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Singular Value Decomposition and its Computation

The Singular Value Decomposition

Definition
The singular value decomposition of an m× n matrix A is

A = UΣVT =
[
U1 U2

] [
Σ
0

]
VT = U1ΣVT

with orthogonal U, V; Σ diagonal with non-decreasing,
non-negative entries.

Terminology
The columns of U1 and V are left and right singular vectors.
Diagonal entries of Σ are singular values. Largest singular
values are dominant, as are their corresponding singular
vectors.
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Singular Value Decomposition and its Computation

Dominant SVD

Applications
Many applications require only the dominant singular triplets,
e.g., PCA, KLT, POD.

Computation
Numerous approaches for computing the dominant SVD:

compute the full SVD and truncate the unneeded part;
transform to an eigenvalue problem, compute relevant
eigenvectors via iterative eigensolver, back-transform;
use iterative solver to compute dominant SVD:

Riemannian optimization gives many approaches [ABG2007]
Non-linear equation→ JD-SVD [Hochstenbach2000]
Low-rank incremental methods
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Overview of Low-Rank Methods

Incremental SVD

Motivation
In many applications, the production of the matrix A happens
incrementally. This has motivated numerous methods for SVD
updating. [e.g., Businger; Bunch,Nielson]

Benefits
Latency in producing new columns of A can be amortized
in the SVD update
“Online” SVD is useful/necessary in some applications

Drawbacks
Computation, storage is expensive
Still computes the full SVD



Introduction Low-Rank Incremental Methods New Analysis Summary

Overview of Low-Rank Methods

Low-Rank Incremental SVD

More efficient approach
The low-rank incremental SVD methods follow the example of
the incremental SVD methods, but track only a low-dimensional
subspace.

History
Repeatedly and independently described in the literature:

1995: Manjunath, Chandrasekaran, Yang: “Eigenspace
Update Algorithm”
2000: Levy, Lindenbaum: “Sequential Karhunen-Loeve”
2001: Chahlaoui, Gallivan, Van Dooren: “Recursive SVD”
2002: Brand: “Incremental SVD”
2004: Baker, Gallivan, Van Dooren
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Operation of Low-Rank Methods

Full-Rank Incremental SVD Operation

Kernel Step

Given a matrix A with factorization A = UΣVT , compute
updated factorization of augmented matrix

[
A A+

]
:

U+Σ+VT
+ =

[
A A+

]
=

[
UΣVT A+

]
Incremental Algorithm

Partition A =
[
A1 A2 . . . Ab

]
Initialize A1 = U1Σ1VT

1
for i = 2, . . . , b

Update factorization:

UiΣiVT
i =

[
Ui−1Σi−1VT

i−1 Ai
]



Introduction Low-Rank Incremental Methods New Analysis Summary

Operation of Low-Rank Methods

Low-rank Incremental SVD Operation

Perform a low-rank version of the incremental SVD

Kernel Step

Given a factorization UΣVT and columns A+, compute
dominant SVD U+Σ+VT

+ ≈
[
UΣVT A+

]
.

Heuristic motivation
Approximation of an approximation is an approximation, right?

U1Σ1VT
1 ≈ A1

U2Σ2VT
2 ≈

[
U1Σ1VT

1 A2
]
≈≈

[
A1 A2

]
. . .

UbΣbVT
b ≈≈ A
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Operation of Low-Rank Methods

Low-rank Incremental SVD Operation

The algorithm

Given the factorization UΣVT and new columns A:
1 Expand the factorization via Gram-Schmidt:[

UΣVT A
]

= Q̂R̂ŴT .=
[
U Q

] [
Σ R2
0 R3

] [
V 0
0 I

]T

2 Compute transformations Gu,Gv that decouple the singular
subspaces in R̂:

GT
u R̂Gv =

[
R̄1 0
0 R̄2

]
, σ(R̄1) > σ(R̄2)

3 Insert Gu,Gv into expanded factorization:
Q̄R̄W̄T .= (Q̂Gu)(GT

u R̂Gv)(GT
v ŴT) = Q̂R̂ŴT

4 Truncate the dominated part of the factorization.
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Operation of Low-Rank Methods

Algorithm features

Cost/benefit
Benefits:

Requires only a single pass through A

Exploits latency in producing/retrieving columns of A
Flop count is linear: O(mnk)

Leading coefficient varies according to requirements on
structure of intermediate factorizations
Method from [Baker2004] requires 10mnk flops

Storage of O(mk + nk) is minimal
Drawback:

Factorization is inexact due to truncation
Previous literature makes no suggestion for improving
factorization



Introduction Low-Rank Incremental Methods New Analysis Summary

Outline

1 Introduction
Singular Value Decomposition and its Computation

2 Low-Rank Incremental Methods
Overview of Low-Rank Methods
Operation of Low-Rank Methods

3 New Analysis
Link to Iterative Eigensolvers
Multi-pass Approaches



Introduction Low-Rank Incremental Methods New Analysis Summary

Link to Iterative Eigensolvers

What is really happening?

New interpretation

Take an orthogonal matrix D =
[
D1 . . . Db

]
. Consider the

low-rank incremental SVD of AD =
[
AD1 . . . ADb

]
.

A locally optimal solver
At iterate Ui, Σi, Vi, the algorithm inputs ADi+1 and chooses
Vi+1 which maximizes trace

(
VTATAV

)
over all orthonormal V in

span(
[
Vi Di+1

]
).

Implications
IncSVD of A (i.e., D = I) implicitly performs coordinate
ascent, optimization-based eigensolve of ATA

Choice of D gives a hook to affect the performance.
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Multi-pass Approaches

Multi-pass Method

Targeted initialization

Given approximate right singular vectors V̂, choose D:
D =

[
V̂ D2 . . . Db

]
The iteration immediately captures the information in V̂ and
improves thereafter.
Use to restart the algorithm if A is still available.
Can be done in a pass-efficient manner.

Better choices for D?
If Di is exact dominant right singular vectors, then
incremental algorithm is exact.
Speedup convergence by inserting gradient information
into D.
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Summary

The decoupling technique makes explicit the effort
necessary to implement a member of this family of
methods.
The novel analysis shows the link to an iterative,
optimization-based eigensolver approach.
This analysis allows the description of methods which can
exploit multiple passes through A.
Convergence proof with rate of convergence is
forthcoming.
“Killer apps” wanted.
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