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Dominant SVD
Definition

Singular Value Decomposition

The singular value decomposition of an m× n matrix A is

A = U

[
Σ
0

]
V T

with orthogonal U and V , Σ diagonal with non-negative entries.

Dominant SVD

The dominant SVD refers to the vectors of U and V corresponding the largest
singular values. It has use in numerous applications:

model reduction

data compression

statistics

This is largely due to its optimality in approximating A.
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Dominant SVD
Computation

Computing the Dominant SVD

This can be done by:

computing the full SVD and truncating (dense)

computing the dominant eigenvectors of ATA, AAT or
[
0, AT ;A, 0

]
non-linear attacks on f(U, V,Σ) = AV − UΣ = 0

low-rank incremental SVD methods

Incremental/Updating SVD Approach

Basic Idea: given B = UΣV T and B+, compute the SVD of
[
B B+

]
.

Do this for all columns of a matrix A and you get the SVD of A.

But it costs more than the direct SVD of A. So why do it that way?

you need an online calculation, and that’s how the data arrives
...
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Dominant SVD
Low-Rank Incremental Computation

A low-rank approximation

Relax the previous incremental approach.

1) Take a rank-k approximation B ≈ UΣV T and new vectors B+

2) Update the SVD of
[
UΣV T B+

]
3) Keep only the rank-k dominant part: U+Σ+V

T
+

Result is U+Σ+V
T
+ ≈

[
UΣV T B+

]
≈≈

[
B B+

]
A Low-Rank Incremental SVD Method

Input matrix A.

0) Initial rank-k factorization UΣV T from the first few columns of A

1) For new columns A+ from A, compute SVD of
[
UΣV T A+

]
2) Keep the dominant part, truncate UΣV T back to rank-k

3) If more columns in A, goto 1.
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Low-Rank Incremental SVD
Algorithmic Motivation

Benefits

Reduced cost: rank-k IncSVD of m× n matrix in O(mnk) flops.

Reduced storage: O(mk + nk), compared to O(mn) for full SVD+trunc.

Pass efficient: streaming access to A, for online analysis, distant storage

The algorithm is rich in BLAS3 routines.

Can be used to compute subordinate (smallest) SVD as well.

Downside

The efficiency comes from truncating data, maintaining low rank.

But truncated data introduces errors.

The resulting factorization only approximates the dominant SVD.

We would like to know:
1 how well does it work?
2 what exactly is it doing?
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Low-Rank Incremental SVD
What is it doing?

An Optimization Explanation [BGVD12]

Consider the IncSVD of the matrix AD, for some orthogonal D:

D =
[
D1 D2 · · · Db

]
At each step j, the method is shown to select Vj that optimizes

RQ(Y ) = trace
(
Y TATAY

)
,

for Y ∈ span(
[
Vj−1 Dj

]
)

For “standard” D = I, this is a sweep over the coordinate axes:

Dj =
[
0 · · · I · · · 0

]T
What else can we do with D?
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Restarting the IncSVD
A Multi-pass Method

Restarting with D

Choosing D =
[
V · · ·

]
allows the procedure to be restarted.

Representing D = I +WY T (rank-k update) maintains pass efficiency.

Accelerating with D

Additionally, gradient
information

∇RQ(Y ) = ATAV

can be injected into D to
speed convergence.

Limited information can
be efficiently injected into
D in this way.
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Convergence Properties
Does it work?

Provable Convergence [BGVD12]

a) Global convergence, with stable convergence only to dominant subspaces.

b) Linear convergence, with a rate c = γ/(κ2 − 1), where:

γ concerns the subspace information of truncated data
κ = σk/σk+1 is the gap between dominant and dominated

These are expected of an ascent method.
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Best and Worse Case Performance

Best Case

For certain classes of matrices, a single pass will perfectly compute the
dominant singular values and subspaces.

This occurs when σk+1 = σk+2 = · · · = σn.

Analogous result holds for smallest singular values with σ1 = · · · = σn−k

Consequences:

O(mnk) rank-k + 1 IncSVD is capable of identifying all σ ∈ σ(A)
???

Worst Case

The worst case performance seems to
correspond to σk = σk+1, no gap.

Current analysis doesn’t apply.

Convergence still seems to occur, albeit
very slowly.
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Extensions/Future Work

Extensions

Other factorizations:

tensor SVD/higher-order SVD [O’Hara 2010]

CX factorization, where C samples columns of A (data-driven apps.)
symmetry-preserving SVD [Shah, Sorensen 2006],
other structured SVDs

Sparsification procedures:

If A is sparse and the factorization is sparsified, sub-linear O(αnk) work
See [O’Hara 2010]

Future Work

Global convergence is nice, but fast convergence is nice, too.

Would like tighter bounds on single pass error.

Need good stopping criteria for multi-pass method.

Wanted: application.

C.G. Baker, http://www.csm.ornl.gov/~cbaker — Incremental SVD, SIAM Linear Algebra, June 18 2012 11/11

http://www.csm.ornl.gov/~cbaker

	Dominant Singular Value Decomposition
	Incremental SVD
	IncSVD Analysis
	IncSVD Convergence
	Future Work

