New Analysis

Low-Rank Incremental Methods for Computing Dominant Singular Subspaces

Christopher G. Baker^{1,2} Kyle A. Gallivan¹ Paul Van Dooren³

¹School of Computational Science Florida State University

²Computer Science Research Institute Sandia National Laboratories

³Department of Mathematical Engineering Université catholique de Louvain

April 2008 / Copper Mountain

New Analysis

Acknowledgments

Funding

- NSF Grants ACI0324944 and CCR9912415
- School of Computational Science, FSU
- Baker was funded as a student at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy; contract/grant number: DE-AC04-94AL85000.

Introduction	Low-Rank Incremental Methods	New Analysis	Summary
Outline			

Introduction

• Singular Value Decomposition and its Computation

2 Low-Rank Incremental Methods

- Overview of Low-Rank Methods
- Operation of Low-Rank Methods

- Link to Iterative Eigensolvers
- Multi-pass Approaches

Introduction	Low-Rank Incremental Methods	New Analysis	Summary
A 111			
Outline			

Introduction

Singular Value Decomposition and its Computation

2 Low-Rank Incremental Methods

- Overview of Low-Rank Methods
- Operation of Low-Rank Methods

- Link to Iterative Eigensolvers
- Multi-pass Approaches

The Singular Va	lue Decomposition		
Singular Value Decomposition a	and its Computation		
Introduction ●0	Low-Rank Incremental Methods	New Analysis	Summary

Definition

The singular value decomposition of an $m \times n$ matrix A is

$$A = U\Sigma V^{T} = \begin{bmatrix} U_{1} & U_{2} \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^{T} = U_{1}\Sigma V^{T}$$

with orthogonal $U, V; \Sigma$ diagonal with non-decreasing, non-negative entries.

Terminology

The columns of U_1 and V are left and right singular vectors. Diagonal entries of Σ are singular values. Largest singular values are dominant, as are their corresponding singular vectors.

Introduction o	Low-Rank Incremental Methods	New Analysis	Summary		
Singular Value Decomposition and its Computation					
Dominant SVD					

Applications

Many applications require only the dominant singular triplets, e.g., PCA, KLT, POD.

Computation

Numerous approaches for computing the dominant SVD:

- compute the full SVD and truncate the unneeded part;
- transform to an eigenvalue problem, compute relevant eigenvectors via iterative eigensolver, back-transform;
- use iterative solver to compute dominant SVD:
 - Riemannian optimization gives many approaches [ABG2007]
 - Non-linear equation \rightarrow JD-SVD [Hochstenbach2000]
 - Low-rank incremental methods

Introduction	Low-Rank Incremental Methods	New Analysis	Summary
Outline			

Introduction

• Singular Value Decomposition and its Computation

Low-Rank Incremental Methods

- Overview of Low-Rank Methods
- Operation of Low-Rank Methods

- Link to Iterative Eigensolvers
- Multi-pass Approaches

Introduction	Low-Rank Incremental Methods	New Analysis	Summary
Overview of Low-Rank I	Methods		
Incremental	SVD		

Motivation

In many applications, the production of the matrix *A* happens incrementally. This has motivated numerous methods for SVD updating. [e.g., Businger; Bunch,Nielson]

Benefits

- Latency in producing new columns of *A* can be amortized in the SVD update
- "Online" SVD is useful/necessary in some applications

Drawbacks

- Computation, storage is expensive
- Still computes the full SVD

Introduction	Low-Rank Incremental Methods	New Analysis	Summary
Overview of Low-Rank Me	thods		
Low-Rank Inc	remental SVD		

More efficient approach

The low-rank incremental SVD methods follow the example of the incremental SVD methods, but track only a low-dimensional subspace.

History

Repeatedly and independently described in the literature:

- 1995: Manjunath, Chandrasekaran, Yang: "Eigenspace Update Algorithm"
- 2000: Levy, Lindenbaum: "Sequential Karhunen-Loeve"
- 2001: Chahlaoui, Gallivan, Van Dooren: "Recursive SVD"
- 2002: Brand: "Incremental SVD"
- 2004: Baker, Gallivan, Van Dooren

Full-Rank In	cremental SVD Operation		
Operation of Low-Rank	Methods		
Introduction 00	Low-Rank Incremental Methods	New Analysis	Summary

Kernel Step

Given a matrix A with factorization $A = U\Sigma V^T$, compute updated factorization of augmented matrix $\begin{bmatrix} A & A_+ \end{bmatrix}$:

$$U_{+}\Sigma_{+}V_{+}^{T} = \begin{bmatrix} A & A_{+} \end{bmatrix} = \begin{bmatrix} U\Sigma V^{T} & A_{+} \end{bmatrix}$$

Incremental Algorithm

- Partition $A = \begin{bmatrix} A_1 & A_2 & \dots & A_b \end{bmatrix}$
- Initialize $A_1 = U_1 \Sigma_1 V_1^T$
- for i = 2, ..., b
 - Update factorization:

$$U_i \Sigma_i V_i^T = \begin{bmatrix} U_{i-1} \Sigma_{i-1} V_{i-1}^T & A_i \end{bmatrix}$$

00	000000	00	ounnury
Operation of Low-Rank Method	s		
Low-rank Incren	nental SVD Operation		
• Perform	a low-rank version of the incr	remental SVD	
Kernel Step			

Given a factorization $U\Sigma V^T$ and columns A_+ , compute dominant SVD $U_+\Sigma_+V_+^T \approx \begin{bmatrix} U\Sigma V^T & A_+ \end{bmatrix}$.

Heuristic motivation

Approximation of an approximation is an approximation, right?

$$U_{1}\Sigma_{1}V_{1}^{T} \approx A_{1}$$

$$U_{2}\Sigma_{2}V_{2}^{T} \approx \begin{bmatrix} U_{1}\Sigma_{1}V_{1}^{T} & A_{2} \end{bmatrix} \approx \begin{bmatrix} A_{1} & A_{2} \end{bmatrix}$$

$$\dots$$

$$U_{b}\Sigma_{b}V_{b}^{T} \approx A$$

Low-rank Incre	mental SVD Operation		
Operation of Low-Rank Method	ods		
Introduction	Low-Rank Incremental Methods	New Analysis	Summary

The algorithm

Given the factorization $U\Sigma V^T$ and new columns *A*:

Expand the factorization via Gram-Schmidt:

$$\begin{bmatrix} U\Sigma V^T & A \end{bmatrix} = \hat{Q}\hat{R}\hat{W}^T \doteq \begin{bmatrix} U & Q \end{bmatrix} \begin{bmatrix} \Sigma & R_2 \\ 0 & R_3 \end{bmatrix} \begin{bmatrix} V & 0 \\ 0 & I \end{bmatrix}^T$$

2 Compute transformations G_u, G_v that decouple the singular subspaces in \hat{R} :

$$G_u^T \hat{R} G_v = \begin{bmatrix} ar{R}_1 & 0 \\ 0 & ar{R}_2 \end{bmatrix}, \qquad \sigma(ar{R}_1) > \sigma(ar{R}_2)$$

- 3 Insert G_u, G_v into expanded factorization: $\bar{Q}\bar{R}\bar{W}^T \doteq (\hat{Q}G_u)(G_u^T\hat{R}G_v)(G_v^T\hat{W}^T) = \hat{Q}\hat{R}\hat{W}^T$
- Truncate the dominated part of the factorization.

Introduction	Low-Rank Incremental Methods ○○○○○●	New Analysis	Summary
Operation of Low-Rank	< Methods		
Algorithm f	eatures		

Cost/benefit

Benefits:

- Requires only a single pass through A
- Exploits latency in producing/retrieving columns of A
- Flop count is linear: O(mnk)
 - Leading coefficient varies according to requirements on structure of intermediate factorizations
 - Method from [Baker2004] requires 10mnk flops
- Storage of O(mk + nk) is minimal

Drawback:

- Factorization is inexact due to truncation
- Previous literature makes no suggestion for improving factorization

Introduction	Low-Rank Incremental Methods	New Analysis	Summary
Outline			

Singular Value Decomposition and its Computation

Low-Rank Incremental Methods

- Overview of Low-Rank Methods
- Operation of Low-Rank Methods

- Link to Iterative Eigensolvers
- Multi-pass Approaches

What is really h	appening?				
Link to Iterative Eigensolvers					
Introduction 00	Low-Rank Incremental Methods	New Analysis ●○	Summary		

New interpretation

Take an orthogonal matrix $D = \begin{bmatrix} D_1 & \dots & D_b \end{bmatrix}$. Consider the low-rank incremental SVD of $AD = \begin{bmatrix} AD_1 & \dots & AD_b \end{bmatrix}$.

A locally optimal solver

At iterate U_i , Σ_i , V_i , the algorithm inputs AD_{i+1} and chooses V_{i+1} which maximizes *trace* $\begin{pmatrix} V^T A^T A V \end{pmatrix}$ over all orthonormal V in span $(\begin{bmatrix} V_i & D_{i+1} \end{bmatrix})$.

Implications

- IncSVD of A (i.e., D = I) implicitly performs coordinate ascent, optimization-based eigensolve of $A^{T}A$
- Choice of *D* gives a hook to affect the performance.

Multi-pass Method				
Multi-pass Approaches				
Introduction oo	Low-Rank Incremental Methods	New Analysis ○●	Summary	

Targeted initialization

- Given approximate right singular vectors \hat{V} , choose *D*: $D = \begin{bmatrix} \hat{V} & D_2 & \dots & D_b \end{bmatrix}$
- Use to restart the algorithm if *A* is still available.
- Can be done in a pass-efficient manner.

Better choices for D?

- If D_i is exact dominant right singular vectors, then incremental algorithm is exact.
- Speedup convergence by inserting gradient information into *D*.

Introduction oo	Low-Rank Incremental Methods	New Analysis	Summary
Summary			

- The decoupling technique makes explicit the effort necessary to implement a member of this family of methods.
- The novel analysis shows the link to an iterative, optimization-based eigensolver approach.
- This analysis allows the description of methods which can exploit multiple passes through *A*.
- Convergence proof with rate of convergence is forthcoming.
- "Killer apps" wanted.