g., [HM94, Section C4]. The latter has the drawback of

relying on arbitrarily fixed reference points.

As in [AMS04, ABG07, BAG08], the approach considered in this dissertation is to treat

the Grassmann manifold Grass(p, n) as the quotient

Grass(p, n) = Rn×p
∗ /GLp

25

of the set Rn×p
∗ of full-rank n×p matrices by the set of of transformations GLp which preserve

the column space. The result is that an element X ∈ Grass(p, n) (i.e., a p-dimensional

subspace of Rn) can be represented by any basis X ∈ Rn×p
∗ whose columns span X .

The following subsections will present the necessities for the Stiefel and Grassmann

manifolds: tangent spaces, Riemannian metrics, retractions, gradients, and Hessians.

1.5.1 Geometry of the Stiefel Manifold

The orthogonal Stiefel manifold is an embedded manifold of Rn×p. In this context, we refer

to the space Rn×p as the embedding space. The dimension of St(p, n) is np − 1
2
p(p + 1).

The embedding space is a Euclidean space which provides the differentiable structure for the

embedded space St(p, n).

Let X ∈ St(p, n) and consider a curve γ on St(p, n), γ(0) = X. We previously identified

the tangent vector γ̇(0) as a mapping from the differentiable functions on St(p, n) to their

directional derivatives. However, the definition

γ′(0) = lim
h→0

γ(h)− γ(0)

h

now is well-defined, because the embedding space provides a vector space for the operation

γ(h) − γ(0). We now identify tangent vectors as the mappings γ̇ from Fx to R (as in

Definition 2) as well as the derivatives γ′(0) ∈ Rp×p of curves on St(p, n).

We can use this to explore the tangent space TXSt(p, n). At each point t along the curve,

γ(t) ∈ St(p, n), so that

γ(t)Tγ(t) = Ip .

Differentiating this equation yields

γ̇(t)Tγ(t) + γ(t)T γ̇(t) = 0 ,

so that γ̇(t)Tγ(t) is skew-symmetric. Then tangent vectors γ̇(t) ∈ Tγ(t)St(p, n) can be written

γ̇(t) =
{
γ(t)Ω +B(t) : Ω = −ΩT , γ(t)TB(t) = 0n×p

}
.

An embedded manifold inherits the Riemannian metric of its embedding space. For the

Stiefel manifold St(p, n), this is

〈 η, ξ〉X = trace
(
ηT ξ
)
.

26

Recall that the tangent space TXSt(p, n) is a subspace of TXRn×p ∼= Rn×p. The inner product

can be used to decompose each vector in Rn×p into components in TXSt(p, n) and orthogonal

to TXSt(p, n). The latter is the normal space to St(p, n) at X, and it takes the form

(TXSt(p, n))⊥ =
{
XS : S ∈ Rp×p, S = ST

}
.

Let PX and P⊥X denote the projectors from Rn×p onto TXSt(p, n) and (TXSt(p, n))⊥,

respectively:

PXη = Xskew(XTη) + (I −XXT)η

P⊥X η = Xsym(XTη) ,

where skew(A) and sym(A) are the decomposition of a matrix into symmetric and skew-

symmetric parts:

skew(A) =
1

2
(A− AT)

sym(A) =
1

2
(A+ AT) .

There are a number of retractions that can be described for the Stiefel. The exponential

retraction is defined by the geodesic:

γ(t,X, η) =
[
X η

]
exp

(
t

[
A −S
I A

])[
I
0

]
exp(−At) , (1.15)

where A = XTη and S = ηTη. The exponential retraction then is

Rexp
X η = γ(1;X, η)

=
[
X η

]
exp

([
A −S
I A

])[
I
0

]
exp(−A) .

Another retraction for the Stiefel is

Rqf
Xη = qf(X + η) , (1.16)

where qf(B) returns the Q factor of a thin QR factorization of B. This retraction does not

satisfy the zero initial acceleration condition (1.14). However, it is less expensive to apply

than the exponential retraction.

27

Defining the gradient of a function on the Stiefel can be eased by its embedding in Rn×p.

Given a function f̄ defined Rn×p, let f be the restriction of f̄ to St(p, n). Then the gradient

of f is given by

grad f(X) = PXgrad f̄(X) . (1.17)

Defining the Riemannian Hessian requires an affine connection. As with the Riemannian

metric, the Stiefel manifold inherits the Riemannian connection of the embedding space

Rn×p. Because the embedding space is a vector space, this is easily computed:

∇ηξ = PX (D ξ(X)[η]) . (1.18)

The projection PX serves to ensure that ∇ is a connection, as the classical derivative

D ξ(X)[η] does not necessarily produce a vector in TXSt(p, n).

Using this formula, the Riemannian Hessian of f is given by

Hess f(X)[η] = PXD (grad f(X)) [η] . (1.19)

1.5.2 Geometry of the Grassmann Manifold

The Grassmann manifold will be treated here as the quotient manifold Rn×p
∗ /GLp. The space

Rn×p
∗ is the set of all full-rank n×p matrices and is the total space of the quotient. We define

the canonical projection

π : Rn×p
∗ → Grass(p, n) : X 7→ colsp (X) .

We denote by π(X) a point in Grass(p, n), and by π−1(π(X)) a set of points

π−1(π(X)) =
{
Y ∈ Rn×p

∗ : colsp (X) = colsp (Y)
}
⊂ Rn×p

∗ .

A point X ∈ Grass(p, n) is represented by any matrix X ∈ Rn×p
∗ such that colsp (X) =

π(X) = X . The benefit of this approach is that it allows elements on the Grassmann

manifold to be easily represented on a computer. However, the quotient manifold treatment

of the Grassmann manifold comes with some subtle problems not present for the orthogonal

Stiefel manifold. The freedom in representing a particular element X as one of an infinite

number of suitable bases means that the representation of tangent vectors requires extra

consideration.

28

Tangent vectors were motivated by two different purposes: directional derivatives of

functions and elementary variations of manifolds points. Consider the latter. Understanding

the variations of a subspace in Grass(p, n) first requires understanding the variations of bases

in the total space Rn×p
∗ . The tangent plane TXRn×p

∗ is Rn×p. When choosing an element of

TXRn×p
∗ to represent a tangent vector η ∈ TXGrass(p, n), any element η̄ ∈ TXRn×p

∗ satisfying

D π(X)[η̄] = η

will suffice. However, there are infinitely many η̄ which satisfy this. When implementing

numerical algorithms, it is useful to have a unique representation for each tangent vector.

In this way, a unique vector in TXRn×p
∗ can unambiguously represent a tangent vector in

TXGrass(p, n).

The solution is to note that the set π−1(X) is an embedded submanifold of Rn×p
∗ . This

manifold therefore has a tangent space which is a subspace of TXRn×p
∗ . This tangent space

is called the vertical space at X, and is denoted

VX = TX
(
π−1(X)

)
.

A mapping H that assigns to each X ∈ Rn×p
∗ a subspace HX of TXRn×p

∗ such that

VX⊕HX = TXRn×p
∗ is called a horizontal distribution, and the subspace HX is the horizontal

space at X.

For a tangent vector η ∈ TXGrass(p, n), there is a unique vector η̄ ∈ TXRn×p
∗ in HX

satisfying Dπ(X)[η̄] = η. This vector is denoted η↑X and is referred to as the horizontal lift

of η at X. For two different representations X1, X2 ∈ R∗, satisfying

colsp (X1) = X = colsp (X2) ,

there are two different horizontal lifts η↑X1 and η↑X2 representing η at X1 and X2, respectively.

That is, both of these satisfy

Dπ(X1)[η↑X1] = η = Dπ(X2)[η↑X2] ,

and for any smooth function f on Grass(p, n),

D f(π(X1))[η↑X1] = ηf = D f(π(X2))[η↑X2] .

In this regard, the horizontal space HX represents the tangent space TXGrass(p, n).

29

This invariance to representation is required to extend to the Riemannian structure

as well. The tangent space is a property of a differentiable manifold; we have shown

how Grass(p, n) is represented as a differentiable quotient manifold of the total space

Rn×p
∗ . The Grassmann manifold can also be defined as a Riemannian quotient manifold

of the Riemannian manifold Rn×p
∗ . Let the total space Rn×p

∗ have Riemannian metric

ḡ; i.e., (Rn×p
∗ , ḡ) is a Riemannian manifold. Suppose that for every X ∈ Grass(p, n)

and ξ, η ∈ TXGrass(p, n), the expression ḡX(ξ↑X , η↑X) does not depend on the choice of

representation X ∈ π−1(X). That is, for X1, X2 ∈ π−1(X),

ḡX1 (ξ↑X1 , η↑X1) = ḡX2 (ξ↑X2 , η↑X2) .

Then

gX (ξ, η)
.
= ḡX(ξ↑X , η↑X)

defines a Riemannian metric on Grass(p, n), and (Grass(p, n), g) is a Riemannian quotient

manifold of Rn×p
∗ .

Consider the Riemannian metric for Rn×p
∗ is given by

ḡX(η̄, ξ̄) = trace
(
(XTX)−1η̄T ξ̄

)
. (1.20)

for X ∈ Rn×p
∗ and η̄, ξ̄ ∈ TXRn×p

∗ . It can be shown [AMS04, AMS08] that this metric provides

a Riemannian quotient structure for Grass(p, n):

gcolsp(X)(η, ξ) = trace
(
(XTX)−1ηT↑Xξ↑X

)
. (1.21)

For the Grassmann manifold, the set π−1(X) is given by

π−1(X) = {XM : M ∈ GLp} .

The tangent space of this submanifold identifies the vertical space as

VX =
{
XM : M ∈ Rp×p} .

The horizontal distribution is canonically chosen so that elements of HX are orthogonal to

elements of VX with respect to the Riemannian metric. Therefore, the canonical choice for

the horizontal distribution, using the canonical Riemannian metric (1.21), is

HX =
{
Z ∈ Rn×p : ZTX = 0

}
.

30

As with all Riemannian manifolds, the Grassmann manifold admits a retraction in the

form of the exponential retraction. This retraction is defined by the geodesic, which is defined

with respect to the Riemannian metric. For the canonical metric (1.21), the geodesic is given

by

γ(t; colsp (X), η) = colsp
(
X(XTX)−1/2V cos(Σt) + U sin(Σt)

)
, (1.22)

where UΣV T = η↑X is a thin singular value decomposition [GV96] of η↑X . An alternative

retraction is

Rcolsp(X)η = colsp (X + η↑X) .

As with the qf retraction for the Stiefel manifold, this retraction is inexpensive to apply, at

the expense of not satisfying the zero initial acceleration condition. However, unlike the qf

retraction for the Stiefel manifold, this retraction does not specify an orthonormal basis as

output. In fact, any basis may be used to represent colsp (X + η↑X), though in practice, an

orthonormal basis may be desired for numerical properties.

Given a function f̄ , defined on Rn×p
∗ and invariant to change of basis, consider its

restriction f(colsp (X)) = f̄(X) to Grass(p, n). If the horizontal distribution is such that

VX and HX are orthogonal with respect to the Riemannian metric, then it holds that

gradf(X)↑X = gradf̄(X) .

Similarly, the Riemannian connection is inherited from the total space as well:

(∇ηξ)↑X = P h
X (D η↑X [ξ↑X]) ,

where P h
X is the projection from TXRn×p

∗ onto HX . This yields the Riemannian Hessian:

(Hessf(X)[η])↑X = P h
X

(
D (gradf̄(X))[η↑X]

)
.

These results relied on the assumption that the horizontal space and the vertical space are

complementary under the Riemannian metric. If this is not the case, then the Riemannian

gradient and Riemannian Hessian must be computed in some other manner.

31

CHAPTER 2

THE RIEMANNIAN TRUST-REGION METHOD

This chapter describes a trust-region method for Riemannian optimization. Like the generic

Riemannian Optimization method (Algorithm 3), the trust-region method described here

utilizes a retraction Rx to lift the cost function f from the manifoldM to the tangent space.

The pullback f̂x = f ◦ Rx is defined on TxM, an abstract Euclidean space. This enables

Euclidean optimization methods to be easily applied to the optimization of f̂ . Section 2.1

describes a Riemannian Trust-Region (RTR) Method under the paradigm of retraction-based

Riemannian optimization, and Section 2.2 moves the Steihaug-Toint conjugate gradient

algorithm to the tangent plane.

It is the “lift-solve-retract” procedure that distinguishes the proposed RTR approach

from the Euclidean trust-region methods; the Euclidean methods, since they live in Rn,

only require the “solve” part. On a manifold, the “lift” step creates the pullback f̂ defined

on a friendly Euclidean world (the tangent space TxM), where classical techniques can be

applied; the “retract” step brings the result back to the manifold. A difficulty, from an

analysis perspective, is that the RTR method does not deal with a unique cost function (as

in the classical case) at each “solve” step, but rather with a succession of different lifted

cost functions f̂xk , where xk is the kth iterate. This will comprise most of the effort in the

global and local convergence proofs that follow, which otherwise follow from those of their

Euclidean counterparts.

The motivation for developing the Riemannian Trust-Region method is the same as for the

Euclidean Trust-Region. Similar to its Euclidean counterpart, Riemannian Steepest Descent

has only a linear rate of convergence, albeit with a strong global convergence behavior.

Riemannian Newton’s Method, similar to Euclidean Newton’s Method, has a superlinear

rate of local convergence. However, this comes at the expense of global convergence, and

32

the Newton iteration requires the exact solution of linear system at each step, a potentially

expensive operation. Euclidean Trust-Region methods admit a strong global convergence

theory, while also exhibiting superlinear rates of local convergence. Section 2.3 shows that

the Riemannian Trust-Region method retains the pleasant convergence properties of the

Euclidean Trust-Region method.

2.1 RTR algorithm

Recalling Algorithm 1 from Section 1.2, the basic trust-region method in Rn for a cost

function f consists of adding to the current iterate x ∈ Rn the update vector η ∈ Rn solving

the trust-region subproblem:

min
η∈Rn

mx(η) = f(x) + ηT∇f(x) +
1

2
ηT∇2f(x)η ‖η‖ ≤ ∆ , (2.1)

where ∇f(x) = (∂1f(x), . . . , ∂nf(x)) is the gradient of f at x, (∇2f(x))ij = ∂2
ijf(x) is the

Hessian matrix of f at x1 and ∆ is the trust-region radius. The quality of the model mx is

assessed by forming the quotient

ρ =
f(x)− f(x+ η)

m(0)−m(η)
.

Depending on the value of ρ, the new iterate will be accepted or discarded and the trust-

region radius ∆ will be updated. Major references on trust-region methods include the early

work of Powell [Pow74] and Moré and Sorensen [Sor82, MS84], and the textbook [CGT00];

see also [WD05] and references therein for recent work on trust-region update strategies.

With a view towards extending the concept of the trust-region subproblem to manifolds,

we first consider the case of an abstract Euclidean space, i.e., a vector space endowed with

an inner product (i.e., a symmetric, bilinear, positive-definite form). This generalization to

a Euclidean space E of dimension d requires little effort since E may be identified with Rd

once a basis of E is chosen (we refer to [Boo75, Section I.2] for a discussion on the distinction

between Rn and abstract Euclidean spaces). Let g (·, ·) denote the inner product on E . Given

a function f : E → R and a current iterate x ∈ E , one can choose a basis (ei)i=1,...,d of E
(not necessarily orthonormal with respect to the inner product) and write a classical G-norm

1Some convergence results allow for ∇2f(x) in (2.1) to be replaced by any symmetric matrix, but we
postpone this relaxation until later in the development.

33

trust-region subproblem (see, e.g., [GLRT99, Section 2])

min
η̄∈Rd

m(η̄) := f̄(x̄) +∇f̄(x̄)η̄ +
1

2
η̄T∇2f̄(x̄)η̄, η̄TGη̄ ≤ ∆2

x (2.2)

where x =
∑

i x̄iei, η =
∑

i η̄iei, f̄(x̄) = f(
∑

i x̄iei) and Gij = g (ei, ej). It can be shown that

m(η) does not depend on the choice of basis (ei)i=1,...,d; therefore (2.2) can be written as a

coordinate-free expression

min
η∈E

m(η) = f(x) + Df(x)[η] +
1

2
D2f(x)[η, η]

= f(x) + g (grad f(x), η) +
1

2
g (Hessf [η], η) s.t. g (η, η) ≤ ∆2

x (2.3)

for the trust-region subproblem in the Euclidean space E .

An important observation is that, for the purpose of defining a trust-region method, the

choice of a basis {ei} in TxM is immaterial, since trust-region subproblems on a Euclidean

space (in particular, TxM) admit a coordinate-free expression (2.3). Therefore, an arbitrary

retraction makes it possible to uniquely define trust-region subproblems on Riemannian

manifolds by locally mapping the manifold to the Euclidean space TxM.

We can now lay out the structure of a trust-region method on a Riemannian manifold

(M, g) with retraction R. Given a cost function f :M→ R and a current iterate xk ∈ M,

we use Rxk to locally map the minimization problem for f onM into a minimization problem

for the pullback

f̂xk : TxkM→ R : ξ 7→ f(Rxk(ξ)). (2.4)

The Riemannian metric g turns TxkM into a Euclidean space endowed with the inner product

gxk (·, ·), and, following (2.3), the trust-region subproblem on TxkM reads

min
η∈TxkM

mxk(η) = f̂xk(0xk) + Df̂xk(0xk)[η] +
1

2
D2f̂xk(0xk)[η, η]

= f̂xk(0xk) + gxk

(
grad f̂xk(0xk), η

)
+

1

2
gxk

(
Hessf̂xk(0xk)[η], η

)
s.t. gxk (η, η) ≤ ∆2

k .

(2.5)

For the global convergence theory it is only required that the second-order term in the

model be some symmetric form. Therefore, instead of (2.5), we will consider the following

more general formulation

min
η∈TxkM

mxk(η) = f(xk) + gxk (grad f(xk), η) +
1

2
gxk (Hxkη, η) s.t. gxk (η, η) ≤ ∆2

k , (2.6)

34

where Hxk : TxkM → TxkM is some symmetric linear operator, i.e., gxk (Hxkξ, χ) =

gxk (ξ,Hxkχ), ξ, χ ∈ TxkM. This is called the trust-region subproblem.

Next, an (approximate) solution ηk of the Euclidean trust-region subproblem (2.6) is

computed using any available method: if an iterative method is used, its iterations are

called inner iterations of the overall algorithm (see Section 2.2). The candidate for the new

iterate is then given by x+ = Rxk(ηk).

The decision to accept or not the candidate and to update the trust-region radius is based

on the quotient

ρk = ρxk(ηx) =
f(xk)− f(Rxk(ηk))

mxk(0xk)−mxk(ηk)
=

f̂xk(0xk)− f̂xk(ηk)
mxk(0xk)−mxk(ηk)

. (2.7)

If ρk is exceedingly small, then the model is very inaccurate: the step must be rejected and

the trust-region radius must be reduced. If ρk is small but less dramatically so, then the step

is accepted but the trust-region radius is reduced. If ρk is close to 1, then there is a good

agreement between the model and the function over the step, and the trust-region radius

can be expanded.

This procedure can be formalized as the following algorithm. It should be noted that

this algorithm is equivalent to the classical Rn trust-region algorithm. That is, when the

manifold M is Euclidean space Rn, Algorithm 4 becomes [NW99, Alg. 4.1]. This can be

seen by considering the following canonical choices: M = Rn, TxRn = Rn, g(ξ, ζ) = ξT ζ,

and Rx(ξ) = Expxξ = x+ ξ.

In general, there is no assumption on the operator Hxk in (2.6) other than being a

symmetric linear operator. Definition 3 requires that

f̂xk(0xk) = f(xk) ,

gradf̂xk(0xk) = gradf(xk) ,

regardless of the choice of retraction R. Consequently, even though mxk was initially

presented as a model of f◦Rxk , the choice of the retractionRxk does not impose any constraint

on mxk . In order to achieve superlinear convergence, however, Hxk will be required to be

an “approximate” Hessian (Theorem 16). Obtaining an appropriate approximate Hessian in

practice is addressed in Section 2.4. A possible way of choosing Hxk is to define mx as the

quadratic model of f ◦ R̃xk , where R̃x is a retraction, not necessarily equal to Rxk ; a similar

point of view was adopted in [HT04] in the framework of Newton’s method.

35

Algorithm 4 Basic Riemannian Trust-Region Algorithm

Require: Complete Riemannian manifold (M, g); scalar field f on M; retraction R from
TM to M.

Input: ∆̄ > 0, ∆0 ∈ (0, ∆̄), and ρ′ ∈ [0, 1
4
), initial iterate x0 ∈M.

1: for k = 0, 1, 2, . . . do
2: {Model-based minimization}
3: Obtain ηk by approximately solving (2.6)
4: Evaluate ρk = ρxk(ηk) as in (2.7)
5: {Adjust trust region}
6: if ρk <

1
4

then
7: Set ∆k+1 = 1

4
∆k

8: else if ρk >
3
4

and ‖ηk‖ = ∆k then
9: Set ∆k+1 = min(2∆k, ∆̄)

10: else
11: Set ∆k+1 = ∆k

12: end if
13: {Compute next iterate}
14: if ρk > ρ′ then
15: Set xk+1 = Rxk(ηk)
16: else
17: Preserve xk+1 = xk
18: end if
19: end for
Output: Sequences of iterates {xk}.

We conclude this section by pointing out more explicitly the link between Algorithm 4

and the Riemannian Newton method. Assume that Hxk in (2.6) is the exact Hessian of f

at xk, and assume that the exact solution η∗ of the trust-region subproblem (2.6) lies in the

interior of the trust region. Then η∗ satisfies

grad f +∇η∗grad f = 0,

which is the Riemannian Newton equation of Smith [Smi93, Smi94] and Udrişte [Udr94,

Ch. 7, §5]. Note that both authors propose to apply the update vector η∗ using the

Riemannian exponential retraction; namely, the new iterate is defined as x+ = Expxη
∗.

As shown by Smith [Smi93, Smi94], the Riemannian Newton algorithm converges locally

quadratically to the nondegenerate stationary points of f . A cubic rate of convergence is

even observed in frequently encountered cases where some symmetry condition holds [Smi93,

Smi94, EAS98, AMS04]. We will see in Section 2.3 that the superlinear convergence

36

property of Newton’s method is preserved by the trust-region modification, while the

global convergence properties are improved: the accumulation points are guaranteed to be

stationary points regardless of the initial conditions, and among the stationary points only

the local minima can be local attractors.

2.2 Solving the model minimization

We have seen in Section 2.1 that the use of retractions yields trust-region subproblems

expressed in Euclidean spaces TxM. Therefore, all the classical methods for solving the

trust-region subproblem can be applied, including:

• exact solution [MS83]

• truncated Lanczos [GLRT99]

• truncated conjugate gradient [Toi81, Ste83]

As mentioned in the introduction, it is assumed here that for some reason, usually related

to the large size of the problem under consideration or to the computational efficiency

required to outperform alternative methods, it is impractical to check positive-definiteness

of Hxk ; rather, Hxk is only available via its application to a vector.

The truncated conjugate-gradient method of Steihaug [Ste83] and Toint [Toi81] is par-

ticularly appropriate in these circumstances. The following algorithm is a straightforward

adaptation of the method of [Ste83] to the trust-region subproblem (2.6). This algorithm

is an inner iteration as it is an iteration used within the RTR framework (Algorithm 4) to

compute an approximate solution of the trust-region subproblems. Note that we use indices

in superscript to denote the evolution of η within the inner iteration, while subscripts are

used in the outer iteration.

The simplest stopping criterion for Algorithm 5 is to truncate after a fixed number of

iterations. In order to improve the convergence rate, a possibility is to stop as soon as an

iteration j is reached for which

‖rj‖ ≤ ‖r0‖min(‖r0‖θ, κ). (2.8)

Concerning the computation of τ , it can be shown that when 〈 δj, Hxkδj〉 ≤ 0,

arg minτ∈Rmxk(η
j + τδj) is equal to the positive root of ‖ηj + τδk‖gx = ∆, which is explicitly

37

Algorithm 5 Preconditioned Truncated CG for RTR

Require: Iterate x ∈ M, gradf(x) 6= 0; trust-region radius ∆; convergence criteria
κ ∈ (0, 1), θ > 0; model mx as in (2.5); symmetric/positive definite preconditioner
N−1 : TxM→ TxM

1: Set η0 = 0x, r0 = gradf(x), z0 = N−1r0, d0 = −z0

2: for j = 0, 1, 2, . . . do
3: if ‖rj‖ ≤ ‖r0‖min

{
κ, ‖r0‖θ

}
then

4: return ηj

5: end if
6: if gx (Hx[dj], dj) ≤ 0 then
7: Compute τ > 0 such that η = ηj + τdj satisfies ‖η‖N = ∆
8: return η
9: end if

10: Set αj = gx (zj, rj) /gx (Hx[dj], dj)
11: Set ηj+1 = ηj + αjdj
12: if ‖ηj+1‖N > ∆ then
13: Compute τ > 0 such that η = ηj + τdj satisfies ‖η‖N = ∆
14: return η
15: end if
16: Set rj+1 = rj + αjHx[dj]
17: Set zj+1 = N−1rj+1

18: Set βj+1 = gx (zj+1, rj+1) /gx (zj, rj)
19: Set dj+1 = −zj+1 + βj+1dj
20: end for

given by
−〈 ηj, δj〉 +

√
〈 ηj, δj〉2 − (∆2 − 〈 ηj, ηj〉)〈 δj, δj〉

〈 δj, δj〉
.

Note that Algorithm 5 presents a preconditioned version of the Steihaug-Toint conjugate-

gradient method for use in solving the Riemannian trust-region subproblem. Note that this

presentation exploits the preconditioner for measuring the trust-region radius, via the norm

‖η‖N =
√
〈 η,Nη〉x .

The benefit of this modification is that it can be proven that after the iteration leaves the

trust-region, it will not re-enter the trust-region [CGT00, Section 7.5.1]. However, computing

the N -norm requires applying the operator N ; it is often the case that we have access only to

the operator N−1. Fortunately, it is possible to compute each ‖ηj +αjdj‖N from information

38

at hand. This is done via the following recurrences, from [CGT00, pg. 206]:

‖ηj + αdj‖2
N = ‖ηj‖2

N + 2α〈 ηj, Ndj〉 + α2‖dj‖2
N

〈 ηj, Ndj〉 = βj−1

(
〈 ηj−1, Ndj−1〉 + αj−1‖dj−1‖2

N

)
‖dj‖2

N = 〈 rj, zj〉 + β2
j−1‖dj−1‖2

N ,

and initial values

‖η0‖N = 0

〈 η0, Nd0〉 = 0

‖d0‖2
N = 〈 r0, z0〉 .

Notice that the tCG algorithm only requires the following:

• An evaluation of grad f(x).

• A routine that performs line minimizations for the model m.

• A routine that returns Hxkδ given δ ∈ TxM.

• (Optional) A routine a returns N−1η for the symmetric positive definite preconditioner

N

Thus the tCG algorithm is “inverse-free”, as it uses Hxk in the computation of Hxkδj

only. The reader interested in the underlying principles of the Steihaug-Toint truncated

CG method should refer to one of [Ste83, NW99, CGT00]. Alternatives to tCG as an inner

iteration for RTR (Algorithm 4) include the dogleg method of Powell [Pow70b], the double-

dogleg method of Dennis and Mei [DM79], the method of Moré and Sorensen [MS83], the two-

dimensional subspace minimization strategy of Byrd et al. [BSS88], the truncated Lanczos

approach of Gould et al. [GLRT99], and the sequential subspace method of Hager [Hag01].

2.3 Convergence analysis for RTR

In this section, we first study the global convergence properties of the RTR scheme

(Algorithm 4), without any assumption on the way the trust-region subproblems (2.6) are

solved, except that the approximate solution ηk must produce a decrease of the model that is

at least a fixed fraction of the so-called Cauchy decrease. Under mild additional assumptions

on the retraction and the cost function, it is shown that the sequences {xk} produced by

39

Algorithm 4 converge to the set of stationary points of the cost function. This result is well

known in the Rn case; in the case of manifolds, the convergence analysis has to address the

fact that a different lifted cost function f̂xk is considered at each iterate xk.

We then analyze the local convergence of Algorithm 4-5 around nondegenerate local

minima. Algorithm 4-5 refers to the RTR framework where the trust-region subproblems

are approximately solved using the tCG algorithm with stopping criterion (2.8). It is shown

that the iterates of the algorithm converge to nondegenerate stationary points with an order

of convergence min{θ + 1, 2} (at least).

2.3.1 Global convergence

The objective of this section is to show that, under appropriate assumptions, the sequence

{xk} generated by Algorithm 4 satisfies limk→∞ ‖grad f(xk)‖ = 0; this generalizes a classical

convergence property of trust-region methods in Rn, see [NW99, Theorem 4.8]. In what

follows, (M, g) is a complete Riemannian manifold of dimension d, and R is a retraction on

M (Definition 3). We define

f̂ : TM 7→ R : ξ 7→ f(R(ξ)) (2.9)

and, in accordance with (2.4), f̂x denotes the restriction of f̂ to TxM. We denote by

Bδ(0x) = {ξ ∈ TxM : ‖ξ‖ < δ} the open ball in TxM of radius δ centered at 0x, and

Bδ(x) stands for the set {y ∈ M : dist(x, y) < δ} where dist denotes the Riemannian

distance (1.10). We denote by P t←t0
γ v the vector of Tγ(t)M obtained by parallel transporting

the vector v ∈ Tγ(t0)M along a curve γ.

As in the classical Rn case, we first show that at least one accumulation point of {xk} is

stationary. The convergence result requires thatmxk(ηk) be a sufficiently good approximation

of f̂xk(ηk). In [CGT00, Thm 6.4.5] this is guaranteed by the assumption that the Hessian of

the cost function is bounded. It is however possible to weaken this assumption, which leads

us to consider the following definition.

Definition 6 (radially L-C1 function). Let f̂ : TM→ R be as in (2.9). We say that f̂ is

radially Lipschitz continuously differentiable if there exist reals βRL > 0 and δRL > 0 such

that, for all x ∈M, for all ξ ∈ TxM with ‖ξ‖ = 1, and for all t < δRL, it holds∣∣∣∣ ddτ f̂x(τξ)|τ=t −
d

dτ
f̂x(τξ)|τ=0

∣∣∣∣ ≤ βRLt. (2.10)

40

For the purpose of Algorithm 4, which is a descent algorithm, this condition need only

be imposed for all x in the level set

{x ∈M : f(x) ≤ f(x0)}. (2.11)

A key assumption in the classical global convergence result in Rn is that the approximate

solution ηk of the trust-region subproblem (2.6) produces at least as much decrease in the

model function as a fixed fraction of the Cauchy decrease; see [NW99, Section 4.3]. Since

the trust-region subproblem (2.6) is expressed on a Euclidean space, the definition of the

Cauchy point is adapted from Rn without difficulty, and the bound

mxk(0)−mxk(ηk) ≥ c1‖gradf(xk)‖min

(
∆k,
‖gradf(xk)‖
‖Hxk‖

)
, (2.12)

for some constant c1 > 0, is readily obtained from the Rn case, where ‖Hxk‖ is defined as

‖Hxk‖ := sup{‖Hxkζ‖ : ζ ∈ TxkM, ‖ζ‖ = 1}. (2.13)

In particular, the truncated CG method (Algorithm 5) satisfies this bound (with c1 = 1
2
,

see [NW99, Lemma 4.5]) since it first computes the Cauchy point and then attempts to

improve the model decrease.

With these preliminaries in place, we can state and prove the first global convergence

result. Note that this theorem is presented under weak assumptions; stronger but arguably

easier to check assumptions are given in Proposition 10.

Theorem 7. Let {xk} be a sequence of iterates generated by Algorithm 4 with ρ′ ∈ [0, 1
4
).

Suppose that f is C1 and bounded below on the level set (2.11), that f̂ is radially L-

C1 (Definition 6), and that ‖Hxk‖ ≤ β for some constant β. Further suppose that all

approximate solutions ηk of (2.6) satisfy the Cauchy decrease inequality (2.12) for some

positive constant c1. We then have

lim inf
k→∞
‖grad f(xk)‖ = 0.

Proof. First, we perform some manipulation of ρk from (2.7). Notice that

|ρk − 1| =

∣∣∣∣∣(f(xk)− f̂xk(ηk))− (mxk(0)−mxk(ηk))

mxk(0)−mxk(ηk)

∣∣∣∣∣
=

∣∣∣∣∣mxk(ηk)− f̂xk(ηk)
mxk(0)−mxk(ηk)

∣∣∣∣∣ . (2.14)

41

Direct manipulations on the function t 7→ f̂xk(t
ηk
‖ηk‖

) yield

f̂xk(ηk) = f̂xk(0xk) + ‖ηk‖ ddτ f̂xk(τ
ηk
‖ηk‖

)|τ=0

+

∫ ‖ηk‖
0

(
d
dτ
f̂xk(τ

ηk
‖ηk‖

)|τ=t − d
dτ
f̂xk(τ

ηk
‖ηk‖

)|τ=0

)
dt

= f(xk) + gxk (grad f(xk), ηk) + ε′

where |ε′| <
∫ ‖ηk‖

0
βRLt dt = 1

2
βRL‖ηk‖2 whenever ‖ηk‖ < δRL, and βRL and δRL are the

constants in the radially L-C1 property (2.10). Therefore, it follows from the definition (2.6)

of mxk that

|mxk(ηk)− f̂xk(ηk)| =

∣∣∣∣12gxk (Hxkηk, ηk)− ε′
∣∣∣∣

≤ 1

2
β‖ηk‖2 +

1

2
βRL‖ηk‖2 ≤ β′‖ηk‖2 (2.15)

whenever ‖ηk‖ < δRL, where β′ = max(β, βRL).

Assume for purpose of contradiction that the theorem does not hold; that is, assume

there exist ε > 0 and a positive index K such that

‖grad f(xk)‖ ≥ ε, for all k ≥ K. (2.16)

From (2.12), for k ≥ K, we have

mxk(0)−mxk(ηk) ≥ c1‖gradf(xk)‖min

(
∆k,
‖gradf(xk)‖
‖Hxk‖

)
≥ c1εmin

(
∆k,

ε

β′

)
. (2.17)

Substituting (2.15), and (2.17) into (2.14), we have that

|ρk − 1| ≤ β′‖ηk‖2

c1εmin
(

∆k,
ε
β′

) ≤ β′∆2
k

c1εmin
(

∆k,
ε
β′

) (2.18)

whenever ‖ηk‖ < δRL. We can choose a value of ∆̂ that allows us to bound the right-hand-side

of the inequality (2.18), when ∆k ≤ ∆̂. Choose ∆̂ as follows:

∆̂ ≤ min

(
c1ε

2β′
,
ε

β′
, δRL

)
.

This gives us min
(

∆k,
ε
β′

)
= ∆k. We can now write (2.18) as follows:

|ρk − 1| ≤ β′∆̂∆k

c1εmin
(

∆k,
ε
β′

) ≤ ∆k

2 min
(

∆k,
ε
β′

) =
1

2
.

42

Therefore, ρk ≥ 1
2
> 1

4
whenever ∆k ≤ ∆̂, so that by the workings of Algorithm 4, it follows

(from the argument above) that ∆k+1 ≥ ∆k whenever ∆k ≤ ∆̂. It follows that a reduction of

∆k (by a factor of 1
4
) can occur in Algorithm 4 only when ∆k > ∆̂. Therefore, we conclude

that

∆k ≥ min
(

∆K , ∆̂/4
)
, for all k ≥ K. (2.19)

Suppose now that there is an infinite subsequence K such that ρk ≥ 1
4
> ρ′ for k ∈ K. If

k ∈ K and k ≥ K, we have from (2.17) that

f(xk)− f(xk+1) = fxk − f̂xk(ηk)

≥ 1

4
(mxk(0)−mxk(ηk))

≥ 1

4
c1εmin

(
∆k,

ε

β′

)
.

Since f is bounded below on the level set containing these iterates, it follows from this

inequality that

lim
k∈K,k→∞

∆k = 0,

clearly contradicting (2.19). Then such an infinite subsequence as K cannot exist. If follows

that we must have ρk <
1
4

for all k sufficiently large, so that ∆k will be reduced by a factor

of 1
4

on every iteration. Then we have, limk→∞∆k = 0, which again contradicts (2.19). Then

our original assumption (2.16) must be false, giving us the desired result.

To further show that all accumulation points of {xk} are stationary points, we need to

make an additional regularity assumption on the cost function f . The global convergence

result in Rn, as stated in [NW99, Theorem 4.8], requires that f be Lipschitz continuously

differentiable. That is to say, for any x, y ∈ Rn,

‖gradf(y)− gradf(x)‖ ≤ β1‖y − x‖. (2.20)

A key to obtaining a Riemannian counterpart of this global convergence result is to adapt

the notion of Lipschitz continuous differentiability to the Riemannian manifold (M, g). The

expression ‖x−y‖ in the right-hand side of (2.20) naturally becomes the Riemannian distance

dist(x, y). For the left-hand side of (2.20), observe that the operation gradf(x) − gradf(y)

is not well-defined in general on a Riemannian manifold since grad f(x) and grad f(y)

belong to two different tangent spaces, namely TxM and TyM . However, if y belongs to a

43

normal neighborhood of x, then there is a unique geodesic α(t) = Expx(tExp−1
x y) such that

α(0) = x and α(1) = y, and we can parallel transport grad f(y) along α to obtain the vector

P 0←1
α grad f(y) in TxM, to yield the following definition.

Definition 8 (Lipschitz continuous differentiability). Assume that (M, g) has an injectivity

radius i(M) > 0. A real function f on M is Lipschitz continuous differentiable if it is

differentiable and if, for all x, y in M such that dist(x, y) < i(M), it holds that

‖P 0←1
α grad f(y)− grad f(x)‖ ≤ β1dist(y, x), (2.21)

where α is the unique geodesic with α(0) = x and α(1) = y.

Note that (2.21) is symmetric in x and y; indeed, since the parallel transport is an

isometry, it follows that

‖P 0←1
α grad f(y)− gradf(x)‖ = ‖gradf(y)− P 1←0

α gradf(x)‖.

Moreover, we place one additional requirement on the retraction R, that there exists

some µ > 0 and δµ > 0 such that

‖ξ‖ ≥ µ d(x,Rx(ξ)), for all x ∈M, for all ξ ∈ TxM, ‖ξ‖ ≤ δµ (2.22)

Note that for the exponential retraction discussed in this paper, (2.22) is satisfied as an

equality, with µ = 1. The bound is also satisfied when R is smooth and M is compact

(Corollary 11).

We are now ready to show that under some additional assumptions, the gradient of the

cost function converges to zero on the whole sequence of iterates. Here again we refer to

Proposition 10 for a simpler (but slightly stronger) set of assumptions that yield the same

result.

Theorem 9. Let {xk} be a sequence of iterates generated by Algorithm 4. Suppose that

all the assumptions of Theorem 7 are satisfied. Further suppose that ρ′ ∈ (0, 1
4
), that f

is Lipschitz continuously differentiable (Definition 8), and that (2.22) is satisfied for some

µ > 0, δµ > 0. It then follows that

lim
k→∞

grad f(xk) = 0.

44

Proof. Consider any index m such that grad f(xm) 6= 0. The Lipschitz property (2.21) yields

‖P 1←0
α grad f(x)− grad f(xm)‖ ≤ β1dist(x, xm)

for all x. Define scalars

ε =
1

2
‖gradf(xm)‖, r = min

(
‖gradf(xm)‖

2β1

, i(M)

)
= min

(
ε

β1

, i(M)

)
Define the ball Br(xm) := {x : dist(x, xm) < r}.
Then for any x ∈ Br(xm), we have

‖gradf(x)‖ = ‖P 0←1
α grad f(x)‖

= ‖P 0←1
α grad f(x) + grad f(xm)− grad f(xm)‖

≥ ‖grad f(xm)‖ − ‖P 0←1
α grad f(x)− grad f(xm)‖

≥ 2ε− β1dist(x, xm)

> 2ε− β1 min

(
‖gradf(xm)‖

2β1

, i(M)

)
≥ 2ε− 1

2
‖gradf(xm)‖

= ε.

If the entire sequence {xk}k≥m stays inside of the ball Br(xm), then we would have

‖gradf(xk)‖ > ε for all k ≥ m, which contradicts the results of Theorem 7. Then the

sequence eventually leaves the ball Br(xm).

Let the index l ≥ m be such that xl+1 is the first iterate after xm outside of Br(xm).

Since ‖gradf(xk)‖ > ε for k = m,m+ 1, . . . , l, we have

f(xm)− f(xl+1) =
l∑

k=m

f(xk)− f(xk+1)

≥
l∑

k=m,xk 6=xk+1

ρ′ (mxk(0)−mxk(ηk))

≥
l∑

k=m,xk 6=xk+1

ρ′c1‖gradf(xk)‖min

(
∆k,
‖gradf(xk)‖
‖Hxk‖

)

≥
l∑

k=m,xk 6=xk+1

ρ′c1εmin

(
∆k,

ε

β

)
.

45

We distinguish two cases. If ∆k > ε/β in at least one of the terms of the sum, then

f(xm)− f(xl+1) ≥ ρ′c1ε
ε

β
. (2.23)

In the other case, we have

f(xm)− f(xl+1) ≥ ρ′c1ε
l∑

k=m,xk 6=xk+1

∆k ≥ ρ′c1ε

l∑
k=m,xk 6=xk+1

‖ηk‖. (2.24)

If ‖ηk‖ > δµ in at least one term in the sum, then

f(xm)− f(xl+1) ≥ ρ′c1εδµ. (2.25)

Otherwise, (2.24) yields

f(xm)− f(xl+1) ≥ ρ′c1ε
l∑

k=m,xk 6=xk+1

µd(xk, Rxk(ηk))

= ρ′c1εµ
l∑

k=m,xk 6=xk+1

d(xk, xk+1)

≥ ρ′c1εµr = ρ′c1εµmin

(
ε

β1

, i(M)

)
. (2.26)

It follows from (2.23), (2.25) and (2.26) that

f(xm)− f(xl+1) ≥ ρ′c1εmin

(
ε

β
, δµ,

εµ

β1

, i(M)µ

)
. (2.27)

Because {f(xk)}∞k=0 is decreasing and bounded below, we have

f(xk) ↓ f ∗, (2.28)

for some f ∗ > −∞. It then follows from (2.27) that

f(xm)− f ∗ ≥ f(xm)− f(xl+1)

≥ ρ′c1εmin

(
ε

β
, δµ,

εµ

β1

, i(M)µ

)
=

1

2
ρ′c1‖gradf(xm)‖min

(
‖gradf(xm)‖

2β
, δµ,
‖gradf(xm)‖µ

2β1

, i(M)µ

)
.

Assume for the purpose of contradiction that it is not the case that

lim
m→∞

‖gradf(xm)‖ = 0 .

46

Then there exists ω > 0 and an infinite sequence K such that

‖gradf(xk)‖ > ω, for all k ∈ K.

Then for k ∈ K, k ≥ m, we have

f(xk)− f ∗ ≥
1

2
ρ′c1‖gradf(xk)‖min

(
‖gradf(xk)‖

2β
,
‖gradf(xk)‖µ

2β1

, i(M)µ

)
>

1

2
ρ′c1ωmin

(
ω

2β
,
ωµ

2β1

, i(M)µ

)
which is a positive constant. This contradicts limk→∞(f(xk) − f ∗) = 0, so that our

hypothetical assumption must be false, and

lim
m→∞

‖gradf(xm)‖ = 0.

Note that this theorem reduces gracefully to the classical Rn case, taking M = Rn

endowed with the classical inner product and Rx(ξ) := x + ξ. Then i(M) = +∞ > 0, R

satisfies (2.22), and the Lipschitz condition (2.21) reduces to the classical expression, which

subsumes the radially L-C1 condition.

The following proposition shows that the regularity conditions on f and f̂ required in

the previous theorems are satisfied under stronger but possibly easier to check conditions.

These conditions impose a bound on the Hessian of f and on the “acceleration” along

curves t 7→ R(tξ). Note also that all these conditions need only be checked on the level set

{x ∈M : f(x) ≤ f(x0)}.

Proposition 10. Suppose that ‖grad f(x)‖ ≤ βg and ‖Hess f(x)‖ ≤ β for some constants

βg, β, and all x ∈M. Moreover suppose that

‖D
dt

d
dt
R(tξ)‖ ≤ βD (2.29)

for some constant βD, for all ξ ∈ TM with ‖ξ‖ = 1 and all t < δD, where D
dt

denotes the

covariant derivative along the curve t 7→ R(tξ) (see [dC92, Ch. 2, Prop. 2.2]).

Then the Lipschitz-C1 condition on f (Definition 8) is satisfied with βL = β; the radially

Lipschitz-C1 condition on f̂ (Definition 6) is satisfied for δRL < δD and βRL = β(1+βDδD)+

βgβD; and the condition (2.22) on R is satisfied for values of µ and δµ satisfying δµ < δD

and 1
2
βDδµ <

1
µ
− 1.

47

Proof. By a standard Taylor argument (see Lemma 12), boundedness of the Hessian of f

implies the Lipschitz-C1 property of f .

For (2.22), define u(t) = R(tξ) and observe that

dist(x,R(tξ)) ≤
∫ t

0

‖u′(τ)‖ dτ

where
∫ t

0
‖u′(τ)‖ dτ is the length of the curve u between 0 and t. Using the Cauchy-Schwarz

inequality and the invariance of the metric by the connection, we have

∣∣ d
dτ
‖u′(τ)‖

∣∣ =
∣∣∣ ddτ√gu(τ) (u′(τ), u′(τ))

∣∣∣ =

∣∣∣∣∣gu(τ)

(
D
dt
u′(τ), u′(τ)

)
‖u′(τ)‖

∣∣∣∣∣ ≤ βD‖u′(τ)‖
‖u′(τ)‖

≤ βD

for all t < δD. Therefore∫ t

0

‖u′(τ)‖ dτ ≤
∫ t

0

‖u′(0)‖+ βDτ dτ = ‖ξ‖t+ 1
2
βDt

2 = t+ 1
2
βDt

2,

which is smaller than t
µ

if 1
2
βDt <

1
µ
− 1.

For the radially Lipschitz-C1 condition, let

u(t) = R(tξ) and h(t) = f(u(t)) = f̂(tξ)

with ξ ∈ TxM, ‖ξ‖ = 1. Then

h′(t) = gu(t) (grad f(u(t)), u′(t))

and

h′′(t) = D
dt
gu(t) (grad f(u(t)), u′(t))

= gu(t)

(
D
dt

grad f(u(t)), u′(t)
)

+ gu(t)

(
grad f(u(t)),

D

dt
u′(t)

)
.

Now, D
dt

grad f(u(t)) = ∇u′(t)grad f(u(t)) = Hess f(u(t))[u′(t)]. It follows that |h′′(t)| is

bounded on t ∈ [0, δD) by the constant βRL = β(1 + βDδD) + βgβD. Then

|h′(t)− h′(0)| ≤
∫ t

0

|h′′(τ)| dτ ≤ tβRL.

In many practical cases, the cost function and the retraction are smooth and the

Riemannian manifold is compact. This is a comfortable situation, as the next result shows.

48

Corollary 11 (smoothness and compactness). If the cost function f and the retraction R are

smooth and the Riemannian manifoldM is compact, then all the conditions in Proposition 10

are satisfied.

Proof. This result comes from the fact that every continuous real function on a compact

space is bounded. The only nontrivial part is to show that the set {ξ ∈ TM : ‖ξ‖ = 1} is

compact. Compactness is a topological notion; recall that the topology of a manifold is the

topology induced by the topological basis formed by the collection of coordinate domains.

First we need to prove that every compact Riemannian manifold has a finite covering by

compact subsets of coordinate domains. This can be done via a result on paracompactness

found in [Mun00, Lem. 41.3]. Here we give a direct argument. Let M be a compact

Riemannian manifold. Since M is Riemannian, it is metrizable [O’N83, §5.18], thus it is

a regular topological space. Let {Ai}i=1,...,n be an (open) covering of M by coordinate

domains. Let C1 =M−∪ni=2Ai. It is a closed—thus compact—set contained in A1. Since

M is a regular space, it follows that for all x in C1, there is an open set Vx containing x

such that V x ⊂ A1. The collection {Vx}x∈M is an open covering of the compact set C1,

thus it admits a finite subcovering {Vj}j=1,...,m. Let B1 = ∪mj=1Vj. Then B1 is open, and

B1 ⊂ A1, and {B1, A2, . . . , An} is still an open covering ofM. The same operation can now

be performed on A2, to obtain an open covering {B1, B2, . . . , An}. Finally, we have an open

covering {Bi}i=1,...,n such that Bi ⊂ Ai, i = 1, . . . , n. The collection {Bi}i=1,...,n is a covering

of M by compacts such that Bi ⊂ Ai, i = 1, . . . , n, as required.

Now let S := {ξ ∈ TM : ‖ξ‖ = 1}. We want to show that S is compact. Using the

construction above, let Si := {ξ ∈ TM : ‖ξ‖ = 1, πξ ∈ Bi}, where πξ denotes the foot of ξ,

and notice that S = ∪ni=1Si. Since each Si is included in a coordinate domain, it is sufficient

to show that the coordinate expression of each Si is compact. Abusing notation, Si has the

coordinate expression {(x, ξ) : x ∈ Bi, ξ
igij(x)ξi = 1}. It is closed as the inverse image of a

closed set by a continuous function, and it is bounded by continuity and non-degeneracy of

the metric, hence it is compact, which completes the proof.

2.3.2 Local convergence

We now state local convergence properties of Algorithm 4-5 (i.e., Algorithm 4 where the

trust-region subproblem (2.6) is solved approximately with Algorithm 5). We first state a

49

few preparation lemmas.

As before, (M, g) is a complete Riemannian manifold of dimension d, and R is a retraction

onM (Definition 3). The first lemma is a first-order Taylor formula for tangent vector fields.

(Similar Taylor developments on manifolds can be found in [Smi94].)

Lemma 12 (Taylor). Let x ∈ M, let V be a normal neighborhood of x, and let ζ be a C1

tangent vector field on M. Then, for all y ∈ V ,

P 0←1
γ ζy = ζx +∇ξζ +

∫ 1

0

(
P 0←τ
γ ∇γ′(τ)ζ −∇ξζ

)
dτ, (2.30)

where γ is the unique minimizing geodesic satisfying γ(0) = x and γ(1) = y, and

ξ = Exp−1
x y = γ′(0).

Proof. Start from

P 0←1
γ ζy = ζx +

∫ 1

0

d

dτ
P 0←τ
γ ζ dτ = ζx +∇ξζ +

∫ 1

0

(
d

dτ
P 0←τ
γ ζ −∇ξζ

)
dτ

and use the formula for the connection in terms of the parallel transport, see [dC92, Ch. 2,

Ex. 2], to obtain
d

dτ
P 0←τ
γ ζ =

d

dε
P 0←τ
γ P τ←τ+ε

γ ζ

∣∣∣∣
ε=0

= P 0←τ
γ ∇γ′ζ.

We use this lemma to show that in some neighborhood of a nondegenerate local minimizer

v of f , the norm of the gradient of f can be taken as a measure of the Riemannian distance

to v.

Lemma 13. Let v ∈ M and let f be a C2 cost function such that grad f(v) = 0 and

Hess f(v) is positive definite with maximal and minimal eigenvalues λmax and λmin. Then,

given c0 < λmin and c1 > λmax, there exists a neighborhood V of v such that, for all x ∈ V ,

it holds that

c0dist(v, x) ≤ ‖grad f(x)‖ ≤ c1dist(v, x). (2.31)

Proof. From Taylor (Lemma 12), it follows that

P 0←1
γ grad f(v) = Hess f(v)[γ′(0)] +

∫ 1

0

(
P 0←τ
γ Hess f(γ(τ))[γ′(τ)]− Hess f(v)[γ′(0)]

)
dτ.

(2.32)

50

Since f is C2 and since ‖γ′(τ)‖ = dist(v, x) for all τ ∈ [0, 1], we have the following bound

for the integral in (2.32):

‖
∫ 1

0

P 0←τ
γ Hess f(γ(τ))[γ′(τ)]− Hess f(v)[γ′(0)] dτ‖

= ‖
∫ 1

0

(
P 0←τ
γ ◦ Hess f(γ(τ)) ◦ P τ←0

γ − Hess f(v)
)

[γ′(0)] dτ‖ ≤ ε(dist(v, x))dist(v, x)

where limt→0 ε(t) = 0. Since Hess f(v) is nonsingular, it follows that |λmin| > 0. Take

V sufficiently small so that λmin − ε(dist(v, x)) > c0 and λmax + ε(dist(v, x)) < c1 for all

x in V . Then, using the fact that the parallel translation is an isometry, (2.31) follows

from (2.32).

We need a relation between the gradient of f at Rx(ξ) and the gradient of f̂x at ξ.

Lemma 14. Let R be a retraction onM and let f be a C1 cost function onM. Then, given

v ∈M and c5 > 1, there exists a neighborhood V of v and δ > 0 such that

‖grad f(R(ξ))‖ ≤ c5‖grad f̂(ξ)‖

for all x ∈ V and all ξ ∈ TxM with ‖ξ‖ ≤ δ, where f̂ is as in (2.9).

Proof. Consider a parameterization ofM at v, and consider the corresponding parameteriza-

tion of TM (see [dC92, Ch. 0, Example 4.1]). Using Einstein’s convention (see, e.g., [Sak96]),

and denoting ∂if by f,i, we have

f̂x,i(ξ) = f,j(R(ξ))Aji (ξ),

where A(ξ) stands for the differential of Rx at ξ ∈ TxM. Then,

‖grad f̂x(ξ)‖2 = f̂x,i(ξ)g
ij(x)f̂x,j(ξ) = f,k(Rx(ξ))A

k
i (ξ)g

ij(x)A`j(ξ)f,`(Rx(ξ))

and

‖grad f(Rx(ξ))‖2 = f,j(Rx(ξ))g
ij(Rx(ξ))f,j(Rx(ξ)).

The conclusion follows by a real analysis argument, invoking the smoothness properties of R

and g, compactness of the set {(x, ξ) : x ∈ V, ξ ∈ TxM, ‖ξ‖ ≤ δ}, and using A(0x) = id.

We now state and prove the local convergence results. The first result states that the

nondegenerate local minima are attractors of Algorithm 4-5. The principle of the argument

is closely related to the Capture Theorem, see [Ber95, Theorem 1.2.5].

51

Theorem 15 (local convergence to local minima). Consider Algorithm 4-5—i.e., the

Riemannian trust-region algorithm where the trust-region subproblems (2.6) are solved using

the truncated CG algorithm with stopping criterion (2.8)—with all the assumptions of

Theorem 7. Let v be a nondegenerate local minimizer of f , i.e., grad f(v) = 0 and Hess f(v)

is positive definite. Assume that x 7→ ‖H−1
x ‖ is bounded on a neighborhood of v and

that (2.22) holds for some µ > 0 and δµ > 0. Then there exists a neighborhood V of v

such that, for all x0 ∈ V , the sequence {xk} generated by Algorithm 4-5 converges to v.

Proof. Take δ1 > 0 with δ1 < δµ such that Bδ1(v) is a neighborhood of v, which contains

only v as stationary point, and such that f(x) > f(v) for all x ∈ B̄δ1(v).

Take δ2 small enough that for all x ∈ Bδ2(v), it holds that ‖η∗(x)‖ ≤ µ(δ1 − δ2), where

η∗ is the (unique) solution of Hη∗ = −grad f(x); such a δ2 exists because of Lemma 13 and

the bound on ‖H−1
x ‖. Consider a level set L of f such that V := L ∩ Bδ1(v) is a subset of

Bδ2(v); invoke that f ∈ C1 to show that such a level set exists. Then, V is a neighborhood

of v and for all x ∈ V , we have

dist(x, x+) ≤ 1

µ
‖ηtCG(x,∆)‖ ≤ 1

µ
‖η∗‖ ≤ (δ1 − δ2),

where we used the fact that ‖η‖ is increasing along the truncated CG process [Ste83,

Thm 2.1]. It follows from the equation above that x+ is in Bδ1(v). Moreover, since

f(x+) ≤ f(x), it follows that x+ ∈ V . Thus V is invariant. But the only stationary

point of f in V is v, so {xk} goes to v whenever x0 is in V .

Now we study the order of convergence of the sequences that converge to a nondegenerate

local minimizer.

Theorem 16 (order of convergence). Consider Algorithm 4-5 with stopping criterion (2.8).

Suppose that R is a C2 retraction, that f is a C2 cost function on M, and that

‖Hxk − Hess f̂xk(0k)‖ ≤ βH‖grad f(xk)‖, (2.33)

that is, Hxk is a sufficiently good approximation of Hess f̂xk(0xk). Let v ∈ M be a

nondegenerate local minimizer of f , (i.e., grad f(v) = 0 and Hess f(v) is positive definite).

Further assume that Hess f̂x is Lipschitz-continuous at 0x uniformly in x in a neighborhood

52

of v, i.e., there exist βL2 > 0, δ1 > 0 and δ2 > 0 such that, for all x ∈ Bδ1(v) and all

ξ ∈ Bδ2(0x), there holds

‖Hess f̂x(ξ)− Hess f̂x(0x)‖ ≤ βL2‖ξ‖, (2.34)

where ‖ · ‖ in the left-hand side denotes the operator norm in TxM defined as in (2.13).

Then there exists c > 0 such that, for all sequences {xk} generated by the algorithm converging

to v, there exists K > 0 such that for all k > K,

dist(xk+1, v) ≤ c (dist(xk, v))min{θ+1,2} (2.35)

with θ > 0 as in (2.8).

Proof. We will show below that there exist ∆̃, c0, c1, c2, c3, c
′
3, c4, c5 such that, for all sequences

{xk} satisfying the conditions asserted, all x ∈ M, all ξ with ‖ξ‖ < ∆̃, and all k greater

than some K, there holds

c0dist(v, xk) ≤ ‖grad f(xk)‖ ≤ c1dist(v, xk), (2.36)

‖ηk‖ ≤ c4‖gradmxk(0)‖ ≤ ∆̃, (2.37)

ρk > ρ′, (2.38)

‖grad f(Rxk(ξ))‖ ≤ c5‖grad f̂xk(ξ)‖, (2.39)

‖gradmxk(ξ)− grad f̂xk(ξ)‖ ≤ c3‖ξ‖2 + c′3‖grad f(xk)‖ ‖ξ‖, (2.40)

‖gradmxk(ηk)‖ ≤ c2‖gradmxk(0)‖θ+1, (2.41)

where {ηk} is the sequence of update vectors corresponding to {xk}. With these results at

hand the proof is concluded as follows. For all k > K, it follows from (2.36) and (2.38) that

c0dist(v, xk+1) ≤ ‖grad f(xk+1)‖ = ‖grad f(Rxk(ηk))‖,

from (2.39) and (2.37) that

‖grad f(Rxk(ηk))‖ ≤ c5‖grad f̂xk(ηk)‖,

from (2.37) and (2.40) and (2.41) that

‖grad f̂xk(ηk)‖ ≤ ‖gradmxk(ηk)− grad f̂xk(ηk)‖+ ‖gradmxk(ηk)‖

≤ (c3c
2
4 + c′3c4)‖gradmxk(0)‖2 + c2‖gradmxk(0)‖1+θ,

53

and from (2.36) that

‖gradmxk(0)‖ = ‖grad f(xk)‖ ≤ c1dist(v, xk).

Consequently, taking K larger if necessary so that dist(v, xk) < 1 for all k > K, it follows

that

c0dist(v, xk+1)

≤ ‖grad f(xk+1)‖ (2.42)

≤ c5(c3c
2
4 + c′3c4)‖grad f(xk)‖2 + c5c2‖grad f(xk)‖θ+1 (2.43)

≤ c5((c3c
2
4 + c′3c4)c2

1(dist(v, xk))
2 + c2c

1+θ
1 (dist(v, xk))

1+θ)

≤ c5((c3c
2
4 + c′3c4)c2

1 + c2c
1+θ
1)(dist(v, xk))

min{2,1+θ}

for all k > K, which is the desired result.

It remains to prove the bounds (2.36)-(2.41).

Equation (2.36) comes from Lemma 13 and is due to the fact that v is a nondegenerate

critical point.

We prove (2.37). Since {xk} converges to the nondegenerate local minimizer v where

Hess f̂v(0v) = Hess f(v) (see Lemma 5) and since Hess f(v) is positive definite with f ∈ C2,

it follows follows from the approximation condition (2.33) and from (2.36) that there exist

c4 > 0 such that ‖H−1
xk
‖ < c4 for all k greater than some K. Given a k > K, let η∗

be the solution of Hxkη
∗ = −gradmxk(0). If follows that ‖η∗‖ ≤ c4‖gradmxk(0)‖. Then,

since the sequence of ηjk’s constructed by the tCG inner iteration (Algorithm 5) is strictly

increasing in norm (see [Ste83, Theorem 2.1]) and would eventually reach η∗ at j = d, it

follows that (2.37) holds. The second inequality in (2.37) comes for any given ∆̃ by choosing

K larger if necessary.

We prove (2.38). Let γk denote ‖grad f(xk)‖. It follows from the definition of ρk that

ρk − 1 =
mxk(ηk)− f̂xk(ηk)
mxk(0xk)−mxk(ηk)

. (2.44)

From Taylor’s theorem, there holds

f̂xk(ηk) = f̂xk(0xk) + gxk (grad f(xk), ηk) +

∫ 1

0

gxk

(
Hess f̂xk(τηk)[ηk], ηk

)
(1− τ)dτ.

54

It follows that∣∣∣mxk(ηk)− f̂xk(ηk)
∣∣∣ =

∣∣∣∣∫ 1

0

(
gxk (Hxk [ηk], ηk)− gxk

(
Hess f̂xk(τηk)[ηk], ηk

))
(1− τ)dτ

∣∣∣∣
≤
∫ 1

0

∣∣∣gxk ((Hxk − Hess f̂xk(0xk))[ηk], ηk

)∣∣∣ (1− τ)dτ

+

∫ 1

0

∣∣∣gxk ((Hess f̂xk(0xk)− Hess f̂(τηk))[ηk], ηk

)∣∣∣ (1− τ)dτ

≤1

2
βHγk‖ηk‖2 +

1

6
βL2‖ηk‖3.

It then follows from (2.44), using the Cauchy bound (2.12), that

|ρk − 1| ≤ (3βHγk + βL2‖ηk‖) ‖ηk‖2

6γk min{∆k, γk/β}
,

where β is an upper bound on the norm of Hxk . Since ‖ηk‖ ≤ ∆k and ‖ηk‖ ≤ c4γk, it follows

that

|ρk − 1| ≤ (3βH + βL2c4) (min{∆k, c4γk})2

6 min{∆k, γk/β}
. (2.45)

Either, ∆k is active in the denominator of (2.45), in which case we have

|ρk − 1| ≤ (3βH + βL2c4) ∆kc4γk
6∆k

=
(3βH + βL2c4) c4

6
γk.

Or, γk/β is active in the denominator of (2.45), in which case we have

|ρk − 1| ≤ (3βH + βL2c4) (c4γk)
2

6γk/β
=

(3βH + βL2c4) c2
4β

6
γk.

In both cases, since limk→∞ γk = 0 in view of (2.36), if follows that limk→∞ ρk = 1.

Equation (2.39) comes from Lemma 14.

We prove (2.40). It follows from Taylor’s formula (Lemma 12, where the parallel

translation becomes the identity since the domain of f̂xk is the Euclidean space TxkM)

that

grad f̂xk(ξ) = grad f̂xk(0xk) + Hess f̂xk(0xk)[ξ] +

∫ 1

0

(
Hess f̂xk(τξ)− Hess f̂xk(0xk)

)
[ξ] dτ.

The conclusion comes by the Lipschitz condition (2.34) and the approximation condi-

tion (2.33).

Finally, equation (2.41) comes from the stopping criterion (2.8) of the inner iteration.

More precisely, the truncated CG loop (Algorithm 5) terminates if either g (δj, Hxkδj) ≤ 0,

55

or ‖ηj+1‖ ≥ ∆, or the criterion (2.8) is satisfied. Since {xk} converges to v and Hess f(v)

is positive-definite, if follows that Hxk is positive-definite for all k greater than a certain

K. Therefore, for all k > K, the criterion g (δj, Hxkδj) ≤ 0 is never satisfied. In view

of (2.37) and (2.38), it can be shown that the trust-region is eventually inactive. Therefore,

increasing K if necessary, the criterion ‖ηj+1‖ ≥ ∆ is never satisfied for all k > K. In

conclusion, for all k > K, the stopping criterion (2.8) is satisfied each time a computed ηk is

returned by the tCG loop. Therefore, the tCG loop behaves as a classical linear CG method;

see, e.g., [NW99, Section 5.1]. Consequently, gradmxk(ηj) = rj for all j. Choose K such

that for all k > K, ‖grad f(xk)‖ = ‖gradmxk(0)‖ is so small—it converges to zero in view

of (2.36)—that the stopping criterion (2.8) yields

‖gradmxk(ηj)‖ = ‖rj‖ ≤ ‖r0‖1+θ = ‖gradmxk(0)‖1+θ or k ≥ d. (2.46)

If the second condition in (2.46) is active, then it means that the linear CG process has been

completed, so gradmxk(η
j
k) = 0, and (2.41) trivially holds. On the other hand, if the first

condition in (2.46) is active, then we obtain (2.41) with c2 = 1.

The constants in the proof of Theorem 16 can be chosen as c0 < λmin, c1 > λmax,

c4 > 1/λmin, c5 > 1, c3 ≥ βL2, c′3 ≥ βH , c2 ≥ 1, where λmin and λmax are the smallest and

largest eigenvalue of Hess f(v) respectively. Consequently, the constant c in the convergence

bound (2.35) can be chosen as

c >
1

λmin

((
βL2/λ

2
min + βH/λmin

)
λ2
max + λ1+θ

max

)
. (2.47)

A nicer-looking bound holds when convergence is evaluated in terms of the norm of the

gradient, as expressed in the theorem below which is a direct consequence of (2.42)-(2.43).

Theorem 17. Under the assumptions of Theorem 16, if θ + 1 < 2, then given cg > 1 and

{xk} generated by the algorithm, there exists K > 0 such that

‖grad f(xk+1)‖ ≤ cg‖grad f(xk)‖θ+1

for all k > K.

Nevertheless, (2.42)-(2.43) suggests that the algorithm may not perform well when the

relative gap λmax/λmin is large. In spite of this, numerical experiments on eigenvalue

problems have shown that the method tends to behave as well, or even better than other

methods in the presence of a small relative gap [ABG06].

56

2.3.3 Discussion of Convergence

The main global convergence result (Theorem 9) shows that RTR/tCG (Algorithm 4-5)

converges to a set of stationary points of the cost function for all initial conditions. This is

an improvement on the pure Newton method, for which only local convergence results exist.

However, the convergence theory falls short of showing that the algorithm always converges

to a local minimizer. This is not surprising: since we have ruled out the possibility of checking

positive-definiteness of the Hessian of the cost function, we have no way of testing whether a

stationary point is a local minimizer or not (note that even checking positive-definiteness of

the Hessian is not always sufficient for determining if a stationary point is a local minimizer

or not: if the Hessian is singular and nonnegative definite, then no conclusion can be drawn).

In fact, for the vast majority of optimization methods, only convergence to stationary points

can be secured unless some specific assumptions (like convexity) are made; see, e.g., [Pol97,

Ch. 1]. Nevertheless, it is observed in numerical experiments with random initial conditions

that the algorithm systematically converges to a local minimizer; convergence to a saddle

point is only observed on specifically crafted problems, for example when the iteration is

started on a point that is a saddle point in computer arithmetic. This is due to the fact that

the algorithm is a descent method, i.e., f(xk+1) < f(xk) whenever xk+1 6= xk. Therefore,

convergence to saddle points or local minima is unstable under perturbations.

Concerning the order of convergence to local minima, we point out that there are cases

where the bound (2.35) also holds with “min{θ+1, 2}” replaced by “min{θ+1, 3}”, i.e., cubic

convergence can be achieved. This is related to the cubic convergence of the Riemannian

Newton method when the cost function is symmetric around the local minimizer v, that is,

f(Expx(ξ)) = f(Expx(−ξ)). This issue is of theoretical importance in applications where

state-of-the-art methods converge cubically. Notice however that a cubic method may be

less efficient than a quadratic method, even as k goes to infinity (as pointed out in [DV00],

concatenating two steps of a quadratic method yields a quartic method).

Randomization

To conclude this discussion, we mention the possibility of using a stochastic version of

RTR/tCG. The initial condition η0 in the tCG algorithm is selected from a uniform

distribution in some small neighborhood of 0xk in TxkM—this can be thought of as artificial

57

numerical noise. Then the output η of the tCG algorithm is compared against the Cauchy

point ηC (which can be computed at little additional cost). If mxk(η) < mxk(η
C), then η is

returned; otherwise, ηC is returned.

This stochastic version is interesting both from a theoretical and practical point of view.

From a theoretical viewpoint, it yields convergence to a local minimizer with probability

one for all initial conditions. Indeed, convergence to stationary points still holds since the

algorithm improves on the Cauchy point; but accumulation points must be local minima

because the instability of the saddle points or local maxima will eventually be revealed with

probability one by the random perturbations. From a practical point of view, the randomized

version is efficient in kicking the iteration away from saddle points: due to the trust-region

approach, the iterates quickly escape from the saddle points.

The randomization we have described applies to the general RTR/tCG method. Practical

applications may lend themselves to other forms of randomization. For example, if a Rayleigh

quotient has to be minimized on a Grassmann manifold, then a possibility mentioned

in [ST00, Section 3.2] is to use Rutishauser’s randomization technique [Rut70]; it consists in

appending a random vector to the current subspace, computing the Ritz pairs and discarding

the one with largest Ritz value.

Note that this randomization technique may be difficult when using a preconditioned

truncated CG solver. The reason is that a truncated CG using the preconditioner N−1 defines

the trust-region according the norm induced by N . In the case that N it is not available,

the norms of the subproblem iterates can be computed using the recurrences discussed

in Section 2.2. However, these recurrences (as presented) require that the subproblem is

initialized to zero in order to easily initialize the recurrences:

‖η0‖N = 〈 η0, Nη0〉 = 〈 0, 0〉 = 0

〈Nη0, d0〉 = 〈 0, d0〉 = 0

‖d0‖2
N = 〈 r0, z0〉 .

A randomized start therefore requires the ability to apply the operator N at least once per

outer iteration. In the event that the operator N is not available—only N−1 is available—

it’s effect on η0 can be observed by performing a linear solve with respect to N−1. The

implicit Riemannian trust-region method discussed in the next section does not suffer from

this complication.

58

2.4 Implementing the RTR

In this section, we briefly review the essential “ingredients” necessary for applying the

RTR/tCG method (Algorithm 4-5). For the problem of computing extreme eigenspaces

of matrices, numerical experiments show that the RTR/tCG algorithm can match and

sometimes dramatically outperform existing algorithms, as demonstrated in Chapter 4

and [ABG07, ABG06, ABGS05]. Other applications that lend themselves nicely to an

RTR approach include reduced-rank approximation to matrices, the Procrustes problem,

nearest-Jordan structure, trace minimization with a nonlinear term, simultaneous Schur

decomposition, and simultaneous diagonalization; see, e.g., [HM94, LE00].

The following elements are required for applying the RTR method to optimizing a cost

function f on a Riemannian manifold (M, g):

1. a tractable numerical representations for points x on M, for tangent vectors in TxM,

and for the inner products gx (·, ·) on TxM;

2. choice of a retraction Rx : TxM→M (Definition 3)

3. formulas for f(x), grad f(x) and the approximate Hessian Hx that satisfies the

properties required for the convergence results in Section 2.3.

Choosing a good retraction amounts to finding an approximation of the exponential

mapping that can be computed with low computational cost. Guidelines can be found

in [CI01, DN04]. This is an important open research topic.

Formulas for grad f(x) and Hess f̂x(0x) can be obtained by identification in a Taylor

expansion of the lifted cost function f̂x, namely

f̂x(η) = f(x) + gx (grad f(x), η) +
1

2
gx

(
Hess f̂x(0x)[η], η

)
+O(‖η‖3),

where grad f(x) ∈ TxM and Hess f̂x(0x) is a linear transformation of TxM. In order to obtain

an “approximate Hessian” Hx that satisfies the approximation condition (2.33), one can pick

Hx := Hess(f ◦ R̃x)(0x) where R̃x is any retraction. Then, assuming sufficient smoothness

of f , R and R̃, the bound (2.33) follows from Lemmas 13 and 5. In particular, the choice

R̃x = Expx yields Hx = ∇grad f(x). IfM is an embedded submanifold of a Euclidean space,

then ∇ηgrad f(x) = πDgrad f(x)[η] where π denotes the orthogonal projector onto TxM.

59

CHAPTER 3

THE IMPLICIT RIEMANNIAN TRUST-REGION

METHOD

Similar to Euclidean trust-region methods, the Riemannian Trust-Region (RTR) method

ensures strong global convergence properties while allowing superlinear local convergence.

The trust-region mechanism is a heuristic, whereby the performance of the last update

dictates the constraints on the next update. The trust-region mechanism makes it possible to

disregard the (potentially expensive) objective function during the inner iteration by relying

instead on a model restricted to a trust region, i.e., a region where the model is tentatively

trusted to be a sufficiently accurate approximation of the objective function. A downside lies

in the difficulty of adjusting the trust-region size. When the trust-region radius is too large,

valuable time may be spent proposing a new iterate that may be rejected. Alternatively,

when the trust-region radius is too small, the algorithm progresses unnecessarily slowly.

The inefficiencies resulting from the trust-region mechanism can be addressed by disabling

the trust-region mechanism in such a way as to preserve the desired convergence properties.

For example, in [GST05], the authors describe a filter-trust-region method, where a modified

acceptance criterion seeks to encourage convergence to first-order critical points. Other

approaches adjust the trust-region radius according to dynamic measures such as objective

function improvement and step size lengths; see [CGT00].

Instead of relaxing the acceptance criterion, we consider redefining the trust-region as

that set of points that would have been accepted under the classical mechanism. Therefore,

as long as the update returned from the model minimization is feasible (i.e., it belongs to

the trust-region), then acceptance is automatic. In addition to avoiding the discarding of

valuable updates, this method eliminates the explicit trust-region radius and its heuristic

mechanism, in exchange for a meaningful measure of performance. We refer to this new

60

trust-region concept as the implicit trust-region and to the resulting method as the Implicit

Riemannian Trust-Region (IRTR) method.

Like the RTR in Chapter 2, the description of the algorithm and the analysis of conver-

gence consider the optimization of a smooth real function f whose domain is a differentiable

manifold M with Riemannian metric g, i.e., a Riemannian manifold (M, g). Also like the

RTR, the description of this methods will occur in a retraction-based optimization setting.

Section 3.1 reviews the workings of the RTR and describes the IRTR modification.

The modification of the trust-region naturally results in a modification to the trust-region

subproblem. The effect of this on the solution of the trust-region subproblem is addressed in

Section 3.2. Section 3.3 presents the global and local convergence properties for the IRTR

method. Section 3.4 reviews the conditions required for an efficient application of the IRTR

method.

3.1 IRTR Algorithm

This section briefly reviews the workings of the Riemannian Trust-Region (RTR) method and

introduces the Implicit Riemannian Trust-Region (IRTR) method. A subset of the material

in this chapter appeared in [BAG08].

We assume that M is a differentiable manifold and g is a Riemannian metric on M.

Together, (M, g) describes a Riemannian manifold. For all x ∈M, the restriction

gx : TxM× TxM→ R .

of g to the tangent plane TxM defines an inner product on the vector space TxM. Assume

that f is a real-valued differentiable function defined on M, and gradf(x) and Hess f(x)

denote the Riemannian gradient and Hessian, respectively.

The goal of the IRTR, like that of the RTR, is to find a local minimizer of the objective

function

f :M→ R .

Recall that the RTR method computes iterates by solving a minimization problem on a

model of the objective function. This model is typically a quadratic approximation of the

“lifted” cost function

f̂ = f ◦R : TM→ R.

61

The RTR method constructs the model mx of f̂x and solves the trust-region subproblem:

minimize mx(ξ), subject to gx (ξ, ξ) ≤ ∆2, (3.1)

where ∆ is the trust-region radius. As before, we assume that the model mx is a quadratic

model of f̂x which approximates f̂x to at least the first order:

mx(ξ) = f̂x(0x) + gx

(
ξ, grad f̂x(0x)

)
+

1

2
gx (ξ,Hx[ξ]) , (3.2)

where Hx[ξ] is some symmetric operator on TxM.

The tangent vector ξ is used to generate a new iterate, which is accepted depending on

the value of the quotient

ρx(ξ) =
f̂x(0x)− f̂x(ξ)
mx(0x)−mx(ξ)

. (3.3)

This quantity measures the ratio between decrease in the objective function and the decrease

predicted by the model. In addition to accepting/rejecting proposed iterates, ρx(ξ) is also

used to expand or shrink the trust-region radius.

The trust-region heuristic is self-tuning, such that an appropriate trust-region radius will

eventually be discovered by the algorithm. In practice, however, this adjustment can result

in wasted iterations, as proposed iterates are rejected do to poor scores under ρ.

We propose a modification to the trust-region method. This modification bypasses the

step size heuristic and directly addresses the model performance. The implicit trust-region

at x is defined as a superlevel set of ρx:

{ξ ∈ TxM : ρx(ξ) ≥ ρ′} . (3.4)

The model minimization now consists of

minimize mx(ξ), subject to ρx(ξ) ≥ ρ′. (3.5)

The implicit trust-region contains exactly those points that would have been accepted

by the classical trust-region mechanism. The result is that there is no trust-region radius

to adjust and no explicit acceptance/rejection scheme. The IRTR algorithm is stated in

Algorithm 6.

Remark 18. A more careful examination reveals that a satisfactory value of ρ does not

ensure that the next iterate produces a decrease in the objective function: an update η which

62

increases the objective function is in the implicit trust-region as long it produces a similar

increase in the model. This is in keeping with the classical trust-region presentation, which

delayed the guarantee of model decrease to the discussion of global convergence, at which point

it becomes necessary. Note that the implicit trust-region mechanism does ensure a decrease

of any point in the trust-region, as long as there is also decrease in the model. Furthermore,

the truncated conjugate gradient recommended in this paper always produces a decrease in

the model.

Algorithm 6 Basic Implicit Riemannian Trust-Region Algorithm

Require: Complete Riemannian manifold (M, g); scalar field f on M; retraction R from
TM to M.

Input: ρ′ ∈ (0, 1), initial iterate x0 ∈M
1: for k = 0, 1, 2, . . . do
2: {Model-based minimization}
3: Obtain ηk by approximately solving (3.5)
4: {Compute next iterate}
5: Set xk+1 = Rxk(ηk)
6: end for

Output: Sequences of iterates {xk}

The benefit of the classical trust-region definition is that trust-region membership is

easily determined, requiring only a norm calculation. The implicit trust-region, on the other

hand, requires checking the value of the update vector under ρ. Furthermore, there are two

occasions in the truncated CG method that require following a search direction to the edge

of the trust-region. In the case of the implicit trust-region, this will not in general admit

an analytical solution, and may require a search of ρ along the direction of interest. In

general, each evaluation of ρ will require evaluating the objective function f , which will be

unallowable in many applications.

In the case that ρ admits an analytical solution, it may be possible to easily and efficiently

search for a satisfactory value of ρ along a tangent vector, in order to evaluate step 16 and

satisfy steps 9 and 17 of Algorithm 7. If there is simply an efficient method for testing or

even bounding below ρ, a backtracking or binary search may be used to satisfy steps 9 and

17. Therefore, it is technically possible to apply the IRTR method to any objective function;

it bears restating that the efficiency of the method is tied to the efficiency of evaluating and

searching ρ.

63

We show in Chapter 4 that in a specific but very important application—computing

the leftmost eigenvector of a generalized eigenvalue problem—the IRTR algorithm can be

implemented in a remarkably efficient way, and yields an algorithm that outperforms state-

of-the-art methods on certain instances of the problem. In addition to providing an efficient

application of the IRTR, this analysis will provide a new look at an existing eigensolver, the

Trace Minimization method [SW82] and [ST00]. Before this, Section 3.3 will show that the

IRTR inherits all of the convergence properties of the RTR.

3.2 Solving the model minimization

The general algorithm does not state how (3.1) should be solved. Section 2.2 advocated the

use of the truncated conjugate gradient method of Steihaug and Toint [Ste83, Toi81, CGT00].

This method has the benefit of requiring very little memory and returning a point inside

the trust-region. It also benefits in the ability to exploit a preconditioner when solving the

model minimization.

The new trust-region definition modifies the model minimization, and these modifications

must be reflected in the truncated conjugate gradient solver. The trust-region definition

occurs in the solver in two cases: when testing that the CG iterates remain inside the trust-

region and when moving along search direction to the edge of the trust-region. In the case of

a trust-region collision during model minimization, the truncated CG for RTR (Algorithm 5,

lines 7 and 13) would move along the prescribed search direction to the edge of the trust-

region, performing the search:

find τ ≥ 0 such that η = ηj + τdj satisfies ‖η‖N .

Due to the simple description of the trust-region, this search is easily performed. It requires

only the solution of a quadratic equation in one variable (namely, τ).

The analogous operation for the implicit trust-region is the following:

find τ ≥ 0 such that η = ηj + τdj satisfies ρx(η) = ρ′ .

In general, this may not be as easily accomplished. Later theorems and lemmas prove the

existence of satisfactory points. However, finding them may require a search of ρx along

directions of interest. In such a case, it is desirable to relax the search, so that we require

64

only a point inside the trust-region (not necessarily on its edge). Therefore, our presentation

of truncated CG for the IRTR assumes only this. The updated truncated conjugate gradient

algorithm is displayed in Algorithm 7.

Algorithm 7 Preconditioned Truncated CG for IRTR

Input: Iterate x ∈M, gradf(x) 6= 0; trust-region parameter ρ′ ∈ (0, 1); convergence criteria
κ ∈ (0, 1), θ ≥ 0; model mx as in (3.2); symmetric/positive definite preconditioner
N−1 : TxM→ TxM

1: Set η0 = 0x, r0 = gradf(x), z0 = N−1r0, d0 = −z0

2: for j = 0, 1, 2, . . . do
3: {Check κ/θ stopping criterion}
4: if ‖rj‖ ≤ ‖r0‖min

{
κ, ‖r0‖θ

}
then

5: return ηj

6: end if
7: {Check curvature of current search direction}
8: if gx (Hx[dj], dj) ≤ 0 then
9: Compute τ > 0 such that η = ηj + τdj satisfies ρx(η) ≥ ρ′

10: return η
11: end if
12: {Generate next inner iterate}
13: Set αj = gx (zj, rj) /gx (Hx[dj], dj)
14: Set ηj+1 = ηj + αjdj
15: {Check trust-region}
16: if ρx(η

j+1) < ρ′ then
17: Compute τ > 0 such that η = ηj + τdj satisfies ρx(η) ≥ ρ′

18: return η
19: end if
20: {Use CG recurrences to update residual and search direction}
21: Set rj+1 = rj + αjHx[dj]
22: Set zj+1 = N−1rj+1

23: Set βj+1 = gx (zj+1, rj+1) /gx (zj, rj)
24: Set dj+1 = −zj+1 + βj+1dj
25: end for

As with RTR, we have previously elected to stop as soon as an iteration j is reached

where

‖rj‖ ≤ ‖r0‖min
{
κ, ‖r0‖θ

}
. (3.6)

As will be discussed in Section 3.3.2, this strategy allows for an improved rate of conver-

gence, by seeking linear convergence early on and superlinear convergence as the algorithm

progresses.

65

Note that, unlike for the Euclidean and Riemannian trust-region methods already

discussed, the definition of the trust-region is independent of the use of a preconditioner.

This decoupling means that there is no need to observe the effect of N on a vector, so that

in the absence of this ability, we are still capable of using a random initialization for the

model subproblem.

3.3 Convergence Analysis for IRTR

The mechanisms of the IRTR method are sufficiently different from those of the RTR method

that we must construct a separate convergence theory. We first study the global convergence

properties of the IRTR method (Algorithm 6). As in Chapter 2, we assume mild conditions

on the cost function and the retraction; no assumptions are made concerning the method

used to solve the model minimization (3.5), except that there is a “sufficient decrease” on

the model. For the RTR and classical trust-region methods in Rn, this is tied to the so-

called Cauchy decrease. The modification of the trust-region definition in the IRTR scheme

requires revisiting the concept of the Cauchy point, and this endeavor constitutes most of

the effort in the global convergence analysis of Section 3.3.1.

We then analyze the convergence of the proposed method around nondegenerate local

minima. Specifically, this analysis is conducted in the context of Algorithm 6/7, referring to

the IRTR method where the trust-region subproblems are solved using the tCG algorithm

with stopping criterion (3.6). It is shown that the iterates of the algorithm converge to

nondegenerate stationary points with an order of convergence min (θ + 1, 2).

3.3.1 Global Convergence

The main objective of this section is to show that the sequence {xk} generated by Algorithm 6

satisfies limk→∞ ‖gradf(xk)‖ = 0. This is the stronger of two global convergence results

shown for the RTR presented in Chapter 2 and [ABG07].

In the discussion that follows, (M, g) is a complete Riemannian manifold of dimension d

and R is a retraction onM, as defined in Chapter 2. We assume that the domain of R is the

whole of TM. We denote by P τ←0
γ v the vector of Tγ(τ)M obtained by parallel transporting

the vector v ∈ Tγ(0)M along the curve γ. We denote by ∇ the Riemannian connection on

66

M and by dist(x, y) the distance between two points on the manifold:

dist(x, y) = inf
γ

{∫ 1

0

‖γ̇(t)‖d t
}
,

where γ is a curve on M such that γ(0) = x and γ(1) = y.

We define

f̂ : TM→ R : ξ 7→ f(R(ξ)) , (3.7)

and denote by f̂x the restriction of f̂ to TxM, with gradient gradf̂x(0x) abbreviated gradf̂x.

Recall from (3.2) that mx has the form

mx(ξ) = f̂x(0x) + gx

(
ξ, gradf̂x

)
+

1

2
gx (ξ,Hx[ξ]) ,

with a direction of steepest descent at the origin given by

pS
x = − gradf̂x

‖gradf̂x‖
. (3.8)

The first-order convergence results for trust-region methods typically assume thatmxk(ηk)

is a sufficiently good approximation of f̂xk(ηk). In [CGT00, Theorem 6.4.6], this is guaranteed

by the assumption that the Hessian of the cost function is bounded. As for the RTR in

Chapter 2, we will weaken this assumption and assume that the cost function is radially

Lipschitz continuously differentiable (Definition 6).

The main effort here regards the concept of the Cauchy point. Introduced by Powell in

his early papers on the convergence of trust-region methods ([Pow70a, Pow70b, Pow75]),

the Cauchy point is defined as the point inside the current trust-region which minimizes the

quadratic model mx along the direction of steepest descent of mx. In trust-region methods

employing a spherical or elliptical definitions of the trust-region, the Cauchy point is easily

computed. This follows from the fact that moving along a tangent vector (in this case, the

gradient of mx) will cause you exit the trust-region only once and never re-enter it. However,

for the IRTR method, depending on the function ρx, it may be possible to move along a

tangent vector, exiting and re-entering the trust-region numerous times. Therefore, it may

be difficult to compute the Cauchy point; in some cases, the Cauchy point may be at infinity.

One solution is to restrict consideration to a local trust region. Definition 19 defines the

relevant segment along the direction of steepest descent, and Definition 20 defines the local

Cauchy point. Theorem 21 describes the form of the local Cauchy point, while Theorem 22

67

gives a bound on its decrease under the model mx. All of these results are analogous to

theorems and concepts from classical trust-region theory; see [NW99, CGT00].

Definition 19 (Local Trust-Region). Consider an iterate x ∈M, gradf̂x 6= 0, and a model

mx as in (3.2). Let ρx be defined as in (3.3) and let pS
x be the direction of steepest descent

of mx, given in (3.8). The local trust-region along pS
x is given by the following set:{

τpS
x : 0 < τ ≤ ∆x

}
,

where ∆x specifies the distance to the edge of the trust-region along pS
x, given by

∆x = inf
{
τ > 0 : ρx

(
τpS

x

)
< ρ′

}
. (3.9)

The local Cauchy point will fulfill the same role as the Cauchy point, except that it is

confined to the local trust-region instead of the entirety of the trust-region. The formal

definition follows.

Definition 20 (Local Cauchy Point). Consider an iterate x ∈M, gradf̂x 6= 0, and a model

mx. The local Cauchy point pL
x is the point

pL
x = τxp

S
x , (3.10)

where

τx = argmin
0≤τ≤∆x

mx(τp
S
x) ,

and where ∆x and pS
x are from Definition 20.

The local Cauchy point can be computed without leaving the trust-region. This makes it

an attractive target when solving the trust-region subproblem using a feasible point method.

In fact, the truncated conjugate gradient described earlier in the paper (Algorithm 7) begins

with the local Cauchy point and makes reduction from there. As such, the global convergence

result for IRTR will require that every solution to the trust-region subproblem produce at

least as much decrease in mx as the local Cauchy point. Therefore, we wish to describe this

decrease. Before that, we present some helpful properties of the local Cauchy point.

Theorem 21. Consider an iterate x ∈ M, gradf̂x 6= 0, and ρ′ ∈ (0, 1). Then the local

Cauchy point takes the form

pL
x = τxp

S
x,

68

where

τx =

{
∆x, if γx ≤ 0

min
{

∆x,
‖gradf̂x‖3

γx

}
otherwise

γx = gx

(
gradf̂x, Hx[gradf̂x]

)
.

Furthermore, if f̂x is bounded below, then τx <∞.

Proof. Assume first that γx ≤ 0. Then mx monotonically decreases as we move along pS
x, so

that the minimizer along pS
x inside [0,∆x] is τxp

S
x = ∆xp

S
x.

Assume instead that γx > 0. Then mx has a global minimizer along pS
x at τ∗p

S
x, where

τ∗ =
gx

(
−pS

x, gradf̂x

)
gx (pS

x, Hx[pS
x])

=
‖gradf̂x‖3

γx
.

If τ∗ ∈ (0,∆x), then τx = min {∆x, τ∗} = τ∗ is the minimizer of mx along pS
x in the

local trust-region, and τxp
S
x is the local Cauchy point. Otherwise, ∆x ≤ τ∗. Note that

mx monotonically decreases along pS
x between [0, τ∗], so that the minimizer of mx along pS

x

between [0,∆x] occurs at ∆x = min {∆x, τ∗} = τx, and τxp
S
x is the local Cauchy point.

Assume now that f̂ is bounded below. We will show that τx < ∞. First consider when

γ > 0. We have that τx = min {τ∗,∆x}. But τ∗ is finite, so that τx is finite as well.

Consider now that γ ≤ 0. Assume for the purpose of contradiction that τx = ∞. Then

∆x =∞, and for all τ > 0, ρx(τp
S
x) ≥ ρ′. Then

lim
τ→∞

f̂x(0)− f̂x(τpS
x) = lim

τ→∞
ρx(τp

S
x)
(
mx(0)−mx(τp

S
x)
)

≥ lim
τ→∞

ρ′
(
mx(0)−mx(τp

S
x)
)

= ∞.

But this contradicts the assumption that f̂ is bounded below. Therefore, our initial

assumption is false and τx is finite.

The next theorem concerns the decrease in mx associated with the local Cauchy point,

as described above. The proof is a straightforward modification of the classical result; see

[NW99, Lemma 4.5] or [CGT00, Theorem 6.3.1].

69

Theorem 22. Take an iterate x ∈ M, gradf̂x 6= 0, and ρ′ ∈ (0, 1). Then the local Cauchy

point pL
x (as given in Theorem 21) has a decrease in mx satisfying

mx(0)−mx(p
L
x) ≥ 1

2
‖gradf̂x‖min

{
∆x,
‖gradf̂x‖
‖Hx‖

}
.

The last result needed before presenting the global convergence result proves that, under

the radially Lipschitz continuous assumption on f̂ , our local trust-region in the direction

of steepest descent always maintains a certain size. This property is necessary because the

decrease in the local Cauchy point is tied to the size of the local trust-region. The local

trust-region cannot be allowed to shrink to zero if we are to obtain a sufficient decrease of

the model under the local Cauchy point. The following lemmas guarantee that this situation

does not occur.

Lemma 23. Assume that f̂ is radially L-C1. Assume that there exists β ∈ (0,∞) such that

‖Hx‖ ≤ β for all x ∈ M. Then for all ρ′ ∈ (0, 1), there exists β∆ > 0 such that, for all

x ∈M, gradf̂x 6= 0, and all t ∈ (0, 1],

ρx

(
tmin

{
β∆‖gradf̂x‖, δRL

}
pS
x

)
≥ ρ′.

Proof. As a consequence of the radially L-C1 property, we have that∣∣∣f̂x(ξ)− f̂x(0)− gx
(

gradf̂x, ξ
)∣∣∣ ≤ 1

2
βRL‖ξ‖2 , (3.11)

for all x ∈M and all ξ ∈ TxM such that ‖ξ‖ ≤ δRL.

Note that

ρx(ξ) =
f̂x(0)− f̂x(ξ)
mx(0)−mx(ξ)

= 1− f̂x(ξ)−mx(ξ)

mx(0)−mx(ξ)
.

Let t ∈ (0, 1]. Let ξ be defined

ξ = tmin
{
β∆‖gradf̂x‖, δRL

}
pS
x .

Then

ρx(ξ) = 1− f̂x(ξ)−mx(ξ)

mx(0)−mx(ξ)
. (3.12)

Since

f̂x(ξ)−mx(ξ) = f̂x(ξ)− f̂x(0)− gx
(

gradf̂x, ξ
)
− 1

2
gx (ξ,Hx[ξ])

70

it follows from (3.11) and from the bound on ‖Hx‖ that∣∣∣f̂x(ξ)−mx(ξ)
∣∣∣ ≤ 1

2
βRLt

2 min 2
{
β∆‖gradf̂x‖, δRL

}
+

1

2
βt2 min 2

{
β∆‖gradf̂x‖, δRL

}
.

(3.13)

Also note that

mx(0)−mx(ξ) = tmin
{
β∆‖gradf̂x‖, δRL

}
‖gradf̂x‖ − gx (ξ,Hx[ξ])

and

|mx(0)−mx(ξ)| ≥ tmin
{
β∆‖gradf̂x‖, δRL

}
‖gradf̂x‖

− t2 min 2
{
β∆‖gradf̂x‖, δRL

}
β .

(3.14)

Then combining (3.13) and (3.14), we have∣∣∣f̂x(ξ)−mx(ξ)
∣∣∣

|mx(0)−mx(ξ)|
≤ 1

2

(βRL + β)tmin
{
β∆‖gradf̂x‖, δRL

}
‖gradf̂x‖ − tmin

{
β∆‖gradf̂x‖, δRL

}
β

≤ 1

2

(βRL + β)β∆‖gradf̂x‖
‖gradf̂x‖ − β∆‖gradf̂x‖β

=
1

2

(βRL + β)β∆

1− β∆β
,

because tmin
{
β∆‖gradf̂x‖, δRL

}
≤ β∆‖gradf̂x‖. Then it is easy to see that there exists

β∆ > 0 such that
1

2

(βRL + β)β∆

1− β∆β
< 1− ρ′ .

Corollary 24 (Bound on ∆x). It follows from Lemma 23 that, under the conditions required

for the lemma, ∆x ≥ min
{
β∆‖gradf̂x‖, δRL

}
.

The convergence theory of the RTR method in Section 2.3.1 provides two results on

global convergence. The stronger of these results (Theorem 9 states that the accumulation

points of any series generated by the algorithm are critical points of the objective function.

The definition of the implicit trust-region allows to immediately prove this result, without

passing first via the weaker result. The result and approach are analogous to a classical

71

result from Euclidean trust-region theory originally given in [SSB85]; see [NW99, Theorem

4.8] or [CGT00, Theorem 6.4.6] for modern representations. Theorem 25 proves this for the

IRTR method described in Algorithm 6; the proof is much simpler than that for the RTR

method.

Theorem 25 (Global Convergence). Let {xk} be a sequence of iterates produced by Algo-

rithm 6, each gradf̂x 6= 0, with ρ′ ∈ (0, 1). Suppose that there exists β ∈ (0,∞) such that

each ‖Hxk‖ ≤ β. Suppose that each f̂xk is C1, and that f̂ is radially L-C1 and bounded below

on the level set

{x : f(x) ≤ f(x0)} .

Further suppose that each update ηk produces at least as much decrease in mxk as a fixed

fraction of the local Cauchy point. That is, for some constant c1 > 0,

mxk(0)−mxk(ηk) ≥ c1‖gradf̂xk‖min

{
∆xk ,

‖gradf̂xk‖
β

}
,

where the terms in this inequality are from Theorem 22.

Then

lim
k→∞
‖gradf(xk)‖ = 0.

Proof. Assume for the purpose of contradiction that the theorem does not hold. Then there

exists ε > 0 such that, for all K > 0, there exists k ≥ K such that

‖gradf(xk)‖ > ε.

From the workings of Algorithm 6,

f(xk)− f(xk+1) = f̂xk(0)− f̂xk(ηk) = ρxk(ηk) (mxk(0)−mxk(ηk))

≥ ρ′ (mxk(0)−mxk(ηk))

≥ ρ′c1‖gradf̂xk‖min

{
∆xk ,

‖gradf̂xk‖
β

}

≥ ρ′c1‖gradf̂xk‖min

{
β∆‖gradf̂x‖, δRL,

‖gradf̂xk‖
β

}
,

where the last inequality results from Corollary 24. Then for all K > 0, there exists k ≥ K

such that

f(xk)− f(xk+1) ≥ ρ′c1εmin

{
β∆ε, δRL,

ε

β

}
> 0.

72

But because f is bounded below and decreases monotonically with the iterates produced by

the algorithm, we know that

lim
k→∞

(f(xk)− f(xk+1)) = 0,

and we have reached a contradiction. Hence, our original assumption must be false, and the

desired result is achieved.

Remark 26. The axioms for Theorem 25 require that each solution of the model subproblem

produce some fixed fraction of the decrease produced by the local Cauchy point. For the

truncated CG solver, this is not a problem, as the solver typically begins with the local Cauchy

point and makes improvement with further iterations. However, in the case that the truncated

CG solver is randomly initialized, it becomes necessary to ensure that the resulting subproblem

solution satisfies the Cauchy decrease condition. The most straightforward way to ensure this

is to compute the local Cauchy point and compare its decrease against that produced by the

subproblem solution, keeping whichever of the two points produces the most decrease.

3.3.2 Local Convergence

The local convergence results for the IRTR require significantly less modification from the

RTR than did the global convergence results. For the sake of brevity, only original proofs

will be provided. Neglected proofs may be found in Section 2.3.2.

As in Section 2.3.2, we ask one additional constraint be placed upon the retraction, in

addition to the definition of retraction. This is that that there exists some µ > 0 and δµ

such that

‖ξ‖ ≥ µdist(x,Rx(ξ)), for all x ∈M, for all ξ ∈ TxM, ‖ξ‖ ≤ δµ. (3.15)

In particular, the exponential retraction satisfies (3.15) as an equality, with µ = 1. The

bound is also satisfied when R is smooth and M is compact.

The first local convergence result states that the nondegenerate local minima are

attractors of Algorithm 6/7. This theorem is unmodified from the same result for the RTR;

see Theorem 15, which itself is closely related to the Capture Theorem [Ber95, Theorem

1.2.5].

73

Theorem 27 (Local Convergence to Local Minimima). Consider Algorithm 6/7–i.e., the

Implicit Riemannian Trust-Region algorithm where the trust-region subproblem (3.1) is solved

using the modified truncated CG algorithm–with all the assumptions of Theorem 25 (Global

Convergence). Let v be a nondegenerate local minimizer of f , i.e., gradf(v) = 0 and

Hess f(v) is positive definite. Assume that x → ‖H−1
x ‖ is bounded on a neighborhood of

v and that (3.15) holds for some µ > 0 and δµ > 0. Then there exists a neighborhood V of

v such that, for all x0 ∈ V , the sequence {xk} generated by Algorithm 6/7 converges to v.

Now we study the order of convergence of the sequences that converge to a nondegenerate

local minimizer. This result is the same as for the RTR. However, the proof is slightly

modified. The previous proof showed that the trust-region eventually becomes inactive as

a stopping condition on the truncated CG; this requires review under the new trust-region

definition.

Theorem 28 (Order of Local Convergence). Consider Algorithm 6/7. Suppose that R is

C2 retraction, that f is a C2 cost function on M, and that

‖Hxk − Hess f̂xk(0xk)‖ ≤ βH‖gradf(xk)‖, (3.16)

that is, Hxk is a sufficiently good approximation of Hess f̂xk(0xk). Let v ∈ M be a

nondegenerate local minimizer of f , (i.e., gradf(v) = 0 and Hess f(v) is positive definite).

Further assume that Hess f̂x(0x) is Lipschitz-continuous at 0x uniformly in a neighborhood

of v, i.e., there exist βL2, δ1 > 0 and δ2 > 0 such that, for all x ∈ Bδ1(v) and all ξ ∈ Bδ2(0x),

there holds

‖Hess f̂x(ξ)− Hess f̂x(0x)‖ ≤ βL2‖ξ‖. (3.17)

Then there exists c ≥ 0 such that, for all sequences {xk} generated by the algorithm

converging to v, there exists K > 0 such that for all k > K,

dist(xk+1, v) ≤ c (dist(xk, v))min{θ+1,2} .

Proof. We will show below that there exist ∆̃, c0, c1, c2, c3, c′3, c4, and c5 such that, for all

sequences {xk} satisfying the conditions asserted, all x ∈ M, all ξ with ‖ξ‖ ≤ ∆̃, and all k

74

greater than some K, there holds

c0dist(v, xk) ≤ ‖gradf(xk)‖ ≤ c1dist(v, xk), (3.18)

‖ηk‖ ≤ c4‖gradmxk(0xk)‖ ≤ ∆̃, (3.19)

‖gradf(Rxk(ξ))‖ ≤ c5‖grad f̂xk(ξ)‖, (3.20)

‖gradmxk(ξ)− grad f̂xk(ξ)‖ ≤ c3‖ξ‖2 + c′3‖gradf(xk)‖‖ξ‖, (3.21)

‖gradmxk(ηk)‖ ≤ c2‖gradmxk(0)‖θ+1, (3.22)

where {ηk} is the sequence of update vectors corresponding to {xk}. With these results at

hand, the proof is concluded as follows. For all k > K, it follows from (3.18) that

c0dist(v, xk+1) ≤ ‖gradf(xk+1)‖ = ‖gradf(Rxk(ηk))‖,

and from (3.20) that

‖gradf(Rxk(ηk))‖ ≤ c5‖grad f̂xk(ηk)‖,

and from (3.19) and (3.21) and (3.22) that

‖grad f̂xk(ηk)‖ ≤ ‖gradmxk(ηk)− grad f̂xk(ηk)‖+ ‖gradmxk(ηk)‖

≤ (c3c
2
4 + c′3c4)‖gradmxk(0)‖2 + c2‖gradmxk(0)‖θ+1,

and from (3.18) that

‖gradmxk(0)‖ = ‖gradf(xk)‖ ≤ c1dist(v, xk).

Consequently, taking K larger if necessary so that dist(v, xk) < 1 for all k > K, it follows

that

c0dist(v, xk+1) ≤ ‖gradf(xk+1)‖

≤ c5(c3c
2
4 + c′3c4)‖gradf(xk)‖2 + c5c2‖gradf(xk)‖θ+1

≤ c5((c3c
2
4 + c′3c4)c2

1(dist(v, xk))
2 + c2c

θ+1
1 (dist(v, xk))

θ+1)

≤ c5((c3c
2
4 + c′3c4)c2

1 + c2c
θ+1
1)(dist(v, xk))

min{2,θ+1}

for all k > K, which is the desired result. It remains to prove the bounds (3.18)-(3.22).

Equation (3.18) comes from Lemma 13 and is due to the fact that v is a nondegenerate

critical point. Equations (3.19)-(3.21) are proved in Theorem 15.

75

It remains only to prove (3.22). Let γk denote ‖gradf(xk)‖. It follows from the definition

of ρk that

ρk − 1 =
mxk(ηk)− f̂xk(ηk)
mxk(0xk)−mxk(ηk)

. (3.23)

From Taylor’s theorem (12), there holds

f̂xk(ηk) = f̂xk(0xk) + gxk (gradf(xk), ηk) +

∫ 1

0

gxk

(
Hess f̂xk(τηk)[ηk], ηk

)
(1− τ)dτ.

It follows that∣∣∣mxk(ηk)− f̂xk(ηk)
∣∣∣ =

∣∣∣∣∫ 1

0

(
gxk (Hxk [ηk], ηk)− gxk

(
Hess f̂xk(τηk)[ηk], ηk

))
(1− τ)dτ

∣∣∣∣
≤
∫ 1

0

∣∣∣gxk ((Hxk − Hess f̂xk(0xk))[ηk], ηk

)∣∣∣ (1− τ)dτ

+

∫ 1

0

∣∣∣gxk ((Hess f̂xk(0xk)− Hess f̂(τηk))[ηk], ηk

)∣∣∣ (1− τ)dτ

≤ 1

2
βHγk‖ηk‖2 +

1

6
βL2‖ηk‖3.

It then follows from (3.23), using the bound on the Cauchy decrease, that

‖ρk − 1‖ ≤ (3βHγk + βL2‖ηk‖)‖ηk‖2

6γk min {∆k, γk/β}
,

where β is an upper bound on the norm of Hxk . Since ∆k ≥ min {β∆γk, δRL} (Corollary 24)

and limk→∞ γk = 0 (in view of Theorem 25), we can choose K large enough that ∆k ≥ β∆γk,

for all k > K. This and ‖ηk‖ ≤ c4γk yield

‖ρk − 1‖ ≤ (3βH + βL2c4)c2
4γ

3
k

6 min
{
β∆,

1
β

}
γ2
k

.

Since limk→∞ γk = 0, it follows that limk→∞ ρk = 1.

Therefore, the trust-region eventually becomes inactive as a stopping criterion for the

truncated CG. Furthermore, because {xk} converges to v and Hess f(v) is positive definite,

it follows that Hxk is positive definite for all k greater than a certain K. This eliminates

negative curvature of the Hessian as a stopping criterion for truncated CG.

This means that the truncated CG loop terminates only after sufficient reduction has

been made in ‖gradmxk(ηk)‖ with respect to ‖gradmxk(0xk)‖:

‖gradmxk(ηk)‖ ≤ ‖gradmxk(0xk)‖θ+1,

76

(choosing K large enough that ‖gradmxk(0xk)‖θ < κ for all k > K), or the model

minimization has been solved exactly, in which case gradmxk(ηk) = 0. In either case, we

have satisfied (3.22).

3.4 Implementing the IRTR

The following ingredients are required for applying the IRTR method to optimizing a cost

function f on a Riemannian manifold (M, g):

1. a tractable numerical representation for points x on M, for tangent vectors in TxM,

and for the inner products gx(·, ·) on TxM,

2. a tractable retraction Rx : TxM→M,

3. formulas for f(x), gradf(x), and an approximate Hessian Hx[ξ] that satisfy the

properties required for convergence in Section 3.3,

4. an efficient formula for evaluating or bounding ρx(ξ) and an efficient method for

searching along ρx(tξ), as needed by steps 9, 16 and 17 of Algorithm 7.

The first three of these are requirements of the RTR method, with the third being required

of trust-region methods in general. The fourth requirement is unique to the IRTR.

All trust-region methods assume the ability to evaluate ρ for the purpose of accept-

ing/rejecting candidate iterates, as well as updating the trust-region radius. However, the

occurrence of this evaluation is relatively rare, occurring once per outer iteration. Each

evaluation of ρ in general requires evaluating the objective function f . The rarity of

evaluating the objective function is one of the attractions of trust-region methods; for many

problems, evaluating the objective function is significantly more expensive than evaluating

the surrogate m.

However, in the case that ρ can be efficiently computed, either directly via f and m or

indirectly via some other formula or bound, it is possible to implement the IRTR. With

simply an efficient formula for ρ, Armijo-style backtracking searches can be employed to

find a point in the implicit trust-region which satisfy sufficient decrease conditions. This

is similar to the technique employed in the Generic RTR package ([BAG07]). This is an

important point, as the global convergence result Theorem 25 requires a sufficient decrease

with respect to the local Cauchy point.

77

CHAPTER 4

COMPUTING EXTREME SYMMETRIC

GENERALIZED EIGENSPACES

Eigenvalues problem are often used as examples for Riemannian optimization because of their

familiarity, their importance in numerous application, and their position as problems over

non-trivial Riemannian manifolds; see [HM94, EAS98, LE02, AMSV02, AMS04, ABG07,

AMS08]. This chapter examines the application of Riemannian optimization techniques to

the problem of computing extreme eigenvectors and eigenvalues of a symmetric generalized

eigenvalue problem. Specialized methods from the literature are analyzed in the context

of Riemannian optimization, and theoretical results from Riemannian optimization shed

light onto the performance of these methods. Furthermore, implementations of the RTR

and IRTR methods are described for the generalized eigenvalue problem, providing novel

iterative eigenvalue solvers with robust convergence theory. These methods are shown to be

competitive with specialized eigenvalue solvers on a variety of numerical examples.

4.1 The Symmetric Generalized Eigenvalue Problem

Given two n×n matrices, A and B, it is possible to define a generalized eigenvalue problem.

The problem is to find a scalar λ and a non-zero vector v satisfying the generalized eigenvalue

equation

Av = Bvλ . (4.1)

The scalar λ is a generalized eigenvalue; the corresponding vector is a generalized eigenvector.

Together, an eigenvalue λ and an associated eigenvector v comprise an eigenpair (λ, v). The

set of all eigenvalues is the spectrum, denoted λ(A,B).

78

4.1.1 Characterization of Eigensolutions

Given two matrices A and B, a linear matrix pencil is a matrix-valued function defined over

the complex numbers:

P (λ) = A− λB .

We will use the abbreviation (A,B) to denote the linear matrix pencil P .

Recalling the definition of the generalized eigenvalue problem (4.1), an eigenpair (λ, v)

satisfies the following:

Av = Bvλ .

By redistributing the terms of this equation, we see that

(A− λB)v = 0 .

Because v is non-zero by definition, we see that evaluating the pencil (A,B) at a generalized

eigenvalue yields a singular matrix. For this reason, the generalized eigenvalues are

sometimes referred to as eigenvalues of the pencil (A,B). These are the values which satisfy

the equation

det(A− λB) = 0 .

This equation is referred to as the characteristic equation, and the left hand side is the

characteristic polynomial. Therefore, it is possible to identify the eigenvalues of (A,B) as

the roots of characteristic polynomial. This indicates that an n × n pencil has only n

eigenvalues, where non-real eigenvalues come in conjugate pairs.

If both matrices are symmetric then the matrix pencil is symmetric. If in addition one

of the matrices is positive-definite, then the pencil is said to be symmetric/positive-definite.

This chapter is concerned with those eigenvalue problems defined by symmetric/positive-

definite matrix pencils, and we assume from here forward that the pencil (A,B) is

symmetric/positive-definite. We further assume, without loss of generality1, that the

operator B is positive-definite. In this case, the generalized eigenvalue problem becomes

analogous to a symmetric standard eigenvalue problem: the eigenvalues are all real, and

the eigenvectors are B-orthogonal (and are typically scaled to be B-orthonormal). We can

1If instead, only A is positive-definite, then a new generalized eigenvalue problem is created using the
pencil (B,A): Avλ−1 = Bv. This requires only that we consider 1/0 =∞ a valid eigenvalue.

79

therefore order and label the eigenvalues as follows:

λ1 ≤ λ2 ≤ . . . ≤ λn .

We will refer to the smallest eigenvalue λ1 as the leftmost eigenvalue. Likewise, the largest

eigenvalue λn will be referred to as the rightmost eigenvalue. These are referred to as extreme

eigenvalues. We assume from this point forward that the eigenvalues {λj} have been ordered

in such a manner as above.

These properties of the symmetric/positive-definite generalized eigenvalue problem can

easily be shown by converting the generalized eigenvalue problem defined by (A,B) into a

symmetric standard eigenvalue problem, by utilizing the Cholesky decomposition B = RTR:

Av = Bvλ = RTRvλ

so that

Ãṽ
.
= (R−TAR−1)(Rv) = R−TAv = (Rv)λ = ṽλ .

While it may be mathematically possible to transform a generalized eigenvalue problem into

a standard eigenvalue problem in this way, a factorization of B may not be feasible due to

the size of the eigenvalue problem. For this reason, the methods discussed in this chapter

solve the generalized eigenvalue problem without transforming it to a standard eigenvalue

problem. Clearly, these methods can be applied to the solution of symmetric standard

eigenvalue problems by taking B = I.

For the standard symmetric eigenvalue problem, another characterization of the problem

is to find an orthogonal matrix V that diagonalizes the matrix A:

V TAV = Λ .

Such a matrix V has as its columns the eigenvectors of A, with the eigenvalues of A identifi-

able as the entries of the diagonal matrix Λ. A similar relationship between eigenvectors and

diagonalization exists for the symmetric/positive-definite generalized eigenvalue problem as

well.

Consider a non-singular matrix V which simultaneously diagonalizes A and B:

V −1AV = Φ = diag(φ1, . . . , φn)

V −1BV = Ψ = diag(ψ1, . . . , ψn) .

80

Then we have

Ψ−1Φ = (V −1B−1V)(V −1AV) = V −1B−1AV

and

AV = BV (Ψ−1Φ) . (4.2)

This identifies the generalized eigenvalues as the elements λj =
φj
ψj

and the generalized

eigenvectors as the columns of V .

It follows from Equation (4.2) that for any eigenvector vj of the pencil (A,B), the

following holds:

grq(v)
.
=
vTAv

vTBv
= λj . (4.3)

The left-hand side of this equation is the generalized Rayleigh quotient with respect to the

pencil (A,B). It should be noted that, in general, the converse is not true: if the generalized

Rayleigh quotient of an arbitrary (non-zero) vector v is equal to an eigenvalue, it does not

necessarily hold that v is an eigenvector. It is well-known that, for any non-zero vector v,

its generalized Rayleigh quotient satisfies the bounds

λ1 ≤ grq(v) ≤ λn , (4.4)

where λ1 and λn are the leftmost and rightmost eigenvalues, respectively. In the special

case that grq(v) = λ1 or grq(v) = λn, i.e., the generalized Rayleigh quotient evaluates to an

extreme eigenvalue, then the vector v must correspond to the associated extreme eigenvector

v1 or vn. This significant characteristic of the generalized Rayleigh quotient will be discussed

in greater detail in Section 4.1.3.

The generalized Rayleigh quotient above takes a single vector as input. There exists a

block version of the generalized Rayleigh quotient that is critical to the material that follows

in this chapter. Given an n × p matrix of full column rank, the block generalized Rayleigh

quotient with respect to the pencil (A,B) is defined as follows:

GRQ(V)
.
= trace

(
(V TBV)−1V TAV

)
, (4.5)

where the function trace (M) returns the sum of the diagonal entries of the matrix M . An

analogous result to Equation (4.3) holds for the function GRQ. For a matrix containing a

subset of distinct generalized eigenvectors, the generalized Rayleigh quotient evaluates to

81

the sum of the associated eigenvalues:

GRQ
([
vi1 . . . vip

])
=

p∑
j=1

λij . (4.6)

Similar to the scalar (p = 1) case (4.4), bounds can be placed on the Rayleigh quotient of

an n× p matrix:

λ1 + . . .+ λp ≤ GRQ(V) ≤ λn−p+1 + . . .+ λn . (4.7)

As before, an equality in this bound indicates that V is composed of the extreme eigenvectors,

colsp (V) = colsp
([
v1 . . . vp

])
or colsp (V) = colsp

([
vn−p+1 . . . vn

])
.

4.1.2 Applications of Eigenvalue Problems

In many applications, it is necessary only to compute a small number of eigenvectors

and eigenvalues, relative to the size of the eigenvalue problem. For example, the finite

element discretization of structure results in a generalized eigenvalue problem, where the

eigenvalues correspond to the natural frequencies (modal frequencies) of the structure and

the associated eigenvectors correspond to the nodal displacements (modal shapes) associated

with a particular frequency. The modes of a system depend on its stiffness and mass

characteristics, and the computed modes can be used in a number of ways. They can

be used to analyze the response of the structure when exposed to forces at a particular

frequency. In this case, it is customary to compute those eigenvalues inside a particular

frequency range of interest. Another use for the modes is as a basis for the transient analysis

of the system. In this case, it is customary to use the mode shapes corresponding to the

lowest frequencies of vibration, as they dominate the behavior of the structure. In this case,

the desired eigenvalues are those with the smallest magnitude. These are the same as the

leftmost eigenvalues, because the mass and stiffness matrices at positive semi-definite (and

are often strictly positive-definite).

Other occurrences of (standard and generalized) symmetric eigenvalue problems arise in

informatics applications. When performing empirical principle component analysis (PCA),

we wish to compute the largest eigenvalues and eigenvectors of the covariance matrix

C = XXT , where X contains the mean-subtracted samples. A related eigenproblem comes

from latent semantic analysis (LSA), where the largest eigenvalues and eigenvectors of the

matrix XXT are desired, where X is the document-term matrix. Still another application

82

comes from linear discriminant analysis (LDA). Given a set of objects partitioned into

different classes, the goal in LDA is to compute a subspace which, upon projection of

the objects, maximizes the distance between classes while simultaneously minimizing the

distance inside of each class. One way to compute this linear subspace is via the eigenvectors

corresponding to the largest generalized eigenvalues of the pencil (B,W), where B and W

contain, respectively, information corresponding to the separation between classes and the

separation within classes before projection.

These applications often result in eigenvalue problems with extremely large matrices

(on the order of millions of elements or more). As described above, the usage of the

computed eigenpairs, in addition to limitations in compute time and storage, may require

that only relatively few eigenpairs be computed. In this case, iterative methods are employed.

An iterative eigenvalue solver (eigensolver) typically produces a sequence of approximate

eigenpairs of improving quality. This is typically done in a matrix-free manner. This phrase

implies that the operators A and B must be known only via their effect on vectors. This is

useful in the scenarios where a matrix representation of the linear operators is not available,

or where the size of the problem does not admit any direct factorization of these matrices in

the case that they are available.

4.1.3 Rayleigh-Ritz Approximation

The Rayleigh-Ritz process is critical to the implementation of several eigensolver methods.

A listing for the algorithm is provided in Algorithm 8.

Given a basis Q for a subspace Q, the Rayleigh-Ritz process computes the “best”

approximate eigenvectors of (A,B) in the subspace Q. The algorithm uses the basis to map

the large-scale generalized eigenproblem (A,B) into a projected generalized eigenproblem

that can be handled with dense methods. The solutions of this dense problem are used to

construct approximate eigenpairs for the original eigenproblem. Examining Algorithm 8, the

eigenvectors W of the projected problem are referred to as the primitive Ritz vectors. The

values Θ are the Ritz values, and the vectors X are the Ritz vectors. The optimality of the

process can be described according to three different measures.

The first indicator of optimality regards the eigenvalues computed by the Rayleigh-Ritz

process. Given a subspace Q of dimension m, the p Ritz vectors corresponding to the

leftmost Ritz values (with respect to Q) minimize the generalized Rayleigh quotient over all

83

Algorithm 8 Rayleigh-Ritz Process

Require: Symmetric operatorA, symmetric/positive-definite operatorB, both of dimension
n× n

Input: Basis Q for subspace Q of dimension m ≤ n
1: Form projected matrices:

Â = QTAQ B̂ = QTBQ

2: Compute k ≤ m eigenpairs (Θ,W) of the pencil (Â, B̂):

ÂW = B̂WΘ

3: Compute Ritz vectors:
X = QW

Output: k Ritz pairs (θj, xj), j = 1, . . . , k

p-dimensional subspaces of Q. Similarly, the p Ritz vectors corresponding to the rightmost

Ritz values (with respect to Q) maximize the generalized Rayleigh quotient over all p-

dimensional subspaces of Q. This makes the Rayleigh-Ritz process an important part of

algorithms that seek to compute extreme eigenspaces by minimizing the generalized Rayleigh

quotient (as in Section 4.2).

The second measure of optimality regards the error in the eigenvalue Equation (4.1).

Given approximate eigenpairs (diag(θj), X), the residual of the generalized eigenvalue

problem is

R = AX −BXdiag(θj) .

The Ritz pairs produced by Algorithm 8 with respect to a subspaceQ are optimal in reducing

the norm of the error over all other B-orthogonal vectors in Q. In particular, if the subspace

Q contains an eigenvector, then this eigenvector will be recovered by the Rayleigh-Ritz

process.

The third measure of optimality states that the Ritz vectors and Ritz values are exact

eigenvectors and eigenvalues for a related problem. Let Π be the orthogonal projector onto

the subspace Q. Then any Ritz pair (θ, x) of (A,B) with respect to Q satisfies

ΠAΠx = ΠBΠxθ .

That is, the Ritz vectors and Ritz values with respect to Q are exact solutions to the

eigenproblem defined by restricting (A,B) to the subspace Q.

84

It is prescient to point out some other properties of the Rayleigh-Ritz process. The

process depends only on the relevant subspace, i.e., it is invariant with respect to the choice

of basis. Given a subspace Q and two different bases for Q, colsp (Q1) = Q = colsp (Q2),

the Ritz vectors and Ritz values produced from Q1 will be same as those produced from

Q2. In this way, the Rayleigh-Ritz process can be thought of as a mechanism for mapping a

subspace into a set of approximate eigenpairs.

Another important property of the Rayleigh-Ritz process is that it is better suited to

computing extreme eigenpairs than interior eigenpairs. Recall from Section 4.1.1 that the

GRQ maps eigenvectors to eigenvalues, but that a vector mapped to an eigenvalue is not

necessarily an eigenvector. The exception to this rule is for the extreme eigenvalues. The

reason for this is that, given a basis Q, the Rayleigh-Ritz process returns Ritz vectors that

are linear combinations of the vectors in Q. Because the eigenvectors of (A,B) provide a

complete linear basis, then the Ritz vectors are also linear combinations of the eigenvectors

of (A,B), so that the Rayleigh quotient of a Ritz vector (i.e., its associated Ritz value)

is a linear combination of the eigenvalues of of (A,B). As a result, there are in general

an infinite number of ways to construct an interior eigenvalue; however, this not possible

with an extreme eigenvalue. As a result, the Rayleigh-Ritz process is used only to compute

extreme eigenpairs of (A,B). To compute interior eigenvalues typically requires a spectral

transformation.

4.1.4 Spectral Transformations

In order to facilitate the convergence of an eigensolver to the desired part of the spectrum,

a common technique is to employ a spectral transformation. Spectral transformations are

used to modify the spectrum of the eigenvalue problem so that the chosen solver will find

the desired eigenvalues. The desired eigenvalues may be, for example:

• smallest (largest) magnitude eigenvalues: those eigenvalues whose absolute value is

minimal (maximal), i.e., those eigenvalues closest to (furthest from) zero;

• smallest (largest) algebraic eigenvalues: those eigenvalues furthest to the left (right) on

the real line. Also called the leftmost (rightmost) eigenvalues, or extreme eigenvalues;

• interior eigenvalues: those eigenvalues on the interior of the spectrum, i.e., those

eigenvalues closest to some value σ.

85

A spectral transformation defines a new eigenvalue problem whose spectrum may be

more amenable to a particular eigensolver. For example, when using an Arnoldi solver

(which naturally seeks the largest magnitude eigenvalues) to find other eigenvalues, it is

necessary to use a shift-invert spectral transformation. This is accomplished by writing a

new eigenvalue problem:

(A− σB)−1Bv = vθ ,

where σ is the shift and θ = 1/(λ − σ) is a transformed eigenvalue. By choosing σ = 0,

the smallest magnitude λ become the largest magnitude θ, allowing the Arnoldi eigensolver

to easily compute those eigenvalues closest to zero. Choosing a nonzero shift transforms

those λ closest to σ into the largest magnitude θ, allowing the Arnoldi eigensolver to easily

compute interior eigenvalues. Note that a shift-invert transformation requires the ability to

solve linear systems of A − σB. While this can be done using iterative linear solvers in a

matrix-free manner, it must be done accurately, as the eigenvalues θ that are computed are

defined by the accuracy of the linear solve.

Spectral transformations are also useful in expanding the reach of eigensolvers which

naturally compute the leftmost or rightmost eigenvalues. Consider the following transformed

eigenvalue problem:

(A− σB)B−1(A− σB)v = Bvθ ,

where σ is the shift and θ = (λ − σ)2 is a transformed eigenvalue. Choosing σ = 0 maps

the smallest magnitude λ to the leftmost θ and the largest magnitude λ to the rightmost θ.

Choosing a nonzero shift maps the λ closest to σ into the leftmost θ and maps the λ furthest

from σ into the rightmost θ. As with the shift-invert spectral transformation discussed above,

the accuracy of the linear operator (A − σB)B−1(A − σB) defines the computed θ. Note

that this spectral transformation also requires a linear solve. However, this linear solve is

for the matrix B, which is likely to be less cumbersome than the solution of A− σB.

4.2 Specialized Generalized Eigensolvers

The choice among iterative eigensolvers depends on the eigenvalues that are desired. In

this case, two classes of eigensolvers present themselves: those solvers that converge to the

largest magnitude eigenvalues, and those solvers that converge to the leftmost or rightmost

eigenvalues. The former class includes solvers related to the power method, such as the

86

subspace iteration method and the inverse iterations methods. The latter class includes

the methods that will be discussed in this chapter: the Trace Minimization method, the

Jacobi-Davidson method, and the Locally Optimal Block Preconditioned Conjugate Gradient

(LOBPCG) method. The Riemannian optimization approaches that will be proposed fall

into the latter category as well.

The eigenvectors associated with the leftmost (rightmost) eigenvalues are minimizers

(maximizers) of the generalized Rayleigh quotient. Computing these eigenvectors is tan-

tamount to optimizing the generalized Rayleigh quotient. The methods described in the

following sections do this in one of two ways.

The Jacobi-Davidson method attempts to compute stationary points of the generalized

Rayleigh quotient. It does this by looking for corrections to the current approximate eigen-

pairs, and implementations of this method typically incorporate the Rayleigh-Ritz process to

encourage convergence to the extreme eigenvectors. The Trace Minimization and LOBPCG

methods compute eigenpairs by explicitly minimizing the generalized Rayleigh quotient. The

LOBPCG method relies on the optimizing characterization of the Rayleigh-Ritz procedure,

while the Trace Minimization method may utilize the Rayleigh-Ritz procedure to accelerate

the convergence of the iteration. The following subsections describe each of these specialized

methods in greater detail.

4.2.1 Jacobi-Davidson Method

The Jacobi-Davidson (JD) method [SV96] identifies the eigenvectors and eigenvalues of the

pencil (A,B) as the stationary points of the Rayleigh quotient. Given an approximate

eigenvector x with Rayleigh quotient θ = grq(x), the method computes a correction t such

that x+t is an eigenvector of the pencil (A,B). While the iteration can proceed by adding the

correction to the current vector (a simplified JD method), the correction vector is typically

used to expand a search subspaceQ, over which the next iterate is generated via the Rayleigh-

Ritz process.

The Jacobi-Davidson method takes its name from the combination of approaches that

it utilizes: “Jacobi” follows Jacobi’s approach of constraining the correction vector to be

orthogonal to the current vector, while “Davidson” refers to the subspace acceleration

technique wrapped around this approach.

A generic simplified JD method is listed in Algorithm 9. The algorithm operates as

87

Algorithm 9 Simplified Jacobi-Davidson Eigensolver

Require: Symmetric operatorA, symmetric/positive-definite operatorB, both of dimension
n× n

Input: B-orthonormal matrix X0 containing p Ritz vectors, diagonal matrix Θ0 containing
p Ritz values

1: for k = 0, 1, . . . until convergence do
2: Approximately solve the correction equations for Sk

PkASk − PkBSkT = −(AXk −BXkΘ) , STk BXk = 0

where
Pk = I −BXkX

T
k

3: Compute the next basis
X̂k+1 = Xk + Sk

4: Compute the Ritz vectors Xk+1 and Ritz values Θk+1 of (A,B) with respect to X̂k+1

5: end for
Output: k Ritz pairs (θj, xj), j = 1, . . . , p

follows. Recall the formula for the single-vector generalized Rayleigh quotient:

grq(x) =
xTAx

xTBx
.

The simplified Jacobi-Davidson method takes a Newton-like approach to solving the eigen-

value problem. Instead of explicitly minimizing the generalized Rayleigh quotient, the JD

method attempts to find an update s to the current iterate x such that x + s is a critical

point of grq, i.e., such that the gradient of grq at x+ s is zero.

Consider the gradient of grq:

∇grq(x) = 2(xTBx)−1(Ax−Bx grq(x)) .

Recall from Chapter 1 that Newton’s method operates by computing the Newton step, i.e.,

that point s satisfying the equation

∇2grq(x)s = −∇grq(x) .

In this case, the equation takes the form

(A−B grq(x)) s = − (Ax−Bx grq(x)) .

88

The JD method adds an additional constraint on the Newton step, that it satisfy xTBs.

Defining the projector P = I − BxxT and noting that P T s = s and P (Ax−Bx grq(x)) =

Ax−Bx grq(x), we have the following:

P (A−B grq(x))P T s = − (Ax−Bx grq(x)) .

This equation is referred to as the Jacobi correction equation.

Line 2 in Algorithm 9 specifies a block form of this equation, where we wish to compute

the correction for p Ritz vectors. The listed equation also leaves unspecified the exact form

of the equation, by neglecting to define the matrix T in the left-hand side. The reason is

that different implementations of JD specify different values for this matrix. In [Not02],

Notay suggests using T = τI, where τ ≤ λ1. This has the benefit of guaranteeing that the

matrix Pk(A − BT)P T
k is positive semi-definite2 (in addition to being symmetric), so that

it can be easily solved using a conjugate gradient linear solver. Once the solver has moved

sufficiently close to the leftmost eigenvalue, Notay suggests substituting T with a diagonal

matrix containing the current Ritz values. This allows the simplified JD algorithm to enjoy

the cubic convergence characteristic of Newton methods on symmetric problems. This fast

local convergence can be explained because of ties to Newton’s method and the fact that the

exact solution to the correction equation results in an iteration which is equivalent to the

Rayleigh quotient iteration [GV96, Ste01].

Other descriptions of the JD method employ the Ritz values in T throughout the entire

algorithm. In addition to creating a problem that is potentially difficult to solve, the

algorithm is no longer guaranteed to converge to the leftmost eigenvectors. The solution to

the latter problem comes via the Davidson-type subspace acceleration mechanism. Instead

of choosing the next iterate as X + S, as in Newton’s method, the correction step S is used

to expand a subspace from which the next iterate will be chosen. The subspace-accelerated

Newton method is the standard presentation of the Jacobi-Davidson method. It is listed in

Algorithm 10.

4.2.2 Trace Minimization Method

The Trace Minimization (TRACEMIN) method [SW82, ST00] attempts to compute the

leftmost eigenspace of the pencil (A,B) by explicitly minimizing the generalized Rayleigh

2In fact, the operator is strictly positive-definite in the space of vectors M -orthogonal to X, where many
properly initialized iterative solvers are guaranteed to remain.

89

Algorithm 10 Jacobi-Davidson Eigensolver

Require: Symmetric operatorA, symmetric/positive-definite operatorB, both of dimension
n× n

Input: B-orthonormal matrix X0 containing p Ritz vectors, diagonal matrix Θ0 containing
p Ritz values

1: for k = 0, 1, . . . until convergence do
2: Compute Sk as in Algorithm 9
3: if Vk has reached some maximum size then
4: B-orthonormalize

[
Xk Sk

]
into Vk+1

5: else
6: B-orthonormalize

[
Vk Sk

]
into Vk+1

7: end if
8: Compute the Ritz vectors Xk+1 and Ritz values Θk+1 of (A,B) with respect to Vk+1

9: end for
Output: k Ritz pairs (θj, xj), j = 1, . . . , p

quotient:

GRQ(X) = trace
(
(XTBX)−1(XTAX)

)
.

This method is defined only for problems where both A and B are symmetric/positive-

definite. In this case, we know that all of the generalized eigenvalues are strictly positive.

For problems where A is not positive-definite, it is recommend to shift the problem by some

value ν, such that A−νB is positive-definite. This results in a generalized eigenvalue problem

with shifted eigenvalues:

(A− νB)v = (λ− ν)v .

Clearly, any ν < λ1 achieves this goal.

A basic version of the TRACEMIN algorithm is stated in Algorithm 11. This algorithm

was presented by Sameh and Wisniewski in [SW82]. The algorithm operates as follows. The

goal is to solve the minimization problem

minimize trace
(
XTAX

)
subject to XTBX = I .

Given an iterate Xk satisfying XT
k BXk = I, the approach is to compute an update Sk which

decreases the objective function:

minimize trace
(
(Xk − Sk)TA(Xk − Sk)

)
(4.8)

subject to XTBSk = 0 .

90

Algorithm 11 Basic TRACEMIN Eigensolver

Require: Symmetric/positive-definite operators A and B, both of dimension n× n
Input: B-orthonormal matrix X0 containing p Ritz vectors, diagonal matrix Σ0 containing

p Ritz values
1: for k = 0, 1, . . . until convergence do
2: Approximately solve the equation for Sk

(PkAPk)Sk = −PkAXk

where
Pk = I −BXk

(
XT
k B

2Xk

)−1
XT
k B

3: Compute the next basis
X̂k+1 = Xk − Sk

4: Compute the Ritz vectors Xk+1 and Ritz values Σk+1 of (A,B) with respect to X̂k+1

5: end for
Output: k Ritz pairs (σj, xj), j = 1, . . . , p

Choosing the update Sk to be B-orthogonal to the current iterate Xk places it in the

tangent space to the constraints, i.e., for infinitesimally small Sk, Xk − Sk satisfies the B-

orthonormality constraint. Another motivating factor (which will be discussed more in the

next section) is that the generalized Rayleigh quotient is invariant to the choice of subspace,

so that components of Xk in Sk do not affect the objective function, and therefore can be

excluded.

By considering the first-order optimality conditions of the constrained optimization

problem (4.8), we can characterize the minimizer Sk as the solution of the KKT system[
A BXk

XT
k B 0

] [
Sk
Lk

]
=

[
AXk

0

]
,

where the matrix Lk contains the Lagrange multipliers which enforce the constraints [NW99].

This can be rewritten as the positive semi-definite system

(PkAPk)Sk = (PkAXk), subject to XT
k BSk = 0 , (4.9)

where Pk is the orthogonal projector onto the space B-orthogonal to Xk:

Pk = I −BXk(X
T
k B

2Xk)
−1XT

k B .

Note that this system is positive-definite for all vectors B-orthogonal to Xk.

91

The authors show that if the update Sk satisfies XT
k BSk = 0 and

trace
(
(Xk − Sk)TA(Xk − Sk)

)
≤ trace

(
XT
k AXk

)
,

then the next iterate Xk+1 formed by normalizing Xk − Sk (such as via the Rayleigh-Ritz

process) automatically satisfies

trace
(
XT
k+1AXk+1

)
≤ trace

(
(Xk − Sk)TA(Xk − Sk)

)
≤ trace

(
XT
k AXk

)
.

The authors suggest approximately solving this system via a conjugate gradient method.

Such a solver, properly initialized, guarantees that intermediate solutions satisfy the orthogo-

nality condition and that successive solutions monotonically decrease the objective function.

Also, the solution of this linear solver admits the use of a preconditioner, which admits the

basic TRACEMIN method into the class of preconditioned eigensolvers.

The basic TRACEMIN iteration is similar to the simplified JD iteration. Both are

attempting to minimize the generalized Rayleigh quotient. Both choose the next iterate is

X + S, where S is computed as the solution to some linear system. The difference is that

the TRACEMIN method computes the update S to produce a decrease in the generalized

Rayleigh quotient, while JD computes the update S to move the iteration to a critical point

of the generalized Rayleigh quotient (and hopefully, also a minimizer.)

The authors of TRACEMIN show that the update Sk determined by the exact solution

of Equation (4.8) is

Sk = Xk − A−1BXk

(
XT
k BA

−1BXk

)−1
.

This means that the subspace spanned by the next iterate Xk+1 = Xk − Sk is the same

subspace as that spanned by A−1BXk, the iteration produced by the method of inverse

iterations. This is a classical iterative eigensolver known to have robust global convergence

to the leftmost eigenvectors, albeit at a linear rate of convergence. However, the inverse

iterations method dictates an exact linear solve against A, while the basic TRACEMIN does

not. In this way, the method can be thought of as an inexact inverse iteration method, which

the authors show is able to retain the convergence theory of inverse iterations [GV96, Ste01].

In [ST00], Sameh and Tong expand the functioning of the basic TRACEMIN method.

One modification of the method seeks to accelerate the convergence by employing a subspace

acceleration strategy like that used in the Jacobi-Davidson method. Under this strategy, the

92

Algorithm 12 Subspace-Accelerated TRACEMIN Eigensolver

Require: Symmetric/positive-definite operators A and B, both of dimension n× n
Input: B-orthonormal matrix X0 containing p Ritz vectors, diagonal matrix Σ0 containing

p Ritz values
1: for k = 0, 1, . . . until convergence do
2: Compute Sk as in Algorithm 11
3: if Vk has reached some maximum size then
4: B-orthonormalize

[
Xk Sk

]
into Vk+1

5: else
6: B-orthonormalize

[
Vk Sk

]
into Vk+1

7: end if
8: Compute the Ritz vectors Xk+1 and Ritz values Σk+1 of (A,B) with respect to Vk+1

9: end for
Output: k Ritz pairs (σj, xj), j = 1, . . . , p

update step Sk computed in Line 2 is used to expand the current approximation subspace,

from which the next iterate Xk+1 is computed via the Rayleigh-Ritz process.

The authors also seek to address the linear rate of convergence observed for the basic

TRACEMIN method. As noted above, TRACEMIN’s convergence rate is due to its

relationship with the inverse iteration method. Just as the Rayleigh quotient iteration

improves the convergence rate of the inverse iteration method by shifting the system by

the current Ritz values, the dynamically shifted TRACEMIN method proposed in [ST00]

seeks to improve the rate of convergence by shifting the system solved at Line 2 of the basic

TRACEMIN algorithm. The shifts are intended to increase the accuracy of the model (4.8) in

approximating the generalized Rayleigh quotient. These strategies attempt to set this model

equal to the quadratic Taylor expansion of the generalized Rayleigh quotient. However, such

an approach is similar to a Newton method, and as such, it struggles with the problems

introduced by a possibly non-convex quadratic model—namely, the effect on the global

convergence of the method. These issues are addressed by the trust-region methods discussed

in Sections 4.3.3 and 4.3.4.

4.2.3 LOBPCG

The locally optimal block preconditioned conjugate gradient (LOBPCG) eigensolver applies

a nonlinear preconditioned conjugate gradient method to the problem of minimizing the

93

block generalized Rayleigh quotient:

GRQ(V) = trace
((
V TBV

)−1 (
V TAV

))
.

The LOBPCG method is listed in Algorithm 13.

Algorithm 13 Locally Optimal Block Preconditioned Conjugate Gradient Method

Require: Symmetric operatorA, symmetric/positive-definite operatorB, both of dimension
n× n, symmetric/positive-definite preconditioner N

Input: B-orthonormal matrix X0 containing p Ritz vectors, diagonal matrix Θ0 containing
p Ritz values

1: Set P0 = []
2: for k = 0, 1, . . . until convergence do
3: Compute the residuals

Rk = AXk −BXkΘk

4: Apply the preconditioner
Hk = NRk

5: Compute the primitive Ritz vectors Wk and Ritz values Θk with respect to the basis[
Xk Hk Pk

]
6: Compute the Ritz vectors:

Xk+1 =
[
Xk Hk Pk

]
Wk

7: Compute the CG direction:

Pk+1 =
[
0 Hk Pk

]
Wk

8: end for
Output: k Ritz pairs (θj, xj), j = 1, . . . , p

In [Kny01], Knyazev proposes a nonlinear CG iteration for the minimization of the

generalized Rayleigh quotient. Instead of the traditional CG iteration:

xk+1 = xk + αkpk ,

where pk is the CG search direction, Knyazev recalls a three-term recurrence variation of

CG [Saa92, Algorithm 6.19]:

xk+1 = xk + αkhk + βk(xk − xk−1) ,

where hk is the preconditioned residual. Numerous rules for nonlinear CG dictate the

coefficients for the next iterate. However, Knyazev points out that the Rayleigh-Ritz process

94

provides an efficient way for computing the locally optimal iterate xk+1 with respect to the

subspace spanned by
[
xk hk (xk − xk−1)

]
.

When implementing the LOBPCG method, it is prudent to make some slight modifica-

tions to the recurrence to avoid potential problems. In [Kny01], Knyazev notes that in the

asymptotic convergence of the method, the update xk − xk−1 between consecutive iterates

approaches zero, which causes problems when forming the projected eigenvalue problem in

the Rayleigh-Ritz process. Knyazev’s suggestion is to replace the explicit difference xk−xk−1

with an implicitly computed difference pk, as in Line 7 of Algorithm 13. Algorithm 13

presents a block version of LOBPCG implementing this suggestion.

Another issue that was addressed in [HL06] concerns rank deficiency that may occur

in the matrix
[
Xk Hk Pk

]
, causing the algorithm to stagnate. The authors of [HL06]

recommend that the Rayleigh-Ritz process be performed on an orthonormal basis, where

the preconditioned residual Hk is explicitly made orthogonal to Xk and the CG direction Pk

is implicitly constructed orthogonal to Xk.

4.3 Riemannian Optimization and ESGEV

This section introduces a Riemannian optimization characterization of the extreme sym-

metric generalized eigenvalue (ESGEV) problem. The specialized methods from Section 4.2

are re-examined in the context of Riemannian methods, and the Riemannian trust-region

methods from Chapters 2 and 3 are applied to the problem.

4.3.1 Riemannian Optimization Characterization

Consider a generalized eigenvalue problem, with n× n real matrices A and B, A symmetric

and B symmetric/positive-definite. Let the eigenvalues of the pencil (A,B) be λ1 ≤ λ2 ≤
. . . ≤ λn. Consider the p leftmost eigenvalues, λ1, . . . , λp, and corresponding eigenvectors,

v1, . . . , vp. We will assume below, though it is not strictly necessary, that λp < λp+1
3. Recall

from Section 4.1.1 that the n × p matrix containing the leftmost eigenvectors is a global

minimizer of the generalized Rayleigh quotient

GRQ : Rn×p
∗ → R : X 7→ trace

(
(XTBX)−1(XTAX)

)
,

3This assumption allows us to identify a unique global minimizer for the subspace optimization problem
that follows. If the assumption does not hold, then there are a collection of globally minimizing subspaces.

95

where Rn×p
∗ is the set of n×p real matrices of full column rank. Recall also that the converse

holds: any global minimizer of this function has captured the subspace associated with the

leftmost eigenvectors.

One notable feature of the generalized Rayleigh quotient is that the function is invariant

to the choice of basis. Consider two bases, V and VM , where M is a non-singular matrix.

The generalized Rayleigh quotient of both bases is the same:

GRQ(VM) = trace
(
(MTV TBVM)−1(MTV TAVM)

)
= trace

(
M−1(V TBV)−1M−TMT (V TAV)M

)
= trace

(
M−1(V TBV)−1(V TAV)M

)
= trace

(
(V TBV)−1(V TAV)MM−1

)
= trace

(
(V TBV)−1(V TAV)

)
= GRQ(V) .

An explanation for this is that the generalized Rayleigh quotient of a basis is the sum of the

Ritz values associated with that basis. However, the Ritz values are dependent only on the

subspace spanned by a given basis, a fact which we have already exploited in order to map

approximate eigenspaces into Ritz vectors.

Note, the eigenvalues of the pencil (A,B) are the negated eigenvalues of the pencil

(−A,B), so that the generalized Rayleigh quotient of (A,B) is the negated generalized

Rayleigh quotient of (−A,B). Therefore, computing the rightmost eigenvectors can be done

either by minimizing −GRQ or by minimizing the generalized Rayleigh quotient of the pencil

(−A,B). Therefore, as is traditional with optimization methods, we will discuss only the

minimization of GRQ.

Clearly, the generalized Rayleigh quotient induces a real-valued function on the set of p-

dimensional subspaces of Rn. This set is the Grassmann manifold Grass(p, n). Chapter 1.5

described how a Riemannian structure can be put on this set. In order to make precise

the notation in the rest of this chapter, we will allow GRQ to continue to represent the

generalized Rayleigh quotient on Rn×p
∗ , and we will denote by f the generalized Rayleigh

quotient on the Grassmann manifold:

f : Grass(p, n)→ R : colsp (X) 7→ GRQ(X) .

96

Section 1.5 suggested a Riemannian structure for the Grassmann manifold using the

Riemannian metric inherited by the total space:

gcolsp(X)(η, ξ) = trace
(
(XTX)−1ηT↑Xξ↑X

)
,

where the basis X is the representation for the subspace colsp (X), and where η↑X and ξ↑X

are the horizontal lifts of tangent vectors η and ξ with respect to X. The canonical choice

for the horizontal distribution requires that each horizontal space HX is orthogonal to the

corresponding vertical space VX .

The choice of Riemannian metric and horizontal distribution dictate the formulas for

the gradient and Hessian. As such, the flexibility in choosing these structures can be used

to reduce the complexity of the resulting gradient and Hessian or to illustrate connections

between different solvers. The following subsections desribe two characterizations of this

manifold that will be utilized in this chapter.

GRQ with Metric A

With the goal of computing the leftmost eigenspaces of the pencil (A,B), consider the

following Riemannian metric:

gcolsp(X)(η, ξ) = trace
(
(XTBX)−1ηT↑XBξ↑X

)
. (4.10)

Recall that the vertical space of the Grassmann manifold is

VX =
{
XM : M ∈ Rp×p} .

Choosing the horizontal distribution so that the horizontal space HX is orthogonal to the

vertical space VX implies a number of useful properties, regarding the formulas for the

gradient and Hessian of f . In this case, the horizontal distribution dictates that each

horizontal space at X is

HX =
{
Z ∈ Rn×p : XTBZ = 0

}
. (4.11)

The orthogonal projector onto HX is

P h
X = PX,BX = I −X(XTBX)−1XTB , (4.12)

where

PU,V = I − U(V TU)−1V T (4.13)

97

denotes the projection parallel to colsp (U) onto the space orthogonal to colsp (V).

Let X = colsp (X). Because the horizontal distribution is orthogonal to the vertical space

with respect to g, the gradient of f with respect to g is equal to the gradient of GRQ in the

total space:

gradf(X)↑X = ∇GRQ(X)

= 2B−1AX −X(XTBX)−1XTAX

= 2PX,BXB
−1AX

= 2B−1PBX,XAX . (4.14)

The choice of horizontal distribution also guarantees that the Riemannian connection is

inherited as well, so that the Riemannian Hessian of f is

(Hessf(X)[η])↑X = P h
X (D (∇GRQ(X))[η↑X])

= 2PX,BX
(
B−1Aη↑X − η↑X(XTBX)−1XTAX

)
= 2B−1PBX,X

(
Aη↑X −Bη↑X(XTBX)−1XTAX

)
. (4.15)

With the Riemannian gradient and Riemannian Hessian in hand, we are equipped to

describe a Riemannian steepest descent method for the generalized Rayleigh quotient on the

Grassmann manifold. Such an approach is related to the JD eigensolver, as will be shown

in Section 4.3.2.

GRQ with Metric B

In order to apply the Riemannian trust-region methods to the optimization of the generalized

Rayleigh quotient over the Grassmann manifold, it is useful to have a Taylor expansion

of the lifted cost function. Here, we present another characterization of the Grassmann

manifold that will later simplify this expansion. Define the horizontal distribution so that

the horizontal space at X has the form

HX =
{
Z ∈ Rn×p : ZTBX = 0

}
(4.16)

and employ the non-canonical Riemannian metric

gX (ξ, ζ) = trace
(
(XTBX)−1ξT↑Xζ↑X

)
. (4.17)

98

We denote by P h
X the orthogonal projector onto the horizontal space HX :

P h
X = PBX = I −BX(XTB2X)−1XTB , (4.18)

where PBX is a shortened notation for PBX,BX , defined as in Equation (4.13):

PBX,BX = I −BX
(
XTB2X

)−1
XTB .

Consider the retraction

RX (ξ) = colsp (X + ξ↑X) . (4.19)

The retraction is used to lift this function from the manifold to the tangent bundle, as

follows:

f̂ : T Grass(p, n)→ R : ξ 7→ f(R(ξ)), (4.20)

As before, f̂X denotes the restriction of f̂ to TXGrass(p, n).

A second-order expansion of f̂X yields:

f̂X (ξ) = trace
((

(X + ξ↑X)TB(X + ξ↑X)
)−1

(X + ξ↑X)TA(X + ξ↑X)
)

= trace
(
(XTBX)−1XTAX

)
+ 2 trace

(
(XTBX)−1ξT↑XAX

)
+ trace

(
(XTBX)−1ξT↑X

(
Aξ↑X −Bξ↑X(XTBX)−1XTAX

))
+HOT

= trace
(
(XTBX)−1XTAX

)
+ 2 trace

(
(XTBX)−1ξT↑XP

h
XAX

)
+ trace

(
(XTBX)−1ξT↑XP

h
X

(
Aξ↑X −Bξ↑X(XTBX)−1XTAX

))
+HOT,

where the introduction of the projectors does not modify the expression since P h
Xξ↑X = ξ↑X .

Using the Riemannian metric (4.17), we can make the following identifications:

(gradf(X))↑X =
(

gradf̂X (0X)
)
↑X

= 2PBXAX, (4.21)(
Hessf̂X (0X)[ξ]

)
↑X

= 2PBX
(
Aξ↑X −Bξ↑X(XTBX)−1XTAX

)
. (4.22)

4.3.2 Analysis of Specialized solvers

This section analyzes the specialized eigensolvers from Section 4.2 in the context of the

optimization of the generalized Rayleigh quotient over the Grassmann manifold.

99

Jacobi-Davidson Method

The connection between the Jacobi-Davidson eigensolver and Newton’s method has been

analyzed numerous times in the literature; see [SBFV96] and references therein. This section

discusses an implementation of Newton-on-Grassmann for the generalized Rayleigh quotient

which identically evokes the form of the simplified JD eigensolver.

Consider the choice of Riemannian metric and horizontal metric from Equations (4.10)

and (4.11). This results in the equations for the Riemannian gradient and Riemannian

Hessian as in Equations (4.14) and (4.15):

gradf(X)↑X = 2B−1PBX,XAX ,

(Hessf(X)[η])↑X = 2B−1PBX,X
(
Aη↑X −Bη↑X(XTBX)−1XTAX

)
.

Solving the Newton equation then consists of finding η↑X such that

2B−1PBX,X
(
Aη↑X −Bη↑X(XTBX)−1XTAX

)
= −2B−1PBX,XAX ,

or, equivalently,

PBX,X
(
Aη↑X −Bη↑X(XTBX)−1XTAX

)
= −PBX,XAX .

If we assume that X contains the Ritz values with respect to colsp (X), then XTBX = I

and XTAX = Θ is diagonal. In this case, the Newton equation simplifies to

(I −BXXT) (Aη↑X −Bη↑XΘ) = −(AX −BXΘ) .

Recalling the discussion in Section 4.2.1, it is clear that the simplified Jacobi-Davidson

method is equivalent to a Newton-on-Grassmann for this choice of inner product and

horizontal space and with retraction Rcolsp(X)(η) = colsp (X + η↑X). Note that the Jacobi

condition that the update is orthogonal to the current iterate is enforced here by the

requirement that η↑X is a member of the horizontal space HX .

Trace Minimization Method

In the examination of the Trace Minimization method, we will analyze the second Rie-

mannian characterization of the generalized Rayleigh quotient minimization. Assuming the

100

Riemannian metric and horizontal distribution from Equations (4.10) and (4.11) and the

retraction from Equation (4.19), then the pullback f̂ has the following gradient and Hessian:

(gradf(X))↑X = 2PBXAX ,(
Hessf̂X (0X)[η]

)
↑X

= 2PBX
(
Aη↑X −Bη↑X(XTBX)−1XTAX

)
.

Two possibilities exist for analyzing the Trace Minimization method. One approaches

the method as a quasi-Newton method. A retraction-based Riemannian Newton method

solves the equation (
Hessf̂X (0X)[ξ]

)
↑X

= − (gradf(X))↑X

and chooses the next iterate

X+ = RX (η↑X) = X + η .

By substituting the Hessian of f̂X with approximate Hessian 2PBXAPBX , the correction

equation becomes

PBXAPBXη↑X = −PBXAX .

This system is the same as Equation (4.9) solved in the Trace Minimization method.

Furthermore, because TRACEMIN is only described for positive-definite A, this linear

system is positive-definite for all vectors inHX . As a result, the system has the property that

the Newton step is well-defined, a condition which requires extra effort by most quasi-Newton

schemes.

Recall, however, that the authors of the TRACEMIN method established a global

convergence theory for the method, which is not captured by the characterization of

TRACEMIN as a quasi-Newton method. In order to capture this convergence theory in

our Riemannian characterization of TRACEMIN, we shall reanalyze the method as an

implementation of the IRTR method.

The IRTR method constructs a model of the pullback and minimizes this model subject to

the implicit trust-region. The definition of the implicit trust-region is those tangent vectors

η for which the decrease in the model is some specified fraction of the decrease in the lifted

objective function, ρX (η) ≥ ρ′.

Recall the form of the model from Equation (3.2):

mX (η) = f̂X (0X) + gX

(
η, gradf̂X (0X)

)
+

1

2
gX (η,HX [η]) .

101

Substituting the formulas for the generalized Rayleigh quotient yields the following:

mX (η) = trace
(
(XTBX)−1XTAX

)
+ 2 trace

(
(XTBX)−1ηT↑XAX

)
+ trace

(
(XTBX)−1ηT↑X (HX [η])↑η

)
.

The TRACEMIN method assumes that both A and B are positive-definite.4 It remains

to choose the operator that will act as the model Hessian. Consider the following:

(HX [η])↑X = 2PBXAPBXη↑X .

This operator is symmetric/positive definite, hence the model admits a unique unconstrained

minimizer. For simplicity, assume also that the basis X representing X is B-orthonormal.

The implicit trust-region subproblem (3.5) now consists of the following:

minimize trace
(
XTAX + 2ηT↑XPBXAX + ηT↑XPBXAPBXη↑X

)
,

such that ηT↑XBX = 0 and ρX (η) ≥ ρ′.
(4.23)

If we neglect the trust-region requirement, then we are left with the following problem:

minimize trace
(
XTAX + 2ηT↑XPBXAX + ηT↑XPBXAPBXη↑X

)
,

such that ηT↑XBX = 0.
(4.24)

This minimization problem is precisely that in Equation (4.8). In [SW82, ST00], the authors

prove the following inequality:

f̂X (ξ) = trace
((
I + ξT↑XBξ↑X

)−1
(X + ξ↑X)TA(X + ξ↑X)

)
≤ trace

(
(X + ξ↑X)TA(X + ξ↑X)

)
= mX (ξ) .

(4.25)

Recall from the model definition that mX (0X) = f̂X (0X). Inserting this into Equa-

tion (4.25) yields the following:

f̂X (0X)− f̂X (ξ) ≥ mX (0X)−mX (ξ) .

Then any ξ ∈ TXGrass(p, n) produces at least as much decrease in the objective function

as in the model. Returning to the context of the implicit trust-region, this means that ρ

satisfies the following:

ρX (ξ) =
f̂X (0X)− f̂X (ξ)

mX (0X)−mX (ξ)
≥ 1 .

4For what follows, A need strictly be only positive semi-definite.

102

As a result of this and the assumption that ρ′ ≤ 1, the implicit trust region (3.5) is the

whole TXGrass(p, n), and the solution of (4.24) is the unique solution of (4.23). In this

way, the Trace Minimization method is equivalent to the Implicit Riemannian Trust-Region

method for a particular choice of the model Hessian. One consequence of this is that the

Trace Minimization method inherits the convergence analysis of the IRTR, in addition to

that provided by its authors.

Note that because the entirety of the tangent plane lies inside the implicit trust-region and

because the model Hessian is positive definite, the truncated CG Algorithm 7 will terminate

only when it has sufficiently reduced the gradient of the model, i.e., the residual of the linear

system, HX [ξ] = −gradf(X). However, the global convergence Theorem 25 for the IRTR

method requires only that the solution provide as much decrease in mX as some fixed fraction

of that provided by the local Cauchy point. The truncated CG algorithm generates the local

Cauchy point on the first iterate, so that the algorithm need not solve the equation to a

high-accuracy in order to yield superlinear convergence. Therefore, while the TRACEMIN

method can be described as an inexact, quasi-Newton method, it has the added benefit that

the implicit trust-region mechanism provides stable convergence only to local minimizers.

Again, the convergence properties of the method were not lost on its authors.

However, an unfortunate consequence of the Hessian choice (HX [ξ])↑X = 2PBXAPBXξ↑X

is that it does not adequately approximate the actual Hessian of f̂ . As a result, the method

yields only a linear rate of asymptotic convergence. This result was known by the authors

of TRACEMIN, due to the relationship between optimal TRACEMIN and the subspace

iteration method; see [SW82] or [ST00].

LOBPCG Method

Analyzing the LOBPCG method in the context of Riemannian optimization requires coming

to terms with the Rayleigh-Ritz process at the heart of the LOBPCG method. The authors

of [AG06, AMS08] describe the Rayleigh-Ritz process as an example of an acceleration

technique capable of augmenting Riemannian line-search or trust-region methods. This

ability comes via the process’s ability to find a minimizer of the generalized Rayleigh quotient

subject to a larger subspace. The authors show that, under circumstances relating to the

gradient information contained in the search subspaces, the acceleration mechanism (i.e.,

Rayleigh-Ritz) does not compromise the convergence properties.

103

In the case of the LOBPCG method, recall that a new iterate Xk+1 is chosen as

the Ritz vectors corresponding to the smallest Ritz values with respect to the subspace

colsp
([
Xk Hk (Xk −Xk−1)

])
. This is done by choosing Xk+1 as

Xk+1 =
[
Xk Hk (Xk −Xk−1)

]
W ,

where W are the primitive Ritz vectors. These vectors W have the benefit of making Xk+1

into Ritz vectors; this is a particular choice of basis with some nice properties, but any other

basis for the same subspace has the same (minimal) value under the generalized Rayleigh

quotient. Re-normalize the vectors W instead so that they takes the form

W =

 I
W2

W3

 .

This can be done so long as XT
k Xk+1 is non-singular.

Then the next iterate has the form

Xk+1 =
[
Xk Hk (Xk −Xk−1)

]
W = Xk +HkW2 + (Xk −Xk−1)W3 ,

where the coefficients in W2 and W3 are chosen by LOBPCG to optimize the generalized

Rayleigh quotient over the “2-D” subspace spanning Hk and (Xk −Xk−1).

This can be related to a Riemannian optimization strategy. This strategy operates by

using the retraction Rcolsp(X)(η) = colsp (X + η↑X), so that the lifted cost function is

f̂colsp(X)(η) = f(Rcolsp(X)(η)) = GRQ(X + η↑X) .

The analogy with LOBPCG is made by choosing the tangent vector η as the minimizer of

f̂colsp(X) in the “two dimensional” subspace spanned by the preconditioned gradient and the

tangent vector R−1
colsp(Xk)(Xk−1). The ability to choose the optimal vector in this subspace is

possible in this case because of the properties of the Rayleigh-Ritz process.

104

4.3.3 RTR and the ESGEV Problem

For the RTR implementation of the ESGEV problem, we will use the following characteri-

zation of the problem, as with TRACEMIN:

gX (ξ, ζ) = trace
(
(XTBX)−1ξT↑Xζ↑X

)
,

HX =
{
Z ∈ Rn×p : ZTBX = 0

}
,

P h
X = PBX = I −BX(XTB2X)−1XTB ,

(gradf(X))↑X = 2PBXAX ,

RX (ξ) = colsp (X + ξ↑X) ,(
Hessf̂X (0X)[η]

)
↑X

= 2PBX
(
Aη↑X −Bη↑X(XTBX)−1XTAX

)
.

Choosing the iterates X as Ritz vectors allows some simplifications: XTBX = I

somewhat simplifies the formula for the Riemannian metric and the Hessian of the pullback.

Also, XTAX is a diagonal matrix containing the Ritz values; this also simplifies the appli-

cation of the Hessian operator. Substituting these equations into the RTR/tCG algorithm

(Algorithm 4/5) and using standard linear algebra notation results in the RTR/tCG ESGEV

algorithms (Algorithm 14/15).

It should be noted that, as before, the trust-region is evaluated using the norm derived

from the preconditioner N (e.g., Line 13). In general, preconditioned eigensolvers can assume

only the ability to apply N−1; this operation may be the result of an iterative linear solve or

a multi-level preconditioner, operations which do not easily admit inversion. As suggested

in Section 2.2, recurrences from [CGT00, Section 7.5.1] allow the ability to compute the N -

norm of all necessary terms via the available quantities, though these recurrences have been

neglected from the algorithmic listing for the sake of brevity. However, one consequence

of this approach is that it requires that the subproblem iteration be initialized to zero,

preventing a random initialization which can be useful to guarantee escape even when

initialized to a numerical critical point. The IRTR implementation for the ESGEV problem

does not employ an explicit trust-region and therefore does not suffer from this drawback.

Implementing RTR/ESGEV

Line 3 of Algorithm 14 evaluates the improvement ratio, ρ. Substituting the model and

objective function for the ESGEV problem into the definition of ρ (Equation 2.7) yields the

105

Algorithm 14 RTR/ESGEV

Require: Symmetric A, s.p.d. B, of dimension n× n
Input: B-orthonormal matrix X0 containing p Ritz vectors, diagonal matrix Θ0 containing

p Ritz values, ∆̄ > 0, ∆0 ∈ (0, ∆̄), and ρ′ ∈ (0, 1
4
)

1: for k = 0, 1, . . . until convergence do
2: {Model-based minimization}
3: Approximately solve for Sk the model minimization using Algorithm 15:

minimize trace
(
XT
k AXk

)
+ 2 trace

(
STAXk

)
+ trace

(
STAS − STBSΘk

)
subject to XTBS = 0 .

4: Evaluate ρk = ρXk(Sk)
5: {Adjust trust region}
6: if ρk <

1
4

then
7: Set ∆k+1 = 1

4
∆k

8: else if ρk >
3
4

and ‖ηk‖ = ∆k then
9: Set ∆k+1 = min(2∆k, ∆̄)

10: else
11: Set ∆k+1 = ∆k

12: end if
13: {Compute next iterate}
14: if ρk > ρ′ then
15: Set Xk+1 as the Ritz vectors with respect to Xk + Sk, with Ritz values in Θk+1

16: else
17: Preserve Xk+1 = Xk, Θk+1 = Θk

18: end if
19: end for
Output: k Ritz pairs (θj, xj), j = 1, . . . , p

following:

ρX(S) =
GRQ(X)−GRQ(X + S)

GRQ(X)− (GRQ(X) + 2 trace (STAX) + trace (STAS + STBSΘ)

=
trace (Θ)− trace

(
(I + STBS)−1(X + S)TA(X + S)

)
trace (STAS + STBSΘ)− 2 trace (STAX)

.

Because the terms in the equation require only the trace of a matrix, most of the matrices

in question do not need be formed explicitly, allowing some savings with respect to floating

point operations. For example, given S and AS, forming the matrix ST (AS) requires O(np2),

whereas computing trace
(
ST (AS)

)
requires only O(np).

Furthermore, it is also possible to avoid the applications of the operators A and B to the

update S needed to evaluate ρX(S). This is done by returning a copy of AS and BS from

106

Algorithm 15 Preconditioned Truncated CG for RTR/ESGEV

Require: Symmetric A, s.p.d. B, s.p.d. preconditioner N−1

Input: Ritz vectors X ∈ Rn×p with Ritz values Θ; trust-region radius ∆; convergence
criteria κ ∈ (0, 1), θ > 0

1: Set S0 = 0, R0 = 2PBXAX, Z0 = N−1R0, D0 = −Z0

2: for j = 0, 1, 2, . . . do
3: if ‖Rj‖ ≤ ‖R0‖min

{
κ, ‖R0‖θ

}
then

4: return Sj

5: end if
6: Compute W j = PBX (ADj −BDjΘ)
7: Set α = trace

(
(Zj)TRj

)
/trace

(
(W j)TDj

)
8: if trace

(
(W j)TDj

)
≤ 0 or trace

(
(Sj + αDj)TN(Sj + αDj)

)
> ∆2 then

9: Compute τ > 0 such that S = Sj + τDj satisfies trace
(
STNS

)
= ∆2

10: return S
11: end if
12: Set Sj+1 = Sj + αDj

13: Set Rj+1 = Rj + αW j

14: Set Zj+1 = N−1Rj+1

15: Set β = trace
(
(Zj+1)TRj+1

)
/trace

(
(Zj)TRj

)
16: Set Dj+1 = −Zj+1 + βDj

17: end for
Output: Matrix S satisfying STBX = 0 and Cauchy decrease under mX .

Algorithm 15. Each update to the iterate S (Line 12) is a linear combination of the previous

iterate and the matrix D. If the image of D under A and B is known, then we can easily

update the cached copy of AS and BS as well:

Sj+1 = Sj + αDj

(AS)j+1 = (AS)j + α(AD)j

(BS)j+1 = (BS)j + α(BD)j .

Because the quantity ADj and BDj are required for the application of the Hessian to Dj,

these can be cached and used in the computation of Sj+1.

This approach trades off the additional storage for the cached results and additional

floating point operations required to maintain them, against the number of times that the

operators A and B must be applied. Caching and maintaining AD, BD, AS and BS means

that AS and BS need not be computed on the outer iteration. Furthermore, if AX and

BX are cached as well, then A(X + S) and B(X + S) can be computed without applying

107

the operators. However, the savings in operator applications occur once per outer iteration,

while the additional memory requirements are continuous and the maintenance of the caches

increases the floating point cost of each inner iteration. For inexpensive operators and/or

memory constrained problems, the caching implementation will be less effective. Table 4.1

lists the memory requirements associated with both approaches. We refer to the versions

with caching as “hefty” and to the version without caching as “skinny”. Note, these memory

requirements are the same as for the IRTR/ESGEV algorithm.

Table 4.1: Memory cost in n × p multivectors for caching (“Hefty”) and non-caching
(“Skinny”) versions of RTR/ESGEV and IRTR/ESGEV (Algorithm 14 and Algorithm 16).
B denotes that storage for the variable is required only if B 6= I, whereas N denotes that
storage for the variable is required only if N 6= I.

Variable X AX BX S AS BS R Z D AD BD W Total

Skinny yes B yes yes yes yes yes 6–7
Hefty yes yes B yes yes yes yes N yes yes yes yes 10–12

In practice, it may not be known ahead of time which implementation—skinny or hefty—

is the most efficient. Given a problem of dimension n and a block size p, the amount of

storage required by the solver can easily be deduced, as can the number of floating point

operations. However, the cost of the operator A and B applications relative to the floating

point operation depends on a number of factors that may be difficult to anticipate a priori,

including effects of memory hierarchy, the cost of opaque operators (perhaps resulting from

a spectral transformation), and the average number of inner iterations per outer iteration.

One solution is that an implementation may use timing information to switch to the more

efficient of the two solver weights. By recording the amount of time necessary to perform the

caching and weighing this amount against the time needed to apply the operators, a more

intelligent solver may dynamically choose the more efficient implementation.

Another issue involved in the efficient implementation of the RTR/ESGEV regards the

selection of the solver parameters: the trust-region acceptance parameter ρ′, the maximum

trust-region radius ∆̄, and the initial trust-region radius ∆0. There is currently no suggestion

for choosing ρ′; a study analyzing how this parameter affects the performance of the method

is appropriate for the body of future work.

108

The upcoming analysis of ρ in Section 4.3.4 could be useful for choosing an initial radius

∆0. Unfortunately, this seems only useful when there is no preconditioner. In the case

where a preconditioner is used, the truncated CG uses the preconditioner induced norm

for evaluating trust-region membership. As a results, the most effective choice of trust-

region radius will depend on the preconditioner, information that is not likely to be available

a priori.

The situation is a little better for ∆̄. The convergence theory requires only that ∆̄ is

finite. Setting the value too small will limit the performance of the algorithm, and a “large

enough” value is difficult to determine due to the influence of the preconditioner. In practice,

there have been no ill-effects from setting ∆̄ to infinity.

Section 2.3.2 employed a convergence criterion for the inner iteration which seeks a linear

reduction in the model gradient early on and a superlinear reduction asymptotically. This

works because as the outer iteration approaches a stationary point, the norm of grad f(x)

approaches zero. The residual of the model is the same as the objective function, so that as

it becomes smaller, the θ term of the stopping condition becomes active:

‖r0‖min
{
κ, ‖r0‖θ

}
.

It is clear that the algorithm seeks θ-convergence (i.e., superlinear convergence) whenever

|r0| = |grad f(x) ≤ 1. While this mechanism works fine for the purpose of analyzing the

asymptotic converge, it may not be relevant in a finite-precision implementation. The reason

is that the progress of the algorithm may stagnate or the algorithm may terminate before

reaching the domain of θ-convergence. Alternatively, the scaling of the problem may be such

that the superlinear component dominates the stopping condition, so that the algorithm

seeks θ-convergence from the outset.

It is not immediately clear whether this situation requires treatment. However, in the

case that one wishes the algorithm to attempt asymptotic convergence, one possibility is to

scale the term in the superlinear component of the stopping condition:

‖r0‖min

{
κ,

(
‖r0‖
γ

)θ}
.

This requires choosing some scalar γ. Values γ > 1 encourage an earlier entry into the

θ-convergence domain, while values γ < 1 encourage a later entry into this domain. Choices

109

for γ might consider the norm of the gradient of the initial outer iterate and the threshold

for the outer stopping condition.

It should also be noted that superlinear convergence does entail some additional cost.

Pursuing a smaller decrease in the model minimization increases the possibility of over-

convergence in the outer iteration. Techniques for preventing this are: to avoid expending a

large number of inner iterations before returning (at which time, the outer stopping condition

is evaluated); or to monitor the outer stopping condition during the model minimization,

terminating early in the case that it is satisfied.

Finally, another issue that must be addressed concerns the method for preconditioning

the model minimization. It is customary in iterative eigensolvers to use an approximate

inverse of the A matrix as a preconditioner. In the case of the model minimization for the

RTR/ESGEV and IRTR/ESGEV solvers using the truncated CG solver, the preconditioner

is required to be a symmetric/positive-definite operator on the tangent space. There are two

approaches that are commonly used.

Given a symmetric/positive-definite operator N−1 ≈ A−1, on option is to apply the

following preconditioner:

PBX,BXN
−1PBX,BX .

Note that the latter of these projectors does not need to be applied, as the input to this

preconditioner should always be a vector in the tangent space. Note that this preconditioner

is symmetric, in addition to being positive-definite for all vectors in the tangent plane.

Another possibility is to precondition the model minimization by solving the following

system:

PBX,BXNPBX,BXξ = ζ ,

where ξ and ζ are both tangent vectors. In [OJS90], the authors show that this system can

be solved (in a least-squares sense) as follows:

ξ = PN−1BX,BXN
−1ζ .

At first glance, this preconditioner seems to require two applications of the operator N−1.

Note, however, that one of these applications produces N−1BX. Because the value of

X—and therefore, the value of BX—does not change during the model minimization, this

product can be computed at the beginning of the model minimization and stored. However,

110

this does require a multivector for storing the product N−1BX, in addition to the required

storage listed in Table 4.1.

4.3.4 IRTR and the ESGEV Problem

The IRTR implementation for the ESGEV problem will use the same characterization as for

the RTR implementation:

gX (ξ, ζ) = trace
(
(XTBX)−1ξT↑Xζ↑X

)
,

HX =
{
Z ∈ Rn×p : ZTBX = 0

}
,

P h
X = PBX = I −BX(XTB2X)−1XTB ,

(gradf(X))↑X = 2PBXAX ,

RX (ξ) = colsp (X + ξ↑X) ,(
Hessf̂X (0X)[η]

)
↑X

= 2PBX
(
Aη↑X −Bη↑X(XTBX)−1XTAX

)
.

An efficient implementation of the implicit RTR requires an understanding of the

improvement ratio ρ, repeated here:

ρX (ξ) =
f̂X (0X)− f̂X (ξ)

mX (0X)−mX (ξ)
,

where mX is the quadratic model chosen to approximate f̂X :

mX (ξ) = f̂X (0X) + gX

(
gradf̂X (0X), ξ

)
+

1

2
gX (HX [ξ], ξ) . (4.26)

The Trace Minimization method was shown to satisfy an implementation of the IRTR method

for a particular choice of model Hessian:

(HX)↑X = PBXAPBX .

In the case where A is positive-definite, this allows for a very strong statement to be proven

regarding ρ, i.e., that ρX(S) ≥ 1. Unfortunately, this approach suffers from a linear rate of

convergence. The IRTR/ESGEV approach described in this section will use the Hessian of

the pullback as the model Hessian, in order to facilitate higher rates of convergence.

Consider the case where the quadratic model mX is chosen as the Newton model, i.e., the

quadratic Taylor expansion of f̂X :

mX (ξ) = f̂X (0X) + gX

(
gradf̂X (0X), ξ

)
+

1

2
gX

(
Hessf̂X (0X)[ξ], ξ

)
.

111

We wish to perform an analysis of ρX for the Newton model just as we did for the

TRACEMIN model. We will forgo the Riemannian optimization notation in favor of

standard linear algebra notation. Assume as before that a subspace X is represented by

a B-orthonormal basis X, i.e. XTBX = I. Take a tangent vector represented by an n × p
matrix S, STBX = 0. Consider the denominator of ρX(S):

mX(0)−mX(S) = −2 trace
(
STAX

)
− trace

(
STAS − STBSXTAX

)
= trace

(
STBSXTAX − 2STAX − STAS

)
= trace

(
M̂
)
,

(4.27)

for M̂
.
= STBSXTAX − 2STAX − STAS. Consider the numerator:

f̂X(0)− f̂X(S) = GRQ(X)−GRQ(X + S)

= trace
(
XTAX −

(
I + STBS

)−1
(X + S)TA(X + S)

)
= trace

((
I + STBS

)−1 (
STBSXTAX − 2STAX − STAS

))
= trace

(
(I + STBS)−1M̂

)
.

(4.28)

Combining equations (4.27) and (4.28) allows ρX(S) to be written as follows:

ρX(S) =
trace

(
(I + STBS)−1M̂

)
trace

(
M̂
) . (4.29)

Note that in the specific case of p = 1, i.e., the solution for a single eigenpair, the

Equation (4.29) simplifies to

ρx(s) =
1

1 + sTBs
.

This formula provides both of the ingredients for an efficient implementation of Algo-

rithm 6/7: a trivial evaluation of ρx(s), and an efficient search along s for some ρx(ts) = ρ′.

p > 1: The Hard Case

Unfortunately, for p > 1, Equation (4.29) currently defies efficient evaluation and/or search.

Here we present a heuristic solution to this problem.

Assume that the matrix X contains Ritz vectors, such that XTBX = I and that

XTAX = Θ is a diagonal matrix containing the associated Ritz values. Also assume that

sTj Bsj ≤ ∆2, j = 1, . . . , p (4.30)

112

where

∆2 =
1

ρ′
− 1 . (4.31)

As a result of X being Ritz vectors, the model mX can be decoupled into p individual

models:

mX(S) = trace
(
XTAX

)
+ 2 trace

(
STAX

)
+ trace

(
STAS − STBSXTAX

)
= trace

(
XTAX

)
+ 2 trace

(
STAX

)
+ trace

(
STAS − STBSΘ

)
=

p∑
j=1

xTj Axj + 2sTj Axj + sTj Asj − sTj Bsjθj

=

p∑
j=1

mxj(sj) .

We desire a lower bound on ρX(S), in order to guarantee that ρX(S) ≥ ρ′ and verify that

S is in the implicit trust-region. However, there currently is not a simple formula for ρX(S).

Consider instead the function ρ̂X :

ρ̂X(S)
.
=
f̂X(0)−

∑p
j=1 f̂xj(sj)

mX(0)−mX(S)
≈ f̂X(0)− f̂X(S)

mX(0)−mX(S)
= ρX(S) .

Then assuming (4.30) and mxj(sj) < mxj(0) guarantees that each sj satisfies the

following:

ρxj(sj) =
f̂xj(0)− f̂xj(sj)
mxj(0)−mxj(sj)

=
1

1 + sTj Bsj
≥ ρ′ ,

or, equivalently,

f̂xj(0)− f̂xj(sj) ≥ ρ′
(
mxj(0)−mxj(sj)

)
.

Substituting this into the formula for ρ̂X yields

ρ̂X(S) =
f̂X(0)−

∑p
j=1 f̂xj(sj)

mX(0)−mX(S)

=

∑p
j=1

(
f̂xj(0)− f̂xj(sj)

)
∑p

j=1

(
mxj(0)−mxj(sj)

)
≥
ρ′
∑p

j=1

(
mxj(0)−mxj(sj)

)∑p
j=1

(
mxj(0)−mxj(sj)

)
= ρ′ .

113

This heuristic, approximating ρX(S) by ρ̂X(S), suggests an eigensolver approach based on

IRTR for the ESGEV problem. Algorithms 16 and 17 list this approach. The method works

by using the A-orthogonality of the Ritz vectors to decouple the model minimization into

p separate models of rank one. These models are solved using an Implicit IRTR approach,

guaranteeing a specified accuracy of the models with respect to the decoupled pullbacks.

Solving these models independently seems necessary, as it guarantees that each model mxj

sees a decrease under sj; this is necessary for showing that ρ̂X(S) ≥ ρ′ and is not necessarily

the case with a coupled solution as in Algorithm 15. The cumulative solution of the models

are used to update the current iterate. Furthermore, in the case that p = 1, the heuristic

is exact, and the Algorithm 16 is exactly an implementation of the IRTR for the ESGEV

problem.

Algorithm 16 IRTR/ESGEV

Require: Symmetric A, s.p.d. B, of dimension n× n
Input: B-orthonormal matrix X0 containing p Ritz vectors, diagonal matrix Θ0 containing

p Ritz values, and ρ′ ∈ (0, 1)
1: for k = 0, 1, . . . until convergence do
2: {Model-based minimization}
3: Approximately solve for Sk the model minimization using Algorithm 17:

minimize trace
(
XT
k AXk

)
+ 2 trace

(
STAXk

)
+ trace

(
STAS − STBSΘk

)
subject to XTBS = 0 .

4: {Compute next iterate}
5: Set Xk+1 as the Ritz vectors with respect to Xk + Sk, with Ritz values in Θk+1

6: end for
Output: k Ritz pairs (θj, xj), j = 1, . . . , p

This approach has not been shown to satisfy the theoretical requirements of the IRTR,

which insist that ρX(S) ≥ ρ′. For instances of X and S where

p∑
j=1

f̂xj(sj) < f̂X(S) ,

it is easily shown that ρ̂X(S) < ρX(S). Note that while there are some examples where

the value ρX(S) is less than ρ′, the numerical experiments in Section 4.4 suggest that the

violations are minor. Furthermore, as long as there is some fixed constant c > 0 such that

ρX (η) ≥ cρ′, then the convergence theory of IRTR (namely, Theorem 25) still holds. The

114

Algorithm 17 Preconditioned Synchronized Truncated CG for IRTR/ESGEV

Require: Symmetric A, s.p.d. B, s.p.d. preconditioner N−1

Input: Ritz vectors X ∈ Rn×p with Ritz values Θ; trust-region radius ∆; convergence
criteria κ ∈ (0, 1), θ > 0

1: Set ∆2 = 1/ρ′ − 1
2: Set S(0) = 0, R(0) = 2PBXAX, Z(0) = N−1R(0), D(0) = −Z(0)

3: for j = 0, 1, 2, . . . do
4: if ‖Rj‖ ≤ ‖R(0)‖min

{
κ, ‖R(0)‖θ

}
then

5: return Sj

6: end if
7: Compute W j = PBX (ADj −BDjΘ)
8: for i = 1, . . . , p do
9: Set αi = (zji)

T rji /(w
j
i)
Tdji

10: end for
11: Let I contain the indices i such that αi is negative or (sji + αid

j
i)
TB(sji + αid

j
i) > ∆2

12: if I is not empty then
13: for i ∈ I do
14: Compute τ > 0 such that (sji + τdji)

TB(sji + τdji) = ∆2

15: Set αi = τ
16: end for
17: end if
18: Set Sj+1 = Sj +Dj diag(α1, . . . , αp)
19: if I is not empty then
20: return Sj+1

21: end if
22: Set Rj+1 = Rj +W j diag(α1, . . . , αp)
23: Set Zj+1 = N−1Rj+1

24: for i = 1, . . . , p do
25: Set βi = (zj+1

i)T rj+1
i /(zji)

T rji
26: end for
27: Set Dj+1 = −Zj+1 +Dj diag(β1, . . . , βp)
28: end for
Output: Matrix S satisfying STBX = 0 and local Cauchy decrease under mX .

other theoretical hurdle comes from the requirement that the decrease under mX provided

by this approach is some fixed fraction of the decrease produced by the local Cauchy point.

Because each individual model mxj sees at least the Cauchy decrease and the cumulative

model mX is simply the sum of the local models, it should be fairly easy to demonstrate

that the fractional decrease can be demonstrated for mX . The issue there is negotiating

the discrepancy between the individual implicit trust-regions (which are well understood)

115

and the cumulative implicit trust-region (which is less understood). Future work will be

concerned with rigorously establishing these necessary results.

It bears noting that the solver approach in IRTR/ESGEV, like that in RTR/ESGEV, has

many similarities to the Jacobi-Davidson method. In particular, there are striking similarities

between IRTR/ESGEV and an approach suggested in [Not02]. There, Notay developed an

analysis which (inexpensively) provides knowledge of the residual of the outer (eigenvalue)

iteration based on the conjugate gradient coefficients used to solve the Jacobi-Davidson

correction equation. Notay suggests exploiting this information as a stopping criterion for

the inner iteration. His suggestion involves stopping the inner iteration when the marginal

decrease in the outer residual norm is less than some fraction of the marginal decrease in the

inner residual norm. The implicit trust-region, on the other hand, is comprised of strictly

those points where the decrease under the objective function is at least some fraction of the

decrease of the quadratic model. In this regard, both approaches strive to stop the inner

iteration when it becomes inefficient or irrelevant with regard to the outer iteration, though

the IRTR does this in such a way as to encourage global convergence to a minimizer.

Implementing IRTR/ESGEV

The IRTR removes much of the logic pertaining to the classical trust-region mechanism,

specifically, the update of the trust-region radius and the accept/reject mechanism. As a

result, the IRTR method is generally simpler to implement than a RTR method. In the case of

IRTR/ESGEV, some of this simplicity is compromised by the decoupled model minimization

routine (Algorithm 17).

Computationally, the routines are still very similar. The caching techniques suggestion in

Section 4.3.3 can also be utilized to reduce the number of applications of A and B. The cost

of the outer iteration is somewhat reduced by the relaxation of the need to evaluate ρX(S).

The cost of the inner iteration is very similar. Whether implementing a cached (“Hefty”) or

a non-cached (“Skinny”) version of the algorithm, the memory requirements are the same

as for the RTR/ESGEV. These requirements are listed in Table 4.1.

Algorithm 17 specifies a synchronized version of the truncated CG algorithm, operating

at once on p decoupled models of rank one. This is not necessary for the theory of the

method. However, by keeping these methods in lockstep, as opposed to solving one models

before moving on to the next, one benefit is that the application of the operators A and B

116

and N become block operations, which may (depending on the structure of these operators)

see a performance benefit. The drawback is that stopping all iterations when one element

hits the trust-region prevents the rest from making any further progress.

4.3.5 A Note on Apparent Similarities

One significant difference between TRACEMIN and the RTR/tCG and IRTR/tCG algorithm

described in Chapter 3 involves the solution of the model subproblems. This difference

illustrates an easily overlooked characteristic of the IRTR/truncated CG approach.

Consider the case where the IRTR and RTR methods are applied to the model:

mX(S) = trace
(
XTAX

)
+ 2 trace

(
STAX

)
+ trace

(
STAS

)
The solution to the model minimization can be written as the solution to the following

system of simultaneous linear equations:

PBXAPBXη↑X = −PBXAX.

The TRACEMIN method approaches this problem by independently solving each of these

equations. In contrast, the RTR and IRTR algorithms, combined with the truncated CG

model subproblem solvers, may not exploit the structure present in this problem, by failing to

note the independence of these equations. A straightforward implementation of RTR/tCG

for the ESGEV problem resulting in Algorithm 14 will solve this equation in a coupled

fashion. Because the solutions of the equations are decoupled, either the TRACEMIN

approach or the tCG approach will find the same result when solved to completion. However,

if the model subproblem is only solved approximately, the difference between the two

approaches (coupled solve for RTR/ESGEV and decoupled solve for TRACEMIN) will result

in different result, even if both methods employ a conjugate gradient iteration.

This is not to say that our knowledge of the problem could not be injected into the

solvers. Indeed, the departure of the IRTR/ESGEV from the generic IRTR/tCG approach

is a result of the decision to decouple the solution of the model minimization. Recall that this

decision was made in order to utilize the much simpler p = 1 formula in the approximation

of ρX(S). However, this decoupling could be inserted into the RTR/ESGEV subproblem

solver as well. This is one topic deserving further investigation, as the decoupled solver may

allow increased efficiency.

117

4.3.6 Adaptive Model IRTR/ESGEV

Section 4.3.2 showed that the Trace Minimization method can be interpreted as an imple-

mentation of the IRTR for a particular choice of Hessian. Such a method has some strengths.

It was shown earlier that the method can be implemented without monitoring the implicit

trust-region, as ρX(S) ≥ 1 for all tangent vectors S. Furthermore, due to the link with

the method of inverse iterations, the TRACEMIN method quickly purges the eigenvectors

whose eigenvalues are well separated from the p leftmost eigenvalues. This is particularly

true when a good preconditioner is available, as is often the case in the very sparse problems

encountered in structural mechanics. Consequently, the Basic Tracemin iteration is efficient

when the iterates are still far away from the solution. However, as discussed earlier, one

drawback is that TRACEMIN is limited to a linear rate of asymptotic convergence. This

results in significant computational exertion when the eigenpairs are required to satisfy even

moderate accuracy.

In [ABGS05], a hybrid approach is suggested. The authors propose using the

TRACEMIN method early in the iteration, so that its strengths may be exploited. After

some period, when the iteration has approached a neighborhood of the minimizer, the

algorithm should switch to a solver capable of superlinear convergence. Many such solvers

are candidates. The authors propose using the RTR/ESGEV method in the second stage.

The reasons are two-fold. First, in the case that the iteration has not moved sufficiently close

to the minimizer, the method utilized in the second stage should be a globally convergent

method. Another reason is that the similarity between the two solvers (due to their shared

heritage of model-based solvers) allows for a significant reuse of algorithmic investment.

Here, we propose using instead the IRTR/ESGEV solver in the second stage. This

pairing, TRACEMIN followed by IRTR/ESGEV, has all of the strengths of the previous

suggestion: the initial efficiency of TRACEMIN followed by the safe but fast asymptotic

convergence of RTR/ESGEV. Replacing RTR/ESGEV by IRTR/ESGEV in this hybrid has

some additional benefits. One benefit is that the algorithm is simpler: both TRACEMIN

and IRTR/ESGEV share the feature that there is no computation of ρX(S) or accept/reject

mechanism. Furthermore, one of the motivations for the IRTR method is that it may be

better able than the RTR to exploit a good preconditioner, so that if the switch is made too

early from TRACEMIN, the impact may be less significant.

118

The latter introduces one of the difficulties in such a hybrid approach: the need for an

effective mechanism for switching from the TRACEMIN stage to the IRTR/ESGEV stage.

Currently, such a mechanism does not exist. Another problem with this approach is that

the TRACEMIN method is valid only for pencils where both A and B are positive-definite.

It seems, initially, that the hybrid would therefore be valid only on those problems as well.

4.4 Numerical Experiments

This section provides numerical experiments illustrating the performance of the trust-region

based eigensolvers proposed in this chapter. The goal is to show the potential improvement

of the IRTR approach over the RTR approach, as well as the performance of these solvers

with respect to the specialized eigensolvers discussed in this chapter.

Table 4.2: Select Matrix Market benchmark problems.

Name Size nnz(K) nnz(M) Description

BCSST22 138 417 138 Textile loom frame
BCSST20 485 1810 485 Frame within a suspension bridge
BCSST19 817 3835 817 Part of a suspension bridge
BCSST08 1074 7017 1074 TV studio
BCSST10 1086 11578 11589 Buckling of a hot washer
BCSST11 1473 17857 1473 Ore car – lumped mass
BCSST26 1922 16129 1922 Seismic analysis, nuclear power station
BCSST13 2003 42943 11973 Fluid flow generalized eigenvalues
BCSST21 3600 15100 3600 Clamped square plate
BCSST23 3134 24156 3134 Part of a 3D globally triang. building
BCSST24 3562 81736 3562 Calgary Olympic Saddledome arena
BCSST25 15439 133840 15439 Columbia Center (Seattle) 76-story skyscraper

The numerical experiments are conducted on matrices from the Matrix Market5 collec-

tion. The problems used for evaluating the solvers in this section are from the Harwell-Boeing

collections BCSSTRUC1, BCSSTRUC3, and BCSSTRUC4. Each of these matrix pencils is

composed of the stiffness and mass matrices from a structural engineering example. The

5The Matrix Market is a service of the Mathematical and Computational Sciences Division
of the Information Technology Laboratory of the National Institute of Standards and Technology.
http://math.nist.gov/MatrixMarket/

119

matrices result from the finite element analysis of a mechanical structure and are therefore

sparse. The information for these pencils is summarized in Table 4.2.

The majority of the numerical experiments were conducted in MATLAB 7.4.0.287 on a

2.5 GHz PowerPC G5 processor. The following eigensolvers were tested:

• RTR/ESGEV - both “hefty” (denoted RTR) and “skinny” (denoted SRTR) versions

of RTR/ESGEV, as described in Section 4.3.3;

• IRTR/ESGEV - both “hefty” (denoted IRTR) and “skinny” (denoted SIRTR) versions

of IRTR/ESGEV, as described in Section 4.3.4;

• LOBPCG - the LOBPCG method with full orthogonalization, as described in [HL06]

and implemented by the authors; and

• JDCG - the Jacobi-Davidson solver with preconditioned conjugate-gradient correction

solver, as described in [Not02] and implemented by the author6. The subspace

acceleration mechanism is limited to two blocks for comparison purposes. This is

enough to globalize the convergence of the solver.

Preconditioners are used for each of these eigenvalue problems. For the MATLAB test

problems, each problem is tested using an exact Cholesky (denoted “EC”) factorization of

A computed as follows:

P = colamd(A);

R = chol(A(P,P));

For some of the MATLAB tests, an incomplete Cholesky (denoted “IC”) factorization of A

is also used. It is computed as follows:

P = colamd(A);

R = cholinc(A(P,P),0.1);

Some of the numerical experiments are conducted using solvers implemented under

the Anasazi [BHLT05] framework of the Trilinos project [HBH+03]. These solvers are

implemented in C++ using an object-oriented programming paradigm. In these cases,

exact preconditioners use an LU factorization (denoted “LU”) from the sparse solver

package Amesos, while inexact preconditioners use an incomplete Cholesky (denoted “IC”)

factorization from the IFPACK package.

6JDCD code jdcd gep available at http://mntek3.ulb.ac.be/pub/docs/jdcg/

120

4.4.1 RTR/ESGEV vs. IRTR/ESGEV

The motivation behind the implicit trust-region was to improve the efficiency of a trust-region

method by deactivating the classical trust-region mechanism at points where it impedes the

progress of the algorithm. This happens primarily when the trust-region radius prevents the

algorithm from making progress, as well as when updates are rejected.

Figure 4.1 illustrates the speedup of the IRTR-based methods relative to the RTR-based

methods. For each problem the faster of the IRTR/ESGEV methods (skinny or hefty) is

compared against the faster of the RTR/ESGEV methods (skinny or hefty). These best-of-

class results are compared against each other, with speedup computed by dividing the clock

time for RTR/ESGEV by that for IRTR/ESGEV. The full data is listed in Table 4.3.

Figure 4.1: Figure illustrating the speedups of IRTR over RTR. Average speedup: 1.512.

121

Note that on the Harwell-Boeing benchmark problems, the IRTR/ESGEV approach

outperforms the RTR/ESGEV approach on all but one problem, with a speed-up mostly

between 1.25 and 1.5. The average speedup of IRTR/ESGEV over RTR/ESGEV is 1.5,

skewed somewhat by the BCSST19 problem with incomplete Cholesky preconditioner (speed-

up greater than 6). These problems show that, at least for the problem of computing extreme

eigenspaces, the implicit trust-region mechanism is capable of improved efficiency over the

classical trust-region mechanism.

Figure 4.2 presents a convergence curve which illustrates the improved efficiency of

the implicit trust-region mechanism in a more qualitative manner. This plot compares

the IRTR/ESGEV solver against the RTR/ESGEV solver for the problem of computing 5

eigenpairs of the BCSST24 problem with an exact Cholesky preconditioner. The top figure

shows that the IRTR/ESGEV solver leads the RTR/ESGEV in accuracy with respect to

iterations for the entire run. The bottom figure shows a zoomed and annotated plot. Note

the two annotations on this figure. The leftmost circle illustrates where the explicit trust-

region radius is holding back the progress of the method while it grows. The rightmost circle

illustrates where rejected updates stall the progress of the algorithm while the trust-region

shrinks. During all of this, the implicit trust-region solver makes continuous progress toward

the solution, relatively unimpeded.

4.4.2 Skinny Solvers vs. Hefty Solvers

Figure 4.3 illustrates the speed-up of the skinny trust-region implementations over the hefty

implementations. It is clear that, in MATLAB on these problems, the difference between

skinny and hefty implementations is small. The discussion in Section 4.3.3 illustrated that

the benefit of caching operator applications over explicitly performing them will depend on

the cost of those operator applications relative to the effort in maintaining the caches, the

associated memory cost, and the impact on the memory hierarchy.

For smaller problems such as those in the Harwell-Boeing benchmark suite, the effects on

the memory hierarchy will be negligible. In this case, the difference in timings between

a skinny implementation and a hefty implementation will come down to the effort in

maintaining the cache in the inner iterations and the cost associated with applying the

operators in the outer iteration. The former is a function of the problem size, the block size,

and the number of inner iterations, while the latter is a function of the cost of the operator,

122

Figure 4.2: Figure illustrating the potential improvement of the IRTR/ESGEV solver over
the RTR/ESGEV solver on Matrix Market problem BCSST24. The annotated version
highlights the predicted drawbacks of the trust-region mechanism.

123

Table 4.3: MATLAB timings (in seconds) for Matrix Market problems. Each timing is
the mean of three tests. “—” indicates no progress towards convergence. IC denotes
incomplete Cholesky preconditioner, while EC denotes exact Cholesky preconditioner. Bold
face indicates the fastest time for each problem.

Problem Prec nev RTR IRTR SRTR SIRTR LOBPCG JDCG

BCSST22 IC 5 1.448 1.214 1.435 1.296 6.194 —
BCSST22 EC 5 .6111 .5302 .6069 .5268 1.005 3.428
BCSST20 IC 5 594.9 385.9 630.2 361.6 1312 —
BCSST20 EC 5 .4814 .3380 .4884 .3395 .2724 .5173
BCSST19 IC 5 4623 803 4497 749 7858 —
BCSST19 EC 5 1.900 1.353 1.898 1.341 .7782 2.362
BCSST08 EC 25 70.69 72.98 70.53 72.65 21.15 —
BCSST10 EC 25 12.59 9.405 12.55 9.296 4.194 33.41
BCSST11 EC 25 21.68 17.17 21.68 16.99 5.251 —
BCSST26 EC 25 53.19 44.55 53.08 44.10 10.17 —
BCSST13 EC 25 108.8 72.05 108.8 71.93 16.46 184.8
BCSST21 EC 25 51.52 33.41 51.38 33.12 12.60 92.00
BCSST23 EC 25 377.3 296.0 377.1 295.0 56.79 377.4
BCSST24 EC 25 79.05 65.25 79.22 65.04 20.49 482.6

the block size, and the number of outer iterations.

It is not difficult to construct a problem where a skinny implementation is less efficient

than the hefty implementation. Table 4.6 gives the timings and speedups of the RTR/ESGEV

and IRTR/ESGEV methods when computing a single eigenvector of a dense eigenvalue

problem. In this case, the operator application is sufficiently expensive so make the caching

in the hefty implementations more efficient than the additional applications of the operator

required by a skinny implementation.

4.4.3 IRTR/ESGEV Heuristic Approximation

The IRTR/ESGEV method presented in Section 4.3.4 was not demonstrated to be an

implementation of the IRTR algorithm. This is because it was not rigorously shown that

the point returned from the model minimization was inside the implicit trust-region. This is

because the difficult formula for ρX(S) defining the implicit trust-region was approximated

by the simpler formula for ρ̂X(S). As a result, the global convergence properties of the IRTR

124

Table 4.4: MATLAB number of iterations for Matrix Market problems. Each count is
the mean of three tests. “—” indicates no progress towards convergence. IC denotes
incomplete Cholesky preconditioner, while EC denotes exact Cholesky preconditioner. Bold
face indicates the smallest number of iterations for each problem.

Problem Prec nev RTR IRTR SRTR SIRTR LOBPCG JDCG

BCSST22 IC 5 317 221 317 238 660 —
BCSST22 EC 5 119 91 119 91 95 538
BCSST20 IC 5 46,631 25,213 50,100 24,108 56,468 —
BCSST20 EC 5 25 18 25 18 11 48
BCSST19 IC 5 231,232 35,059 221,359 31,513 269,359 —
BCSST19 EC 5 70 47 70 47 24 118
BCSST08 EC 25 85 53 85 53 24 490
BCSST10 EC 25 63 51 63 51 24 1,000
BCSST11 EC 25 175 140 175 140 35 —
BCSST26 EC 25 213 165 213 165 51 483
BCSST13 EC 25 191 194 191 194 73 —
BCSST21 EC 25 101 72 101 72 25 707
BCSST23 EC 25 98 75 98 75 23 —
BCSST24 EC 25 96 63 96 63 23 420

method are not necessarily inherited by the IRTR/ESGEV algorithm as presented. However,

it should be noted that the algorithm did enjoy global convergence on all of the problems

tested to date (including the Harwell-Boeing problems used in this section). Furthermore,

recalling the discussion from Section 4.3.4, the heuristic may only cause problems in the case

that the violation of ρX(S) ≥ ρ̂X(S) is severe.

Table 4.7 lists the average ρ violations for the Harwell-Boeing test problems. The

violation is measured by dividing the value ρX(S) by the implicit trust-region parameter

ρ′. The reported number is the mean of this value over all tangent vectors returned from the

model minimization for which there was a violation. In each of these cases, the violation is

mild, implying that the model mX still has good agreement with the lifted objective f̂X and

justifying the approximation of ρX by ρ̂X .

125

Table 4.5: MATLAB flops counts (excluding operator applications) for Matrix Market
problems. Each count is the mean of three tests. IC denotes incomplete Cholesky
preconditioner, while EC denotes exact Cholesky preconditioner.

Problem Prec nev RTR IRTR SRTR SIRTR LOBPCG

BCSST22 IC 5 1.29e+08 8.77e+07 1.23e+08 8.80e+07 6.62e+10
BCSST22 EC 5 6.23e+07 2.79e+07 5.99e+07 2.67e+07 1.42e+09
BCSST20 IC 5 1.13e+11 5.01e+10 1.13e+11 4.48e+10 1.68e+15
BCSST20 EC 5 6.97e+07 2.92e+07 6.76e+07 2.84e+07 7.11e+07
BCSST19 IC 5 1.93e+12 8.75e+10 1.75e+12 6.71e+10 6.16e+16
BCSST19 EC 5 2.66e+08 1.04e+08 2.56e+08 1.00e+08 5.10e+08
BCSST08 EC 25 8.99e+09 8.00e+09 8.88e+09 7.90e+09 1.60e+11
BCSST10 EC 25 4.70e+09 2.80e+09 4.65e+09 2.77e+09 1.88e+10
BCSST11 EC 25 9.25e+09 5.05e+09 9.15e+09 4.99e+09 2.16e+10
BCSST26 EC 25 2.62e+10 1.24e+10 2.59e+10 1.22e+10 6.56e+10
BCSST13 EC 25 1.89e+10 6.66e+09 1.87e+10 6.60e+09 2.87e+10
BCSST21 EC 25 3.30e+10 1.02e+10 3.27e+10 1.01e+10 5.78e+10
BCSST23 EC 25 5.58e+10 2.78e+10 5.52e+10 2.75e+10 2.22e+11
BCSST24 EC 25 2.00e+10 1.11e+10 1.99e+10 1.10e+10 5.57e+10

Table 4.6: MATLAB timings comparison skinny and hefty solvers for a p = 1 dense
eigenvalue problem. Each count is the mean of three tests.

RTR SRTR RTR “speed-up” IRTR SIRTR IRTR “speed-up”

1.1852 2.1141 .5606 1.0156 1.7572 .5780

4.4.4 Adaptive Model IRTR/ESGEV

The motivation for the adaptive model hybrid method combining TRACEMIN and

IRTR/ESGEV was that the TRACEMIN method is able to make faster progress early with

a good preconditioner, while the IRTR/ESGEV method was able to make faster progress

asymptotically due to its superlinear rate of convergence. Figure 4.4 and 4.5 illustrate this

property of TRACEMIN and IRTR/ESGEV and demonstrate the potential for speed-up

from a hybrid approach.

Note that in each of these experiments, the TRACEMIN method initially outperforms

the IRTR/ESGEV method, before succumbing to a linear rate of convergence. These figures

126

Figure 4.3: Figure illustrating the speedups of skinny solvers over hefty solvers for Harwell-
Boeing benchmark problems. Average speedup is .999 for RTR and 1.01 for IRTR.

also illustrate the performance benefit that can the be achieved via the hybrid method. In

order to illustrate the effect due to the timing of the switch in the hybrid method, each figure

contains plots for a various number of switch points. The hybrid method is able to exploit the

head start provided by the TRACEMIN method to reduce the number of iterations required

for convergence, as compared against the pure IRTR/ESGEV approach. For example, in the

particular case of the BCSST20 problem (Figure 4.4, bottom), the adaptive model solver

switched after 5 outer iterations (denoted AM(5)) reduces the number of inner iterations by

33%.

The switching points for these experiments were determined manually after examining

127

Figure 4.4: Figures comparing TRACEMIN, IRTR/ESGEV and the Adaptive Model hybrid.

128

Figure 4.5: Figures comparing TRACEMIN, IRTR/ESGEV and the Adaptive Model hybrid.

129

Table 4.7: Average ρ violations for a subset of Harwell-Boeing problems for IRTR/ESGEV
with ρ′ = 0.5. EC denotes exact Cholesky preconditioner.

Problem Prec nev ρX(S)/ρ′ # of violations

BCSST22 EC 5 0.95 2
BCSST20 EC 5 0.79 2
BCSST19 EC 5 0.89 2
BCSST08 EC 25 0.97 1
BCSST10 EC 25 0.97 3
BCSST11 EC 25 0.94 3
BCSST26 EC 25 0.92 3
BCSST13 EC 25 0.89 2
BCSST21 EC 25 0.93 1
BCSST23 EC 25 0.93 3
BCSST24 EC 25 0.93 3

the convergence curves for the IRTR/ESGEV and TRACEMIN methods. The effective use

of the hybrid solver will require a mechanism for automatically determining the switch point

without any a priori information. This is the subject of continuing research.

4.4.5 RTR/IRTR solvers vs. Specialized Solvers

Table 4.3 lists the MATLAB timings for the each of the solvers on the Harwell-Boeing

test problems. It is clear from these timings that, for MATLAB implementations, the

LOBPCG solver dominates JDCG and the trust-region solvers in the presence of a good

preconditioner (with the exception of BCSST22). Examining Table 4.4, we see that the

trust-region methods are able to outperform the LOBPCG method (with respect to clock

time) only in those cases when the number of (inner) iterations for the trust-region solver is

less than the number of outer iterations for the LOBPCG solver. However, examination of

the floating point operations in Table 4.5 shows that the LOBPCG method performs more

work than the trust-region methods in every case, even those where the number of iterations

is less.

This is explained by noting that one iteration of the LOBPCG method is computationally

more dense than one inner iteration of the trust-region methods. When solving an eigenvalue

130

problem of order n for p eigenvectors, the cost of one iteration7 of the LOBPCG method is

O(np2), while the cost of the trust-region methods is O(np). In addition to explaining why

the LOBPCG method has a significantly higher flop count than the trust-region methods,

it also suggests that this difference will become more apparent if p is enlarged.

Table 4.8: Anasazi/C++ timings (in seconds) comparing RTR solvers and LOBPCG. Each
timing is the mean of three tests. Average speedup of IRTR is 1.33 over RTR, 3.46 over
LOBPCG. * denotes time-out before convergence.

IC denotes incomplete Cholesky preconditioner, while LU denotes exact LU preconditioner.
Bold face indicates the fastest time for each problem.

Problem nev Prec RTR IRTR SRTR SIRTR LOBPCG

BCSST22 5 none 2.73 2.34 2.64 1.90 39.03
BCSST22 5 IC 1.11 1.07 1.10 1.03 3.17
BCSST22 5 LU 0.29 0.27 0.30 0.24 0.45
BCSST20 5 IC 57.49 38.89 49.04 34.40 *151.00
BCSST20 5 LU 0.12 0.09 0.11 0.08 0.14
BCSST13 25 LU 12.86 7.87 13.25 7.81 6.20
BCSST13 100 LU 79.41 58.34 79.70 56.95 56.12
BCSST23 25 LU 28.71 22.35 28.25 22.10 16.86
BCSST23 100 LU 174.10 131.70 168.76 129.06 180.40
BCSST24 25 LU 9.34 8.17 10.09 8.23 7.76
BCSST24 100 LU 98.93 69.95 98.23 69.83 108.20
BCSST25 25 LU 720.93 85.25 361.40 97.64 *3218.00

However, in spite of the large flop counts, the LOBPCG method is still able to outperform

the trust-region methods. One explanation for this is that the limitations of MATLAB

programming environment favor the (relatively) simple LOBPCG iteration in terms of

efficiency. In order to explore this, Table 4.8 lists timings of the LOBPCG and trust-region

solvers as implemented in C++ in the Anasazi eigensolver framework [BHLT05]. This table

lists the results of selected Harwell-Boeing problems.

Comparing Tables 4.3 and 4.8, we see that the performance advantage of the LOBPCG

method in the MATLAB experiments is almost entirely lost. Furthermore, in the cases that

LOBPCG still outperforms the trust-region methods, the speed-up of LOBPCG is reduced

from as much as 4.3 in MATLAB to under 1.3 in Anasazi.
7neglecting the cost of the operation applications

131

As with the MATLAB tests, the trust-region solvers perform significantly better than

LOBPCG in the presence of an inferior preconditioner. Also, as predicted, when the number

of requested eigenvalues is increased, the time required for LOBPCG to compute the solutions

increases much more than the time required for the trust-region methods.

These experiments show that the trust-region methods, particularly the IRTR/ESGEV

method, enjoy competitive performance against specialized eigensolvers. The performance

of these methods is expected to increase further as the impact of the algorithmic parameters

becomes better understood.

132

CHAPTER 5

CONCLUDING REMARKS AND FUTURE

RESEARCH

The major contributions of this dissertation are four-fold: the description of the retraction-

based paradigm for Riemannian optimization; the description of the Riemannian trust-region

methods and the analysis of their convergence properties; the description of a new trust-

region mechanism, the implicit Riemannian trust-region method; and the application of

the trust-region methods to the problem of computing extreme eigenspaces of a symmetric

matrix pencil.

A majority of the previous literature on Riemannian optimization made exclusive use

of the exponential map. While perfectly acceptable, this leaves little freedom for the

customization of algorithms, to the detriment of algorithmic efficiency. We illustrate that

general retractions as defined in Chapter 1 preserve the necessary analytical properties

while allowing more efficient algorithms. Because the exponential map is a retraction,

this paradigm encapsulates the previous exponential-only approaches. Furthermore, we

describe a new paradigm for Riemannian optimization, that of retraction-based Riemannian

optimization. By using a general retraction to explicitly move the optimization problem

from the manifold to the tangent space, we allow for the easy adaptation of a multitude of

Euclidean optimization algorithms for the Riemannian setting.

In particular, we presented two new optimization methods in this setting. The Rieman-

nian trust-region method was described by employing a classical trust-region step for the

optimization of the pullback at each step. We show that this algorithm retains the strong

global convergence and fast local convergence properties that popularized Euclidean trust-

region methods. In order to address some of the inefficiencies of the classical trust-region

mechanism, we propose a novel optimization algorithm: the Implicit Riemannian Trust-

133

Region method. By removing the explicit trust-region radius and the rejection mechanism,

the IRTR method is shown to allow significantly increased performance for the problem of

computing extreme eigenspaces. Furthermore, we show that the IRTR method retains all of

the beneficial convergence properties of the RTR and Euclidean trust-region methods.

Lastly, we consider the application of these Riemannian optimization techniques to the

problem of computing extreme eigenpairs of a symmetric/positive-definite matrix pencil.

Similar to previous works, we reconsider this problem as the optimization of the generalized

Rayleigh quotient over the Grassmann manifold. Applying the Riemannian trust-region

methods yields two new preconditioned eigenvalue solvers, which we demonstrate to be very

competitive against the related LOBPCG and Jacobi-Davidson methods. We also provide

some analysis of other eigenvalue solvers in the context of Riemannian optimization.

The success of Riemannian optimization—in particular, the Riemannian trust-region

methods—suggests the possibility of impact on other problems. The following are a number

of avenues of investigation that we look forward to pursuing in the future.

• The analysis we have conducted thus far illustrated that the retraction mechanism is

sufficient to describe a wide range of efficient and robust algorithms. The connection

between Riemannian optimization and Euclidean optimization in the face of smooth

constraints suggests that some amount of technology transfer may prove successful.

• The success of the IRTR method over the RTR method for the eigenvalue problem

fulfills the expectations of greater efficiency. However, as repeatedly noted in Chapter 3,

an efficient application of the IRTR method to a problem requires a non-trivial

understanding of the ρ ratio for the problem at hand. It is our hope that other problems

in both Riemannian and Euclidean optimization can be identified where this promising

method can be put to effective use.

• Because of the heuristic employed for the application of the IRTR method to the

eigenvalue problem, the convergence theory of the IRTR method does not necessary

follow for the IRTR/ESGEV eigensolver as presented here. Extension of the theory

and its application to the RTR/ESGEV solver will comprise the body of future work.

• The RTR/ESGEV and IRTR/ESGEV eigensolvers presented in this dissertation are

relatively straightforward applications of those methods, yet they still show great

134

promise.

– Widescale utilization of these methods will require a more comprehensive under-

standing of the algorithmic parameters: the parameter ρ′ for both solvers, as well

as the various trust-region parameters for the RTR/ESGEV solver.

– The algorithms as presented exploited very little knowledge of the underlying

eigenvalue problem. More efficient algorithms should be possible by incorporating

eigensolver-specific methods, such as subspace acceleration.

– Some preliminary testing has shown that the superlinear convergence of these

methods is not always the most efficient route, with a cap on the number of inner

iterations allowing for a fast linear rate of convergence. This deserves further

investigation.

– The ability to balance the operation count of these methods against the storage

requirements and the cost of operator applications, suggests the need for some

criterion to decide when the former should be preferred over the latter.

– The adaptive model TRACEMIN-IRTR hybrid solver cannot be effectively de-

ployed without some criterion for switching from the first to the second phase.

135

REFERENCES

[ABG04] P.-A Absil, C. G. Baker, and K. A. Gallivan, Trust-region methods on Rie-
mannian manifolds with applications in numerical linear algebra, Proceedings
of the 16th International Symposium on Mathematical Theory of Networks and
Systems (MTNS2004), Leuven, Belgium, 5–9 July 2004, 2004. 23

[ABG06] , A truncated-CG style method for symmetric generalized eigenvalue
problems, J. Comput. Appl. Math. 189 (2006), no. 1–2, 274–285. 56, 59

[ABG07] P.-A. Absil, C. G. Baker, and K. A. Gallivan, Trust-region methods on Rieman-
nian manifolds, Foundations of Computational Mathematics 7 (2007), no. 3,
303–330. 22, 24, 25, 59, 66, 78

[ABGS05] P.-A Absil, C. G. Baker, K. A. Gallivan, and A. Sameh, Adaptive model trust
region methods for generalized eigenvalue problems, International Conference on
Computational Science (Vaidy S. Sunderam, Geert Dick van Albada, and Peter
M. A. Sloot, eds.), Lecture Notes in Computer Science, vol. 3514, Springer-
Verlag, 2005, pp. 33–41. 59, 118

[ADM+02] R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens, and M. Shub, Newton’s
method on Riemannian manifolds and a geometric model for the human spine,
IMA J. Numer. Anal. 22 (2002), no. 3, 359–390. 1, 20, 21, 23

[AG06] P.-A Absil and K. A. Gallivan, Accelerated line-search and trust-region methods,
Tech. Report FSU-SCS-2005-095, School of Computational Science, Florida State
University, June 2006, http://scseprints.scs.fsu.edu. 103

[AMS04] P.-A Absil, R. Mahony, and R. Sepulchre, Riemannian geometry of Grassmann
manifolds with a view on algorithmic computation, Acta Appl. Math. 80 (2004),
no. 2, 199–220. 25, 30, 36, 78

[AMS08] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix
manifolds, Princeton University Press, Princeton, NJ, January 2008. 21, 24, 30,
78, 103

[AMSV02] P.-A Absil, R. Mahony, R. Sepulchre, and P. Van Dooren, A Grassmann-Rayleigh
quotient iteration for computing invariant subspaces, SIAM Rev. 44 (2002), no. 1,
57–73 (electronic). MR MR1924546 (2003h:65045) 78

136

[BAG07] C. G. Baker, P.-A. Absil, and K. A. Gallivan, Generic Riemannian trust-region
package, 2007, Website: http://www.scs.fsu.edu/∼cbaker/GenRTR/. 77

[BAG08] C. G. Baker, P.-A Absil, and K. A. Gallivan, Implicit trust-region methods on
Riemannian manifolds, IMA Journal of Numerical Analysis (2008), Accepted for
publication. 25, 61

[Ber95] D. P. Bertsekas, Nonlinear programming, Athena Scientific, Belmont, Mas-
sachusetts, 1995. 51, 73

[BHLT05] C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K.
Thornquist, The Anasazi block eigensolvers package, 2005, See
http://trilinos.sandia.gov/packages/anasazi/. 120, 131

[Boo75] W. M. Boothby, An introduction to differentiable manifolds and Riemannian
geometry, Academic Press, New York-London, 1975. 13, 15, 17, 33

[BSS88] R. H. Byrd, R. B. Schnabel, and G. A Shultz, Approximate solution of the
trust region problem by minimization over two-dimensional subspaces, Math.
Programming 40 (1988), no. 3, (Ser. A), 247–263. 39

[CGT00] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-region methods, MPS/SIAM
Series on Optimization, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, and Mathematical Programming Society (MPS), Philadelphia,
PA, 2000. 9, 33, 38, 39, 40, 60, 64, 67, 68, 69, 72, 105

[CI01] E. Celledoni and A Iserles, Methods for the approximation of the matrix exponen-
tial in a Lie-algebraic setting, IMA J. Numer. Anal. 21 (2001), no. 2, 463–488.
59

[dC92] M. P. do Carmo, Riemannian geometry, Mathematics: Theory & Applications,
Birkhäuser Boston Inc., Boston, MA, 1992, Translated from the second Por-
tuguese edition by Francis Flaherty. 13, 15, 17, 22, 24, 47, 50, 51

[DM79] J. E. Dennis, Jr. and H. H. W. Mei, Two new unconstrained optimization
algorithms which use function and gradient values, J. Optim. Theory Appl. 28
(1979), no. 4, 453–482. 39

[DN04] J.-P. Dedieu and D. Novitsky, Symplectic methods for the approximation of the
exponential and the Newton sequence on Riemannian submanifolds, submitted
to the Journal of Complexity, 2004. 59

[DPM03] Jean-Pierre Dedieu, Pierre Priouret, and Gregorio Malajovich, Newton’s method
on Riemannian manifolds: convariant alpha theory, IMA J. Numer. Anal. 23
(2003), no. 3, 395–419. MR 2004e:65061 1, 20

[DV00] J. Dehaene and J. Vandewalle, New Lyapunov functions for the continuous-
time QR algorithm, Proceedings CD of the 14th International Symposium on
the Mathematical Theory of Networks and Systems (MTNS2000), Perpignan,
France, July 2000, 2000. 57

137

[EAS98] A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with
orthogonality constraints, SIAM J. Matrix Anal. Appl. 20 (1998), no. 2, 303–
353. 1, 20, 23, 25, 36, 78

[Gab82] D. Gabay, Minimizing a differentiable function over a differential manifold,
Journal of Optimization Theory and Applications 37 (1982), no. 2, 177–219.
20

[GLRT99] N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint, Solving the trust-region
subproblem using the Lanczos method, SIAM J. Optim. 9 (1999), no. 2, 504–525
(electronic). 34, 37, 39

[GST05] N. I. M. Gould, C. Sainvitu, and Ph. L. Toint, A filter-trust-region method for
unconstrained optimization, SIAM J. Optimization 16 (2005), no. 2, 341–357. 60

[GV96] G. H. Golub and C. F. Van Loan, Matrix computations, third edition, Johns
Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press,
1996. 31, 89, 92

[Hag01] W. W. Hager, Minimizing a quadratic over a sphere, SIAM J. Optim. 12 (2001),
no. 1, 188–208 (electronic). 39

[HBH+03] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq,
K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tumi-
naro, J. Willenbring, and A. Williams, An Overview of Trilinos, Tech. Report
SAND2003-2927, Sandia National Laboratories, Albuquerque, N.M., 2003. 120

[HL06] U. Hetmaniuk and R. Lehoucq, Basis selection in LOBPCG, J. Comput. Phys.
218 (2006), no. 1, 324–332. 95, 120

[HM94] U. Helmke and J. B. Moore, Optimization and dynamical systems, Springer-
Verlag London Ltd., London, 1994. 25, 59, 78

[HT04] Knut Hüper and Jochen Trumpf, Newton-like methods for numerical optimization
on manifolds, Proc. 38th IEEE Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, November 7-10, 2004, 2004. 1, 20, 35

[Kny01] A. V. Knyazev, Toward the optimal preconditioned eigensolver: locally optimal
block preconditioned conjugate gradient method, SIAM J. Sci. Comput. 23 (2001),
no. 2, 517–541. 94, 95

[LE00] R. Lippert and A. Edelman, Nonlinear eigenvalue problems with orthogonality
constraints (Section 9.4), Templates for the Solution of Algebraic Eigenvalue
Problems (Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk
van der Vorst, eds.), SIAM, Philadelphia, 2000, pp. 290–314. 59

[LE02] E. Lundström and L. Eldén, Adaptive eigenvalue computations using Newton’s
method on the Grassmann manifold, SIAM J. Matrix Anal. Appl. 23 (2002),
no. 3, 819–839. 78

138

[Lue72] David G. Luenberger, The gradient projection method along geodesics, Manage-
ment Sci. 18 (1972), 620–631. MR MR0362899 (50 #15337) 20

[Mah96] R. E. Mahony, The constrained Newton method on a Lie group and the symmetric
eigenvalue problem, Linear Algebra Appl. 248 (1996), 67–89. 1

[Man02] J. H. Manton, Optimization algorithms exploiting unitary constraints, IEEE
Trans. Signal Process. 50 (2002), no. 3, 635–650. 1, 20, 21

[MM02] R. Mahony and J. H. Manton, The geometry of the Newton method on non-
compact Lie groups, J. Global Optim. 23 (2002), no. 3, 309–327. 20

[MS83] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci.
Statist. Comput. 4 (1983), 553–572. 37, 39

[MS84] J. J. Moré and D. C. Sorensen, Newton’s method, Studies in numerical analysis,
MAA Stud. Math., vol. 24, Math. Assoc. America, Washington, DC, 1984,
pp. 29–82. 33

[MS85] A. Machado and I. Salavessa, Grassmannian manifolds as subsets of Euclidean
spaces, Res. Notes in Math. 131 (1985), 85–102. 25

[Mun00] James R. Munkres, Topology, second ed. ed., Prentice Hall, Upper Saddle River,
NJ, 2000. 49

[Nas56] John Nash, The imbedding problem for Riemannian manifolds, The Annals of
Mathematics 63 (1956), no. 1, 20–63. 12

[Not02] Y. Notay, Combination of Jacobi-Davidson and conjugate gradients for the partial
symmetric eigenproblem, Numer. Linear Algebra Appl. 9 (2002), no. 1, 21–44.
89, 116, 120

[NS95] S. Nash and A. Sofer, Linear and nonlinear programmming, McGraw-Hill, New
York, 1995. 11

[NW99] J. Nocedal and S. J. Wright, Numerical optimization, Springer Series in Opera-
tions Research, Springer-Verlag, New York, 1999. 7, 9, 11, 35, 39, 40, 41, 43, 56,
68, 69, 72, 91

[OJS90] J. Olsen, P. Jørgensen, and J. Simons, Passing the one-billion limit in full
configuration-interaction (FCI) calculations, Chemical Physics Letters 169
(1990), 463–472. 110

[O’N83] B. O’Neill, Semi-riemannian geometry: With applications to relativity, Pure and
Applied Mathematics, vol. 103, Academic Press, New York, U.S.A., 1983. 49

[OW00] B. Owren and B. Welfert, The Newton iteration on Lie groups, BIT 40 (2000),
no. 1, 121–145. 1, 20

139

[Pol97] Elijah Polak, Optimization, Applied Mathematical Sciences, vol. 124, Springer-
Verlag, New York, 1997, Algorithms and consistent approximations. MR
98g:49001 57

[Pow70a] M. J. D. Powell, A hybrid method for nonlinear equations, Numerical Methods
for Nonlinear Algebraic Equations (P. Rabinowitz, ed.), Gordon and Breach,
London, 1970, pp. 87–114. 67

[Pow70b] , A new algorithm for unconstrained optimization, Nonlinear Program-
ming (J. B. Rosen, O. L. Mangasarian, and K. Ritter, eds.), Academic Press,
London, 1970, pp. 31–65. 39, 67

[Pow74] M. J. D. Powell, Convergence properties of a class of minimization algorithms,
Nonlinear programming, 2 (Proc. Sympos. Special Interest Group on Math.
Programming, Univ. Wisconsin, Madison, Wis., 1974) (New York), Academic
Press, 1974. 33

[Pow75] M. J. D. Powell, Convergence properties of a class of minimization algorithms,
Nonlinear Programming 2 (O. L. Mangasarian, R. R. Meyer, and S. M. Robinson,
eds.), Academic Press, London, 1975, pp. 1–27. 67

[Rut70] H. R. Rutishauser, Simultaneous iteration method for symmetric matrices, Nu-
merische Mathematik 16 (1970), 205–223. 58

[Saa92] Y. Saad, Numerical methods for large eigenvalue problems, Halstead Press, New
York, 1992. 94

[Sak96] T. Sakai, Riemannian geometry, Translations of Mathematical Monographs, no.
149, American Mathematical Society, 1996. 51

[SBFV96] Gerard L. G. Sleijpen, Albert G. L. Booten, Diederik R. Fokkema, and Henk A.
Van der Vorst, Jacobi-Davidson type methods for generalized eigenproblems and
polynomial eigenproblems, BIT Numerical Mathematics 36 (1996), no. 3, 595–
633. 100

[Shu86] M. Shub, Some remarks on dynamical systems and numerical analysis, Proc. VII
ELAM. (L. Lara-Carrero and J. Lewowicz, eds.), Equinoccio, U. Simón Boĺıvar,
Caracas, 1986, pp. 69–92. 1, 20, 21, 23

[Smi93] S. T. Smith, Geometric optimization methods for adaptive filtering, Ph.D. thesis,
Division of Applied Sciences, Harvard University, Cambridge, Massachusetts,
1993. 20, 36

[Smi94] , Optimization techniques on Riemannian manifolds, Hamiltonian and
gradient flows, algorithms and control (Anthony Bloch, ed.), Fields Inst. Com-
mun., vol. 3, Amer. Math. Soc., Providence, RI, 1994, pp. 113–136. MR
MR1297990 (95g:58062) 20, 23, 36, 50

140

[Sor82] D. C. Sorensen, Newton’s method with a model trust region modification, SIAM
J. Numer. Anal. 19 (1982), no. 2, 409–426. 33

[SSB85] Gerald A. Shultz, Robert B. Schnabel, and Richard H. Byrd, A family of
trust-region-based algorithms for unconstrained minimization with strong global
convergence properties, SIAM J. Numer. Anal. 22 (1985), no. 1, 47–67. 72

[ST00] A. Sameh and Z. Tong, The trace minimization method for the symmetric
generalized eigenvalue problem, J. Comput. Appl. Math. 123 (2000), 155–175.
58, 64, 89, 92, 93, 102, 103

[Ste83] T. Steihaug, The conjugate gradient method and trust regions in large scale
optimization, SIAM J. Numer. Anal. 20 (1983), 626–637. 37, 39, 52, 54, 64

[Ste01] G. W. Stewart, Matrix algorithms, vol II: Eigensystems, Society for Industrial
and Applied Mathematics, Philadelphia, 2001. 89, 92

[SV96] G. L. G. Sleijpen and H. A. Van der Vorst, A Jacobi-Davidson iteration method
for linear eigenvalue problems, SIAM J. Matrix Anal. Appl. 17 (1996), no. 2,
401–425. 87

[SW82] A. H. Sameh and J. A. Wisniewski, A trace minimization algorithm for the
generalized eigenvalue problem, SIAM J. Numer. Anal. 19 (1982), no. 6, 1243–
1259. 64, 89, 90, 102, 103

[Toi81] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for min-
imization, Sparse Matrices and Their Uses (I. S. Duff, ed.), Academic Press,
London, 1981, pp. 57–88. 37, 64

[Udr94] C. Udrişte, Convex functions and optimization methods on Riemannian mani-
folds, Kluwer Academic Publishers, Dordrecht, 1994. 20, 23, 36

[WD05] Jérome M. B. Walmag and Éric J. M. Delhez, A note on trust-region radius
update, SIAM J. on Optimization 16 (2005), no. 2, 548–562. 33

[Yan07] Y. Yang, Globally convergent optimization algorithms on Riemannian manifolds:
Uniform framework for unconstrained and constrained optimization, Journal of
Optimization Theory and Applications 132 (2007), no. 2, 245–265. 23

141

BIOGRAPHICAL SKETCH

Christopher Grover Baker

Christopher Grover Baker, son of Frank and Lynn Baker, was born on September 5, 1979

in Marianna, FL. In the spring of 2002, he graduated magna cum laude from Florida State

University, earning a bachelor’s degree in Pure Mathematics and Computer Science. Under

the advisement of Professor Kyle Gallivan, he obtained his Master’s degree in the summer

of 2004, also from the Department of Computer Science at Florida State University. He

enrolled in the doctoral program in the Computer Science department. In the summer

of 2005, Christopher began the first of three internships at Sandia National Laboratories

in Albuquerque, NM. In the Fall of 2007, he transferred to the School of Computational

Science. Under the advisement of Professor Kyle Gallivan, he completed his Ph.D. in the

summer of 2008.

Christopher’s research involves a number of topics in numerical linear algebra and high-

performance computing. His master’s thesis concerned low-rank incremental methods for

computing singular subspaces, and his recent work has better illuminated the workings of

that class of methods. With Absil and Gallivan, he made significant contributions to the

field of Riemannian optimization, including the development of retraction-based Riemannian

optimization and the family of Riemannian trust-region methods. One application of these

methods resulted in the development of a novel family of high-performance, robust solvers

for large-scale symmetric eigenvalue problems.

After his Ph.D., Christopher accepted a postdoctoral research position at Sandia National

Laboratories. He currently lives in Albuquerque, N.M., with his spouse, Kelly Baker, a

graduate of the doctoral program in the Department of Religious Studies at Florida State

University. They have two dogs and one cat.

142

	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	INTRODUCTION
	RIEMANNIAN OPTIMIZATION
	Euclidean Optimization
	Methods for Euclidean Optimization
	Steepest Descent Method
	Newton's Method
	Trust-region Methods

	Riemannian Optimization
	Tangent Spaces
	Riemannian Metric
	Affine Connections, Geodesics and the Exponential Map
	Gradients and Hessians
	Some Methods for Riemannian Optimization

	Retraction-based Riemannian Optimization
	Riemannian Manifolds of Interest
	Geometry of the Stiefel Manifold
	Geometry of the Grassmann Manifold

	THE RIEMANNIAN TRUST-REGION METHOD
	RTR algorithm
	Solving the model minimization
	Convergence analysis for RTR
	Global convergence
	Local convergence
	Discussion of Convergence

	Implementing the RTR

	THE IMPLICIT RIEMANNIAN TRUST-REGION METHOD
	IRTR Algorithm
	Solving the model minimization
	Convergence Analysis for IRTR
	Global Convergence
	Local Convergence

	Implementing the IRTR

	COMPUTING EXTREME SYMMETRIC GENERALIZED EIGENSPACES
	The Symmetric Generalized Eigenvalue Problem
	Characterization of Eigensolutions
	Applications of Eigenvalue Problems
	Rayleigh-Ritz Approximation
	Spectral Transformations

	Specialized Generalized Eigensolvers
	Jacobi-Davidson Method
	Trace Minimization Method
	LOBPCG

	Riemannian Optimization and ESGEV
	Riemannian Optimization Characterization
	Analysis of Specialized solvers
	RTR and the ESGEV Problem
	IRTR and the ESGEV Problem
	A Note on Apparent Similarities
	Adaptive Model IRTR/ESGEV

	Numerical Experiments
	RTR/ESGEV vs. IRTR/ESGEV
	Skinny Solvers vs. Hefty Solvers
	IRTR/ESGEV Heuristic Approximation
	Adaptive Model IRTR/ESGEV
	RTR/IRTR solvers vs. Specialized Solvers

	CONCLUDING REMARKS AND FUTURE RESEARCH
	REFERENCES
	BIOGRAPHICAL SKETCH

