
Low-Rank Incremental Methods for Computing Dominant Singular

Subspaces

C. G. Baker∗ K. A. Gallivan∗ P. Van Dooren†

Abstract

This paper describes a generic low-rank incremental method for computing the dominant singular

triplets of a matrix via a single pass through the matrix. This work unifies several efforts previously

described in the literature. We tie the operation of the proposed method to a particular optimization-

based eigensolver. This allows the description of novel methods exploiting multiple passes through the

matrix.

1 Introduction

Given a matrix A ∈ R
m×n, m ≥ n, the Singular Value Decomposition (SVD) of A is:

A = U

[
Σ
0

]

V T ,

where U and V are m × m and n × n orthogonal matrices, respectively, and Σ is a diagonal matrix whose
elements σ1, . . . , σn are real, non-negative and non-increasing. The σi are the singular values of A, and the
first n columns of U and V are the left and right singular vectors of A, respectively. Given k ≤ n, the
singular vectors associated with the largest k singular values of A are the rank-k dominant singular vectors.
The subspaces associated with these vectors are the rank-k dominant singular subspaces.

The components of the SVD are optimal in many respects [1], and these properties result in the occurrence
of the SVD in numerous analyses, e.g., principal component analysis, proper orthogonal decomposition, the
Karhunen-Loeve transform. These applications of the SVD are frequently used in problems related to,
e.g., signal processing, model reduction of dynamical systems, image and face recognition, and information
retrieval.

A common trait among these problems is the size of the data. Such methods often lead to a matrix that
has many more rows than columns. It is matrices like this that are of interest in this paper, and we assume
from this point that m ≫ n. Another similarity, the focus of this paper, is that these methods do not employ
all singular triplets of A. Instead, they require only the dominant k singular triplets or dominant rank-k
singular subspaces, where k ≪ n.

One drawback of the SVD is the cost of its computation. For a matrix with more rows than columns,
this is usually done by computing the QR factorization of A and the SVD of the R factor:

A = QR = Q(ÛΣV T ) = (QÛ)ΣV T .
= UΣV T .

Alternatively, if A has full column-rank, the SVD can be computed via the eigendecomposition of AT A =
V Σ2V T :

A = (AV Σ−1)ΣV T .
= UΣV T .

∗Florida State University, USA
†Université catholique de Louvain, Belgium

1



The latter method is less expensive. However, obtaining U in this manner is not as robust as the other
approaches [1]. Furthermore, both of these methods require O(mn2) floating point operations (flops), even
if only the dominant SVD is desired. For large matrices, this may not be feasible.

In some applications, the production of the matrix A occurs in an incremental fashion, with new columns
being appended to the existing matrix. This has motivated the description of numerous SVD updating
methods, e.g., [2, 3]. These methods, while they may suffer from an overall higher complexity, benefit
in a number of ways. The latency of producing new columns of A can be hidden by the intermediate
computation. Also, some subspace tracking applications (e.g., computer vision, latent semantic indexing)
require an “online” computation, i.e., that the current SVD be available between updates. By incorporating
the columns into the current decomposition as they are produced, these methods avoid the requirement to
store the matrix. However, these same applications often require only the dominant singular subspaces and/or
singular values. Incremental methods which compute the full SVD do so at much higher computational
expense.

A review of the literature reveals several methods which aim to reduce the complexity of computing
the dominant singular triplets [4, 5, 6, 7, 8, 9]. Repeatedly and independently developed, these methods
approximate the dominant SVD after a single pass through the matrix. Each group of columns from A
is used to update a low-rank factorization which approximates the dominant SVD of A. By incrementally
consuming the matrix and maintaining only a low-rank factorization, these methods are able to approximate
the dominant SVD using significantly less memory and computation than direct methods. Previous work [5,
8] has shown that the resulting factorization in some cases captures almost all of the information from the
dominant SVD.

This paper describes this family of low-rank incremental methods. We propose a generic incremental
framework which unifies the previous approaches and allows the description of more efficient methods. We
present a novel analysis of these methods which relates their operation to a class of iterative methods for
approximating the eigenvalues of AT A, which allows the description of an iterative approach for the scenario
where multiple passes through A are permitted.

2 A Generic Low-Rank Incremental SVD

This section outlines a block, incremental technique for estimating the dominant left and right singular
subspaces of a matrix. At the heart of this method is the ability to maintain a low-rank factorization
from step to step. This is done via the truncation of smaller singular values, which requires decoupling
the associated subspaces. Section 2.1 introduces the subspace separation technique. Section 2.2 describes
a generic low-rank incremental SVD based on this approach. Section 2.3 discusses previous incremental
methods and how they fit into this framework.

2.1 A Generic Separation Technique

Given an m × (k + l) matrix M , m ≫ k + l, consider an orthogonal factorization

M = QB ,

where Q ∈ R
m×(k+l), QT Q = I, and B ∈ R

(k+l)×(k+l). Consider the SVD of B and partition it conformally
as

B = UΣV T =
[

U1 U2

]
[

Σ1 0
0 Σ2

]
[

V1 V2

]T
,

where U1, Σ1, and V1 contain the largest k and U2, Σ2 and V2 contain the smallest l left singular vectors,
singular values and right singular vectors of B, respectively. Define orthogonal transformations Gu and Gv

such that they block diagonalize the singular vectors of B:

GT
u U =

[
Su 0
0 Tu

]

and GT
v V =

[
Sv 0
0 Tv

]

. (1)

2



Applying these transformations to B yields Bnew = GT
u BGv. These transformations rotate B to a coordinate

system where its left and right singular bases are block diagonal. It follows that Bnew has the form

Bnew = GT
u BGv =

[
SuΣ1S

T
v 0

0 TuΣ2T
T
v

]

.

The SVD of the block diagonal matrix Bnew also has a block diagonal structure. This gives a new
factorization of M ,

M = QB = (QGu)(GT
u BGv)GT

v

.
= QnewBnewGT

v = Qnew

[
TuΣ1T

T
v 0

0 SuΣ2S
T
v

]

GT
v ,

whose partitioning identifies bases for the dominant left and right singular subspaces of M in the first k
columns of Qnew and Gv.

It should be noted that Gu is not uniquely defined by Equation (1). This definition admits any Gu whose
first k columns are some orthonormal basis for the dominant left singular subspace of B and whose last l
columns therefore are some orthonormal basis for the dominated left singular subspace of B. This is also
the case, mutatis mutandis, for Gv. The result is that the choices for Gu and Gv affect the form of Bnew: it
may have structure (e.g., diagonal, triangular) or not.

2.2 An Incremental Method

The technique of the previous section can be used to define a generic method for computing approximate
bases for the left and right dominant singular subspaces via a single pass through the columns of an m × n
matrix A. The procedure begins with an orthogonal factorization of the first l1 columns of A, Q1B1 = A(1:l1).
The right space basis is initialized to W1 = Il1 . At each step j, new columns from A are used to expand the
rank of the current factorization Qj−1Bj−1W

T
j−1. Then the technique from Section 2.1 is used to decouple

the dominant and dominated subspaces in the new factorization, and the dominated subspaces are truncated
to produce a new low-rank factorization QjBjW

T
j . This procedure is detailed in Algorithm 1.

Algorithm 1 Low-Rank Incremental SVD

Input: m × n matrix A =
[
A1 . . . Af

]
, Aj ∈ R

m×lj

1: Compute orthogonal factorization Q1B1 = A1

2: Set W1 = Il1 , k1 = l1 and s1 = l1
3: for j = 2, . . . , f do

4: Compute a rank-(kj−1 + lj) orthogonal factorization:

Q̂jB̂j =
[
Qj−1Bj−1 Aj

]

5: Set Ŵj =

[
Wj−1 0

0 Ilj

]

6: Set sj = sj−1 + lj
7: Choose kj ∈ (0, kj−1 + lj ] and set dj = kj−1 + lj − kj

8: Apply the technique in Section 2.1 to construct transformations Gu and Gv which decouple the dom-
inant rank-kj singular subspaces in B̂j from the dominated singular subspaces

9: Set B̄j = GT
u B̂jGv, Q̄j = Q̂jGu, and W̄j = ŴjGv

10: Truncate the last dj columns of Q̄j and W̄j and the last dj columns and rows of B̄j to produce Qj ,
Wj and Bj

11: end for

Output: Rank-kf factorization QfBfWT
f approximating the dominant SVD of A

3



The previous literature proposed computing the orthogonal factorization in step 6 of Algorithm 1 via a
Gram-Schmidt procedure:

C = QT
j−1Aj

Q⊥B⊥ = Aj − Qj−1C .

This produces a new factorization

[
Qj−1Bj−1W

T
j−1 Aj

]
= Q̂jB̂jŴ

T
j , (2)

the structure of which is shown in Figure 1.

Qj−1 Q⊥

Bj−1 C

B⊥

WT
j−1

Ilj = Q̂jB̂jŴ
T
j

Figure 1: The structure of the update step.

Transformations Gu and Gv are constructed as in Section 2.1. These transformations are applied to put
the block triangular matrix B̂ into a block diagonal form that isolates the dominant singular subspaces from
the dominated subspaces, as follows:

Q̂jB̂jŴ
T
j = Q̂j(GuGT

u )B̂j(GvGT
v )ŴT

j

= (Q̂jGu)(GT
u B̂jGv)(GT

v ŴT
j )

= Q̄jB̄jW̄
T
j .

The structure of Q̄jB̄jW̄
T
j is shown in Figure 2.

Qj Q̃j

Bj 0

0 B̃j

WT
j

W̃T
j = Q̄jB̄jW̄

T
j

Figure 2: The result of the separation step.

4



The selection of kj (line 7 in Algorithm 1) can be performed in a variety of ways. One commonly described
technique maintains a constant rank at each step. Another common technique involves choosing kj to retain

all singular values of B̂j satisfying some threshold (absolute or relative), this approach being constrained by
the memory allocated for the factorization.

This technique produces at each step j a rank-kj factorization QjBjW
T
j that best approximates the

dominant SVD of
[
Qj−1Bj−1W

T
j−1 Aj

]
. Applying this heuristic recursively, we view QjBjW

T
j as an

approximation to the columns of the matrix seen through step j,

QjBjW
T
j ≈

[
A1 . . . Aj

]
.

The result of the algorithm is a factorization QfBfWT
f that serves as an approximation for the whole of A.

The output at step j includes:

• Qj - an approximate basis for the dominant left singular space of A(1:sj),

• Wj - an approximate basis for the dominant right singular space of A(1:sj), and

• Bj - a kj ×kj matrix whose SVD contains the transformations that rotate Qj and Wj into approximate
singular vectors. The singular values of Bj are estimates for the singular values of A(1:sj). These
singular value estimates are necessarily non-decreasing from step j − 1 to step j [8].

A useful result is that after each step j, there exists an orthogonal matrix embedding Wj and relating
the first sj columns of A to the current approximation and the discarded data up to this point:

kj

︷︸︸︷
sj−kj

︷︸︸︷
kj

︷ ︸︸ ︷
d1

︷ ︸︸ ︷
dj

︷ ︸︸ ︷

A(1:sj)

[
Wj W⊥

j

]
=

[

QjBj Q̃1B̃1 · · · Q̃jB̃j

]
. (3)

In particular, after the final step f of the algorithm, this factorization takes the form

A
[

Wf W⊥

f

]
=

[

QfBf Q̃1B̃1 · · · Q̃f B̃f

]
,

yielding the following additive decomposition:

A = QfBfWT
f +

[

Q̃1B̃1 · · · Q̃f B̃f

]
W⊥

f

T
.

This property is proven in [8, Appendix A] and is used to construct bounds on the error of the computed
factorization [10].

2.3 Implementing an Incremental SVD

The generic algorithm from the previous section leaves unspecified any structure imposed on Qj, Bj and
Wj , as well as the choice of Gu and Gv used to decouple the singular subspaces at each step. These decisions
affect the overall efficiency of the method, and they constitute most of the variation in the previous work on
this class of methods. This section briefly describes the previous work and summarizes the consequences of
the various approaches.

In [11], Gu and Eisenstat propose a stable and fast algorithm for updating the SVD when appending a
single column or row to a matrix with a known SVD. In this manner, they propose computing the SVD of
A by incrementally updating the full SVD (up to the current point). The kernel step in their algorithm is
the efficient tridiagonalization of a “broken arrowhead” matrix, requiring only O(n2) flops to tridiagonalize
a broken arrowhead matrix of order n, compared to the O(n3) flops required for a general n × n matrix.

Manjunath and Chandrasekaran [4] propose an algorithm for tracking the dominant singular subspaces
and singular values, called the Eigenspace Update Algorithm (EUA). Their method chooses for Gu and Gv

the singular vectors of B̂j . The consequence of this is that the matrix B̄j is a diagonal matrix whose non-
zero elements are the current approximate singular values. Performing the Gram-Schmidt update (2) on a

5



single vector from A produces a broken arrowhead matrix in B̂j . This allows the application of the Gu and

Eisenstat approach to compute the SVD of B̂j in O(k2
j−1 + l2j ) and the computation of Q̂jGu and ŴjGv in

O(mkj) and O(nkj) flops, respectively. Unfortunately, the overhead of this approach is such that it is only
worthwhile for large values of k. Otherwise, it is more appropriate to use a dense SVD, requiring O(mk2

j )

and O(nk2
j ) flops to form Q̂jGu and ŴjGv, respectively. Note also that the arrowhead-based method is

only possible if a single column is used to update the SVD at each step. The formation of the intermediate
matrices in the algorithms discussed is rich in block matrix operations whose exploitation makes efficient use
of modern memory hierarchies.

In [5], Levy and Lindenbaum independently propose an approach for incrementally computing a basis
for the dominant left singular subspace. Their algorithm, the Sequential Karhunen-Loeve (SKL), describes
updating the current factorization at each step with l new columns from A. They explicitly compute the
SVD of B̂ = Û ŜV̂ T and choose Gu = Û and Gv = V̂ . Computing the first block of Q̂Gu at each step requires
O(mk(k+ l)) flops. The authors suggest a value l =

√
k/2 for the block size, as this choice for l minimizes the

overall complexity of the algorithm to approximately 12mnk. The work of Levy and Lindenbaum focused
on computing only the left dominant singular basis (the Karhunen-Loeve basis). However, for m ≫ n,
computing the right dominant singular basis does not add significant cost. Their block algorithm is rich in
level 3 BLAS operations, although the naive choice of Gu and Gv results in a higher operation count than
some of the following methods.

In [10], Chahlaoui, Gallivan and Van Dooren independently propose yet another algorithm for incre-
mentally tracking dominant singular subspaces. Their algorithm approximates the left singular subspace in
8mnk flops. Computing approximations to the left and right singular subspaces requires 10mnk flops. This
efficiency over the earlier algorithms is a result of a more efficient decoupling step. Their method proceeds
using a URV form, where the middle matrix is maintained in a triangular form. The Gram-Schmidt ex-
pansion preserves the triangular structure, which is exploited to reduce the cost of computing Q̂Gu. This
work also presents an error analysis that addresses the effect of truncation at each step. Error bounds are
derived that are essentially independent of the problem size, suggesting that the method is robust even for
very large problems. Also, to quell concerns about numerical problems associated with the Gram-Schmidt
procedure used in the update step, they present an error analysis that bounds the loss of orthogonality in
the computed basis vectors.

In [7], Brand independently proposes an algorithm similar to that of Levy and Lindenbaum. By employing
identical update and decoupling steps as those of the SKL, the algorithm has a similarly high complexity.
However, the main concern of this work was the handling of missing or uncertain values in the input data;
he was not concerned with the complexity of the method, aside from the reduction in cost associated with
tracking a low-rank subspace. More recently, Brand [9] presents an SVD updating strategy for computing
exactly the thin SVD of a matrix via a single pass through the columns. This method enjoys linear complexity
when the rank of the matrix is less than the square root of the number of columns. For cases where the
rank of the matrix is much larger, Brand suggests truncation in order to maintain the low computational
costs of the method. This results in an algorithm which is similar to his previous work and which falls in
the framework described in this paper.

In [8], Baker presented the generic separation technique described in Section 2.1 in order to unify the
previous works. He presents an efficient block implementation which minimizes the computational complexity
to 10mnk. This work illustrated that the limited freedom in choosing Gu and Gv must be balanced between
lowering the complexity of the method (primarily, computing Q̂Gu) and specifying the structure of the
resulting factorization. That work also illustrated the importance of block methods for exploiting a memory
hierarchy.

3 Relationship to Iterative Eigensolvers

This section relates the mechanisms of Algorithm 1 to a class of optimizing eigensolvers on AT A. This new
analysis describes the workings of the incremental method and sets the stage for the iterative methods that
follow.

6



Assume that we are given an orthogonal matrix D, DDT = DT D = In, and that we are to compute a
low-rank incremental SVD of AD using Algorithm 1. Partition the matrix D according to the block updates,

D =
[
D1 · · · Df

]
,

so that the algorithm is initialized with AD1 and the factorization at step j is updated using the columns
ADj .

Note first that recurrence (3) grants us the following at each step j:

A
[
D1 · · · Dj

]
Wj = QjBj .

The matrix Wj approximates the right singular subspace of A
[
D1 · · · Dj

]
, and the matrix Xj

.
=

[
D1 · · · Dj

]
Wj approximates the right singular subspace for A. It is easily verified that Xj has or-

thonormal columns of the proper dimension.
Then note the following:

trace
(
XT

j AT AXj

)
= trace

(
BT

j QT
j QjBj

)
= trace

(
BT

j Bj

)
=

∑

σ2(Bj) ,

where σ(Bj) denotes the singular values of Bj . This identifies the current singular values of Bj as the
Ritz values [1] of AT A with respect to the subspace spanned by Xj . Furthermore, it can be shown that
incremental algorithm performs a search at step j that maximizes the Ritz values along a “search direction”
given by Dj . A proof follows.

Recall from Algorithm 1 (line 10) that the low-rank incremental SVD selects Wj as the first kj columns

of ŴjGv, where Ŵj =

[
Wj−1 0

0 Ilj

]

is the right basis after the expansion step (line 5). Equation (1) requires

that the first kj columns of Gv are a subspace for the dominant right singular vectors of B̂j . Consequently,

they are a global maximizer for the Rayleigh quotient of B̂T
j B̂j :

RayQuo(Y )
.
= trace

(

Y T B̂T
j B̂jY

)

with Y T Y = Ikj
.

This results from the relationship between the dominant right singular subspace of B̂j and the dominant

eigenspace of the symmetric matrix B̂T
j B̂j (see, for example, [1]).

Note the following, recalling the necessary definitions from Section 2.2:

RayQuo(Y ) = trace
(

Y T B̂T
j B̂jY

)

= trace
(

Y T B̂T
j Q̂T

j Q̂jB̂jY
)

= trace
(

Y T
[
Qj−1Bj−1 ADj

]T [
Qj−1Bj−1 ADj

]
Y

)

= trace
(

Y T
[
AXj−1 ADj

]T [
AXj−1 ADj

]
Y

)

= trace
(

Y T
[
Xj−1 Dj

]T
AT A

[
Xj−1 Dj

]
Y

)

.

Then the minimizer Wj of RayQuo(Y ) in effect minimizes the Rayleigh quotient of AT A subject to the span
of

[
Xj−1 Dj

]
.

The incremental algorithm can be interpreted as follows: Each step of the algorithm updates the current
right basis Xj along the directions prescribed by the orthogonal matrix D, so as to maximize the trace of
AT A. For the specific choice D = I, described in Algorithm 1 and all previous literature, the directions take

the form Dj =
[
0 Ilj 0

]T
. These approaches can thus be characterized as coordinate ascent approaches

for maximizing the singular values captured by the factorization. As a result, the singular values are non-
decreasing from one step to the next, a fact that has been noted in previous literature. This further implies
that if the dominant singular subspaces are discovered by the algorithm, then the subspace will not be
discarded. Furthermore, this analysis suggests that the method can be modified to compute the singular
subspaces associated with the smallest singular values, though this is not considered in this paper.

7



4 A Multipass Incremental SVD

The previous discussion interpreted the low-rank incremental SVD of AD, where D was an orthogonal
matrix. This section proposes some choices for matrices D that allow the low-rank incremental algorithm to
exploit multiple passes through A, assuming the availability of A allows this.

Assume we have a rank-k orthonormal basis X0 whose span approximates the right dominant singular
subspace of A. Consider an orthogonal matrix D =

[
X0 X⊥

]
. Then a rank-k incremental SVD of AD

will initially produce a factorization with a right basis equivalent X0. The algorithm will process the rest
of the directional information in D, as discussed in the previous section. In this way, we can describe
an algorithm which makes multiple passes through A, initializing each new pass with the approximation
computed by previous pass, via an appropriate choice of D. Because Algorithm 1 is an ascent method, each
successive factorization approximates A at least as well as the preceding factorization. Algorithm 2 details
this approach.

Algorithm 2 Coordinate Ascent Multipass Incremental SVD.

Input: Rank-k orthonormal basis X0 approximating dominant right singular subspace.
1: for j = 1, 2, . . . until Qj−1, Bj−1, Xj−1 satisfy some convergence criterion do

2: Compute orthogonal matrix D
D =

[
Xj−1 D2 . . . Df

]
(4)

3: Compute rank-k factorization QjBjW
T
j of AD via Algorithm 1.

4: Set Xj = DWj

5: end for

The analysis in Section 3 showed that if X0 is a basis for the dominant right singular subspace of A, then
each Xj is also a basis for the dominant right singular subspaces. Section 3 explained that the columns of
D act as prescribed search directions in the optimization for the dominant SVD of A. Algorithm 2 specified
only the first k directions, in order to initialize the search with the output of the previous iteration. It
is possible that specifying additional columns of D might improve the convergence of the algorithm. It
is common in optimization methods to exploit gradient information to increase the efficiency of a search.
Algorithm 2 was shown in Section 3 to implement a maximization of the Rayleigh quotient of AT A over
the set of orthonormal bases (the compact Stiefel manifold). The gradient of the Rayleigh quotient on this
manifold has been described in numerous places in the literature (see [12] and references there-in):

grad RayQuo(X) = (I − XXT )AT AX .

In constructing D, we can also insert an orthonormal basis G for the component of grad RayQuo(X)
orthogonal to the current iterate X . The resulting incremental SVD of AD will therefore be initialized with
X0 and will immediately search in the gradient direction. This effectively incorporates a steepest ascent
search into the incremental SVD. This technique is detailed in Algorithm 3.

Algorithm 3 Steepest Ascent Multipass Incremental SVD.

Input: Rank-k orthonormal basis X0 approximating the right dominant singular subspace.
1: for j = 1, 2, . . . until Qj−1, Bj−1, Xj−1 satisfy some convergence criterion do

2: Compute orthonormal basis Gj−1 for colspan
(
AT AXj−1

)
, s.t. GT

j−1Xj−1 = 0
3: Compute orthogonal matrix D

D =
[
Xj−1 Gj−1 D3 . . . Df

]
(5)

4: Compute rank-k factorization QjBjW
T
j of AD via Algorithm 1.

5: Set Xj = DWj

6: end for

8



Because Algorithm 3 is related to steepest descent, the asymptotic rate of convergence is expected to be
linear. Algorithm 2 does not employ gradient information, so the convergence should be slower. However,
the asymptotic rate is still expected to be linear. Global convergence proofs for these methods, along with
detailed rates of convergence, are upcoming. However, the numerical experiments in the next section confirm
this intuition.

It should also be noted that both proposed multipass algorithms can be implemented in a memory
efficient manner, incrementally passing through the columns of A. The Coordinate Ascent method requires
two incremental passes through A to conduct an Incremental SVD of AD, while the Steepest Ascent method
requires three passes through A to conduct an Incremental SVD of AD. This extra pass through A is
necessitated by the production of the gradient used in D.

5 Numerical Performance

We conducted some experiments on the multipass algorithms described in Section 4. The purpose of this
testing is to illustrate the convergence of the two proposed multipass methods. These tests were performed
in MATLAB. The matrix A used was a small real 5000× 100 matrix generated via the MATLAB command
randn. The SVD of A was computed, the smaller 95 singular vales were scaled by .95 to introduce a small
gap, and the multipass methods were allowed 49 passes through the matrix to compute the rank-5 dominant
SVD. Figure 3 shows the results of these experiments.

Both multipass techniques demonstrate the anticipated linear convergence rate. Both methods converge
to the solution, as measured by the error in the singular values. The steepest ascent method (Algorithm 3)
makes more progress on each Incremental SVD of AD due the incorporation of gradient information. How-
ever, recall that forming the gradient requires an additional pass through A. As a result, the coordinate
ascent method (Algorithm 2) makes more progress with respect to the number of passes through A. This
suggests that different approaches may be preferable depending on such factors as the latency involved in
retrieving the columns of the data matrix.

1 5 10 15 20 25
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

incsvd call

er
ro

r 
su

m
(σ

)

SMALL_GAP2: Multipass IncSVD

 

 

Coordinate Ascent
Steepest Ascent

1 5 10 15 20 25 30 35 40 45
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

num passes

er
ro

r 
su

m
(σ

)

SMALL_GAP2: Multipass IncSVD

 

 

Coordinate Ascent
Steepest Ascent

(a) (b)

Figure 3: Convergence of singular values for Algorithms 2 and 3, plotted against (a) number of IncSVD calls
on AD and (b) number of passes through A.

9



6 Concluding Remarks

We have presented a low-rank incremental method for computing dominant singular subspaces of a matrix.
The presentation was general enough to unify similar methods previously described in the literature. We
conducted a novel analysis of this class of methods, showing ties to an iterative eigensolver approach and
providing some additional insight into the operation of the methods. This analysis also paved the way for
the description of a framework for multipass incremental SVD approaches, which were demonstrated via
numerical experiments.

The Incremental SVD methods were designed for the scenario where only a single pass through the
matrix A is available, and such a scenario does not admit any other computational options to our knowledge.
Though this setting clearly does not admit the application of the multipass methods developed here, the
multipass methods still enjoy low memory usage and unique memory access patterns. Further research
is necessary to identify cases where these methods may be preferred over other methods, e.g., iterative
eigenvalue computations on AT A.

Acknowledgments Useful discussions with Pierre-Antoine Absil, Petros Drineas, Danny Sorensen and
Heidi Thornquist are gratefully acknowledged.

References

[1] G. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore,
third edition, 1996.

[2] P. Businger. Updating a singular value decomposition. BIT, 10(3):376–385, 1970.

[3] James R. Bunch and Christopher P. Nielsen. Updating the singular value decomposition. Numerische

Mathematik, 31(2):111–129, 1978.

[4] B. S. Manjunath, S. Chandrasekaran, and Y. F. Wang. An eigenspace update algorithm for image
analysis. In IEEE Symposium on Computer Vision, page 10B Object Recognition III, 1995.

[5] A. Levy and M. Lindenbaum. Sequential Karhunen-Loeve basis extraction and its application to images.
IEEE Transactions on image processing, 9(8):1371–1374, August 2000.

[6] Y. Chahlaoui, K. Gallivan, and P. Van Dooren. An incremental method for computing dominant singular
spaces. In Computational Information Retrieval, pages 53–62. SIAM, 2001.

[7] M. Brand. Incremental singular value decomposition of uncertain data with missing values. In Proceed-

ings of the 2002 European Conference on Computer Vision, 2002.

[8] C. G. Baker. A block incremental algorithm for computing dominant singular subspaces. Masters Thesis
TR-041112, Department of Computer Science, Florida State University, 2004.

[9] Matthew Brand. Fast low-rank modifications of the thin singular value decomposition. Linear Algebra

and its Applications, 415(1):20–30, May 2006.

[10] Y. Chahlaoui, K. Gallivan, and P. Van Dooren. Recursive calculation of dominant singular subspaces.
SIAM J. Matrix Anal. Appl., 25(2):445–463, 2003.

[11] M. Gu and S. C. Eisenstat. A stable and fast algorithm for updating the singular value decomposition.
Technical Report YALEU/DCS/RR-966, Yale University, New Haven, CT, 1993.

[12] P.-A Absil, C. G. Baker, and K. A. Gallivan. Trust-region methods on Riemannian manifolds. Founda-

tions of Computational Mathematics, 7(3):303–330, July 2007.

10


