

Incremental Methods for Computing Extreme Singular Subspaces

Christopher G. Baker 1 Kyle A. Gallivan²

Paul Van Dooren³

 1 Computational Engineering & Energy Sciences, Oak Ridge National Laboratory, USA ²Department of Mathematics, Florida State University, USA 3 CESAME, Universitè catholique de Louvain, Belgium

> 2012 SIAM Conference on Linear Algebra Valencia, Spain

> > June 18, 2011

C.G. Baker, <http://www.csm.ornl.gov/~cbaker> — [Incremental SVD, SIAM Linear Algebra, June 18 2012](#page-12-0) 1/11

Dominant SVD Definition

Singular Value Decomposition

The singular value decomposition of an $m \times n$ matrix A is

$$
A = U \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^T
$$

with orthogonal U and V, Σ diagonal with non-negative entries.

Dominant SVD

The dominant SVD refers to the vectors of U and V corresponding the largest singular values. It has use in numerous applications:

- **a** model reduction
- **o** data compression
- **o** statistics

This is largely due to its optimality in approximating A .

Dominant SVD Computation

Computing the Dominant SVD

This can be done by:

- computing the full SVD and truncating (dense)
- computing the dominant eigenvectors of A^TA , AA^T or $\left[0,A^T;A,0\right]$
- non-linear attacks on $f(U, V, \Sigma) = AV U\Sigma = 0$
- **low-rank incremental SVD methods**

Basic Idea: given $B=U\Sigma V^T$ and B_+ , compute the SVD of $\begin{bmatrix} B & B_+\end{bmatrix}$.

- \bullet Do this for all columns of a matrix A and you get the SVD of A.
- \bullet But it costs more than the direct SVD of A . So why do it that way?
	- you need an online calculation, and that's how the data arrives
	-

Dominant SVD Computation

Computing the Dominant SVD

This can be done by:

- **o** computing the full SVD and truncating (dense)
- computing the dominant eigenvectors of A^TA , AA^T or $\left[0,A^T;A,0\right]$
- non-linear attacks on $f(U, V, \Sigma) = AV U\Sigma = 0$
- **low-rank incremental SVD methods**

Incremental/Updating SVD Approach

- Basic Idea: given $B=U\Sigma V^T$ and B_+ , compute the SVD of $\begin{bmatrix} B & B_+\end{bmatrix}$.
- \bullet Do this for all columns of a matrix A and you get the SVD of A.
- \bullet But it costs more than the direct SVD of A. So why do it that way?
	- you need an online calculation, and that's how the data arrives
	- ...

Dominant SVD Low-Rank Incremental Computation

A low-rank approximation

- Relax the previous incremental approach.
- $\overline{1)}$ Take a rank- k approximation $B\approx U\Sigma V^T$ and new vectors B_+
- 2) Update the SVD of $\begin{bmatrix} U\Sigma V^T & B_+ \end{bmatrix}$
- 3) Keep only the rank- k dominant part: $U_+ \Sigma_+ V_+^T$
- Result is $U_+ \Sigma_+ V_+^T \approx \begin{bmatrix} U \Sigma V^T & B_+ \end{bmatrix} \approx \approx \begin{bmatrix} B & B_+ \end{bmatrix}$

Input matrix A.

- $\ket{0}$ Initial rank- k factorization $U\Sigma V^T$ from the first few columns of A
- 1) For new columns A_+ from A , compute SVD of $\begin{bmatrix} U \Sigma V^T & A_+ \end{bmatrix}$
- (2) Keep the dominant part, truncate $U\Sigma V^T$ back to rank- k
- 3) If more columns in A, goto 1.

Dominant SVD Low-Rank Incremental Computation

A low-rank approximation

- Relax the previous incremental approach.
- $\overline{1)}$ Take a rank- k approximation $B\approx U\Sigma V^T$ and new vectors B_+
- 2) Update the SVD of $\begin{bmatrix} U\Sigma V^T & B_+ \end{bmatrix}$
- 3) Keep only the rank- k dominant part: $U_+ \Sigma_+ V_+^T$
- Result is $U_+ \Sigma_+ V_+^T \approx \begin{bmatrix} U \Sigma V^T & B_+ \end{bmatrix} \approx \approx \begin{bmatrix} B & B_+ \end{bmatrix}$

A Low-Rank Incremental SVD Method

Input matrix A.

- 0) Initial rank- k factorization $U\Sigma V^T$ from the first few columns of A
- 1) For new columns A_+ from A , compute SVD of $\begin{bmatrix} U \Sigma V^T & A_+ \end{bmatrix}$
- $\overline{2)}$ Keep the dominant part, truncate $U \Sigma V^T$ back to rank- k
- 3) If more columns in A, goto 1.

- **B. S. Manjunath, S. Chandrasekaran and Y. F. Wang.** An eigenspace update algorithm for image analysis, 1995.
- **S. Chandrasekaran, B. S. Manjunath, Y. F. Wang, J. Winkeler and H. Zhang.** An eigenspace update algorithm for image analysis, 1997.
- A. Levy and M. Lindenbaum. Sequential Karhunen-Loeve basis extraction and its application to images, 2000.
- Y. Chahlaoui, K. Gallivan and P. Van Dooren. An incremental method for computing dominant singular spaces, 2001.
- \bullet M. Brand. Incremental singular value decomposition of uncertain data with missing values, 2002.
- Y. Chahlaoui, K. Gallivan and P. Van Dooren. Recursive calculation of dominant singular subspaces, 2003.
- C. G. Baker. A block incremental algorithm for computing dominant singular subspaces, 2004.
- M. Brand. Fast low-rank modifications of the thin singular value decomposition, 2006.
- C. G. Baker, K. A. Gallivan, P. Van Dooren. Low-Rank Incremental Methods for Computing Dominant Singular Subspaces. 2012.

Low-Rank Incremental SVD Algorithmic Motivation

Benefits

- Reduced cost: rank-k IncSVD of $m \times n$ matrix in $O(mnk)$ flops.
- Reduced storage: $O(mk + nk)$, compared to $O(mn)$ for full SVD+trunc.
- \bullet Pass efficient: streaming access to A, for online analysis, distant storage
- The algorithm is rich in BLAS3 routines.
- Can be used to compute subordinate (smallest) SVD as well.

Downside

- The efficiency comes from truncating data, maintaining low rank.
- But truncated data introduces errors.
- The resulting factorization only approximates the dominant SVD.
- We would like to know:
	- **4** how well does it work?
	- **2** what exactly is it doing?

Low-Rank Incremental SVD What is it doing?

• Consider the IncSVD of the matrix AD , for some orthogonal D :

$$
D = \begin{bmatrix} D_1 & D_2 & \cdots & D_b \end{bmatrix}
$$

• At each step j, the method is shown to select V_i that optimizes

$$
RQ(Y) = \operatorname{trace}\left(Y^T A^T A Y\right),\,
$$

for $Y \in \text{span}(\begin{bmatrix} V_{j-1} & D_j \end{bmatrix})$

• For "standard" $D = I$, this is a sweep over the coordinate axes:

$$
D_j = \begin{bmatrix} 0 & \cdots & I & \cdots & 0 \end{bmatrix}^T
$$

• What else can we do with D ?

Restarting the IncSVD A Multi-pass Method

Restarting with D

- Choosing $D = \begin{bmatrix} V & \cdots \end{bmatrix}$ allows the procedure to be restarted.
- Representing $D=I+WY^T$ (rank- k update) maintains pass efficiency.

• Additionally, gradient information

 $\nabla RQ(Y) = A^T A V$

can be injected into D to speed convergence.

• Limited information can be efficiently injected into D in this way.

Provable Convergence [BGVD12]

- a) Global convergence, with stable convergence only to dominant subspaces.
- b) Linear convergence, with a rate $c = \gamma/(\kappa^2 1)$, where:
	- γ concerns the subspace information of truncated data
	- $\kappa = \sigma_k / \sigma_{k+1}$ is the gap between dominant and dominated

• These are expected of an ascent method.

C.G. Baker, <http://www.csm.ornl.gov/~cbaker> — [Incremental SVD, SIAM Linear Algebra, June 18 2012](#page-0-0) 9/11

Best and Worse Case Performance

Best Case

- For certain classes of matrices, a single pass will perfectly compute the dominant singular values and subspaces.
- This occurs when $\sigma_{k+1} = \sigma_{k+2} = \cdots = \sigma_n$.
- Analogous result holds for smallest singular values with $\sigma_1 = \cdots = \sigma_{n-k}$

• Consequences:

- \bullet $O(mnk)$ rank- $k+1$ IncSVD is capable of identifying all $\sigma \in \sigma(A)$
- ²⁷⁷

Worst Case

- The worst case performance seems to correspond to $\sigma_k = \sigma_{k+1}$, no gap.
- **•** Current analysis doesn't apply.
- **•** Convergence still seems to occur, albeit very slowly.

C.G. Baker, <http://www.csm.ornl.gov/~cbaker> — [Incremental SVD, SIAM Linear Algebra, June 18 2012](#page-0-0) 10/11

National Laborator

Extensions/Future Work

Extensions

- **o** Other factorizations:
	- tensor SVD/higher-order SVD [O'Hara 2010]
	- \bullet CX factorization, where C samples columns of A (data-driven apps.)
	- symmetry-preserving SVD [Shah, Sorensen 2006], other structured SVDs
- Sparsification procedures:
	- If A is sparse and the factorization is sparsified, sub-linear $O(\alpha nk)$ work
	- See [O'Hara 2010]

Future Work

- Global convergence is nice, but fast convergence is nice, too.
- Would like tighter bounds on single pass error.
- Need good stopping criteria for multi-pass method.
- Wanted: application.