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We propose and analyze an “implicit” trust-region method in the general setting of Riemannian mani-
folds. The method is implicit in that the trust-region is defined as a superlevel set of the ρ ratio of the
actual over predicted decrease in the objective function. Since this method potentially requires the eval-
uation of the objective function at each step of the inner iteration, we do not recommend it for problems
where the objective function is expensive to evaluate. However, we show that on some instances of a very
structured problem—the extreme symmetric eigenvalue problem, or equivalently the optimization of the
Rayleigh quotient on the unit sphere—the resulting numerical method outperforms state-of-the-art algo-
rithms. Moreover, the new method inherits the detailed convergence analysis of the generic Riemannian
trust-region method.

Keywords: optimization on manifolds, trust-region methods, Newton’s method, symmetric generalized
eigenvalue problem

1. Introduction

Trust-region methods are widely used in the unconstrained optimization of smooth functions. Much of
the reason for their popularity is the superposition of strong global convergence, fast local convergence,
and ease of implementation. In Powell (1970b), Powell helped to establish a following for this family
of methods. In addition to proving global convergence of the method under mild conditions, the work
showed that the method was competitive with state-of-the-art algorithms for unconstrained optimization.
This launched a period of great interest in the methods; see Conn et al. (2000) and references therein.

Recently, there has been a significant interest in the theory and practice of the optimization of func-
tions defined on Riemannian manifolds. The goal of much of this effort has been the transfer of algo-
rithms and theory from classical (Euclidean) optimization to a Riemannian setting. These approaches
typically assume analogous conditions on the objective function and attempt to preserve the conver-
gence properties of their Euclidean counterparts. The Riemannian setting comes with some additional
overhead, but this effort is worthwhile. First, applications and theory developed in the generalized Rie-
mannian setting are immediately applicable to unconstrained Euclidean optimization; Euclidean space
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is, after all, a very friendly Riemannian manifold. Second, while some Riemannian optimization prob-
lems can be described as constrained Euclidean optimization problems, the theoretical overhead of the
(unconstrained) Riemannian setting negates the need for the complications associated with constrained
optimization, e.g., modifications to the conditions on optimality; adaptation of methods to handle the
constraints; the possibility of returning unfeasible points in the case of early termination from some
methods. Third, certain Riemannian optimization problems of significant interest cannot be easily recast
as constrained Euclidean optimization problems. In particular, Section 4.2 concerns the computation of
extreme eigenspaces of a positive definite matrix pencil.

There is a significant and growing literature regarding optimization on Riemannian manifolds. Much
work concerns the application of familiar methods from Euclidean optimization. The first Riemannian
optimization methods to be considered were steepest descent and Newton’s method; see, e.g., Luen-
berger (1972); Gabay (1982); Smith (1993); Helmke and Moore (1994); Udrişte (1994); Smith (1994);
Edelman et al. (1998); Adler et al. (2002); Dedieu et al. (2003) and references therein. A Riemannian
conjugate gradient method was presented in Smith (1993, 1994). This paper builds off of Absil et al.
(2007), which describes a trust-region framework for Riemannian optimization, the Riemannian Trust
Region method.

Similar to Euclidean trust-region methods, the Riemannian Trust-Region (RTR) method ensures
strong global convergence properties while allowing superlinear local convergence. The trust-region
mechanism is a heuristic, whereby the performance of the last update dictates the constraints on the
next update. The trust-region mechanism makes it possible to disregard the (potentially expensive)
objective function during the inner iteration by relying instead on a model restricted to a trust region,
i.e., a region where the model is tentatively trusted to be a sufficiently accurate approximation of the
objective function. A downside lies in the difficulty of adjusting the trust-region size. When the trust-
region radius is too large, valuable time may be spent proposing a new iterate that may be rejected.
Alternatively, when the trust-region radius is too small, the algorithm progresses unnecessarily slowly.

The inefficiencies resulting from the trust-region mechanism can be addressed by disabling the
trust-region mechanism in such a way as to preserve the desired convergence properties. For example,
in Gould et al. (2005), the authors describe a filter-trust-region method, where a modified acceptance
criterion seeks to encourage convergence to first-order critical points. Other approaches adjust the trust-
region radius according to dynamic measures such as objective function improvement and step size
lengths; see Conn et al. (2000).

Instead of relaxing the acceptance criterion, this paper proposes that the trust-region be identified as
that set of points that would have been accepted under the classical mechanism. Therefore, as long as
the update returned from the model minimization is feasible, i.e., it belongs to the trust-region, then ac-
ceptance is automatic. In addition to avoiding the discarding of valuable updates, this method eliminates
the explicit trust-region radius and its heuristic mechanism, in exchange for a meaningful measure of
performance. We refer to this new trust-region concept as the implicit trust-region and to the resulting
method as the Implicit Riemannian Trust-Region (IRTR) method.

The description of the algorithm and the analysis of convergence consider the optimization of a
smooth real function f whose domain is a differentiable manifold M with Riemannian metric g, i.e.,
a Riemannian manifold (M,g). Briefly, we exploit an intrinsic property of the manifold known as the
tangent plane at the current iterate x, denoted by TxM. This space, coupled with gx, is an abstract
Euclidean space (finite-dimensional, real, inner product space) where most of the effort of the solution
occurs via a mapping Rx from TxM to M (called a retraction). The retraction is used to lift the cost
function from the manifold to the tangent plane, where classical algorithms may be more easily and
efficiently applied.
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Section 2 reviews the workings of the RTR and describes the IRTR modification. Section 3 presents
the global and local convergence properties for the IRTR method. Section 4 reviews the conditions
required for an efficient application of the IRTR method and demonstrates the value of the algorithm for
the symmetric generalized eigenvalue problem.

2. Implicit Riemannian Trust-Region Method

This section briefly reviews the workings of the Riemannian Trust-Region (RTR) method and introduces
the Implicit Riemannian Trust-Region (IRTR) method. The attempt is made to limit the amount of
background material from differential geometry and Euclidean optimization. Interested readers are
recommended to see Boothby (1975) or do Carmo (1992) for theory on Riemannian manifolds. Trust-
region information can be found in most books on unconstrained optimization, for example Nocedal
and Wright (1999) or Conn et al. (2000). Readers interested in optimization on Riemannian manifolds
and the RTR are recommended Absil et al. (2007), Absil et al. (2008) and the references therein.

We assume that M is a differentiable manifold and g is a Riemannian metric on M. Together, (M,g)
describes a Riemannian manifold. For all x ∈M, the restriction

gx : TxM×TxM→ R.

of g to the tangent plane TxM defines an inner product on the vector space TxM.
Assume that f is a real-valued differentiable function defined on M. Let grad f (x) and Hess f (x)

denote the Riemannian gradient and Hessian, respectively. The Riemannian gradient grad f (x) is a
tangent vector in TxM, while the Riemannian Hessian Hess f (x) is a linear mapping from TxM to TxM
that is symmetric under gx.

The goal of the IRTR, like that of the RTR, is to find a local minimizer of the objective function

f : M→ R.

The RTR method, like Euclidean trust-region methods, computes iterates by solving a minimization
problem on a model of the objective function. However, the RTR performs this model minimization,
not on the manifold M, but on the tangent bundle T M. This is achieved through the use of a mapping
called a retraction.

Initially described in Shub (1986) and Adler et al. (2002) and further employed in Absil et al. (2007),
a retraction maps the tangent bundle T M to the manifold M. More specifically, a retraction R on M is a
differentiable mapping from T M to M such that Rx(0x) = x for all x ∈M (where 0x denotes the origin
of TxM) and that d

d t R(tξ )
∣∣
t=0 = ξ for all ξ ∈ TxM.

The retraction is used to define a “lifted” cost function

f̂ = f ◦R : T M→ R.

At a single point x ∈M, we can restrict the domain of f̂ to yield f̂x = f ◦Rx : TxM→ R. The definition
of a retraction ensures that the usual optimality conditions are transferred form f to f̂ : if grad f̂x(0) = 0
and Hess f̂x(0x) is positive definite, then grad f (x) = 0 and Hess f (x) is positive definite, so that x is a
local minimizer of f on M. This result is fundamental to the practice of retraction-based Riemannian
optimization.

It is important to note that the material that follows, since it is described for a general Riemannian
manifold, is immediately applicable to standard Euclidean space. Identify M = Rd along with the
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canonical identification TxM = Rd . Choose g as the canonical Euclidean inner product

gx(ξ ,ζ ) = ξ
T

ζ ,

along with the exponential retraction Rx(η) = Expxη = x + η . Then the approach described in this
paper results in an implicit trust-region method for functions defined on Rd , naturally endowed with all
of the accompanying theory.

The benefit of using a retraction is that the tangent plane, coupled with the Riemannian metric g, is an
abstract Euclidean space, and therefore a more familiar and convenient arena for conducting numerical
optimization. The RTR method follows the example of Euclidean trust-region methods by constructing
a model mx of f̂x and solving the trust-region subproblem using mx:

minimize mx(ξ ), subject to gx (ξ ,ξ ) 6 ∆
2, (2.1)

where ∆ is the trust-region radius. We assume through the paper that the model mx is a quadratic model
of f̂x which approximates f̂x to at least the first order:

mx(ξ ) = f̂x(0x)+gx
(
ξ ,grad f̂x(0x)

)
+

1
2

gx (ξ ,Hx[ξ ]) , (2.2)

where Hx[ξ ] is a symmetric operator on TxM and 0x is the additive identity in TxM.
The tangent vector ξ is used to generate a new iterate, which is accepted depending on the value of

the quotient

ρx(ξ ) =
f̂x(0x)− f̂x(ξ )

mx(0x)−mx(ξ )
. (2.3)

This quantity measures the ratio between the decrease in the objective function and the decrease pre-
dicted by the model. In addition to accepting/rejecting proposed iterates, ρx(ξ ) is also used to expand
or shrink the trust-region radius. For convenience, the RTR algorithm is restated in Algorithm 2.1.

ALGORITHM 2.1 Require: Complete Riemannian manifold (M,g); scalar field f on M; retraction R
Input: ∆̄ > 0, ∆0 ∈ (0, ∆̄), and ρ ′ ∈ [0, 1

4 ), initial iterate x0 ∈M
Output: Sequences of iterates {xk}

1: for k = 0,1,2, . . . do
— Model-based Minimization —

2: Obtain ηk by approximately solving (2.1)
3: Evaluate ρk = ρxk(ηk) as in (2.3)

— Adjust trust region —
4: if ρk < 1

4 then
5: Set ∆k+1 = 1

4 ∆k

6: else if ρk > 3
4 and ‖ηk‖= ∆k then

7: Set ∆k+1 = min(2∆k, ∆̄)
8: else
9: Set ∆k+1 = ∆k

10: end if
— Compute next iterate —

11: if ρk > ρ ′ then
12: Set xk+1 = Rxk(ηk)
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13: else
14: Set xk+1 = xk
15: end if
16: end for

The general algorithm does not state how (2.1) should be solved. We have previously advocated
the use of the truncated conjugate gradient method of Steihaug and Toint; see Steihaug (1983) or Toint
(1981) or Conn et al. (2000). This method has the benefit of requiring very little memory and returning
a point inside the trust-region. It also benefits in the ability to exploit a preconditioner when solving
the model minimization. Algorithm 2.2 states a preconditioned truncated conjugate gradient method for
solving the model minimization on the tangent plane. Note that superscripts are used on η to differenti-
ate between inner iterations; outer iterations of η are denoted by subscripts, as in Algorithm 2.1.

ALGORITHM 2.2 Input: Iterate x ∈M, grad f (x) 6= 0; trust-region radius ∆ ; convergence criteria κ ∈
(0,1), θ > 0; model mx as in (2.2); symmetric/positive definite preconditioner N : TxM→ TxM

1: Set η0 = 0x, r0 = grad f (x), z0 = N−1r0, d0 =−z0
2: for j = 0,1,2, . . . do

— Check κ/θ stopping criterion —
3: if ‖r j‖6 ‖r0‖min

{
κ,‖r0‖θ

}
then

4: return η j

5: end if
— Check curvature of current search direction —

6: if gx (Hx[d j],d j) 6 0 then
7: Compute τ > 0 such that η = η j + τd j satisfies ‖η‖N = ∆

8: return η

9: end if
— Generate next inner iterate —

10: Set α j = gx (z j,r j)/gx (Hx[d j],d j)
11: Set η j+1 = η j +α jd j

— Check trust-region —
12: if ‖η j+1‖N > ∆ then
13: Compute τ > 0 such that η = η j + τd j satisfies ‖η‖N = ∆

14: return η

15: end if
— Use CG recurrences to update residual and search direction —

16: Set r j+1 = r j +α jHx[d j]
17: Set z j+1 = N−1r j+1
18: Set β j+1 = gx

(
z j+1,r j+1

)
/gx (z j,r j)

19: Set d j+1 =−z j+1 +β j+1d j
20: end for

The simplest stopping criterion for Algorithm 2.2 would be to stop after a fixed number of iterations.
As above, we have previously elected to stop as soon as an iteration j is reached where

‖r j‖6 ‖r0‖min
{

κ,‖r0‖θ

}
. (2.4)

As will be discussed in Section 3.2, this strategy allows for an improved rate of convergence, by seeking
linear convergence early on and superlinear convergence as the algorithm progresses.
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The classical trust-region mechanism has many favorable features, including global convergence to
a critical point, stable convergence only to local minimizers, and superlinear local convergence (de-
pending on the choice of quadratic model and the method used to minimize it). These properties were
retained for the RTR method; see Absil et al. (2007). The trust-region heuristic is self-tuning, such that
an appropriate trust-region radius will eventually be discovered by the algorithm. In practice, however,
this adjustment can result in wasted iterations, as proposed iterates are rejected do to poor scores under
ρ .

We propose a modification to the trust-region method. This modification bypasses the step size
heuristic and directly addresses the model performance. The implicit trust-region at x is defined as a
superlevel set of ρx: {

ξ ∈ TxM : ρx(ξ ) > ρ
′} . (2.5)

The model minimization now consists of

minimize mx(ξ ), subject to ρx(ξ ) > ρ
′. (2.6)

The implicit trust-region contains exactly those points that would have been accepted by the clas-
sical trust-region mechanism. The result is that there is no trust-region radius to adjust and no explicit
acceptance/rejection scheme. The IRTR algorithm is stated in Algorithm 2.3.

REMARK 2.1 A more careful examination reveals that a satisfactory value of ρ does not ensure that
the next iterate produces a decrease in the objective function: an update η which increases the objective
function is in the implicit trust-region as long it produces a similar increase in the model. This is in
keeping with the classical trust-region presentation, which delayed the guarantee of model decrease
to the discussion of global convergence, at which point it becomes necessary. Note that the implicit
trust-region mechanism does ensure a decrease of any point in the trust-region, as long as there is also
decrease in the model. Furthermore, the truncated conjugate gradient method recommended in this
paper always produces a decrease in the model.

ALGORITHM 2.3 Require: Complete Riemannian manifold (M,g); scalar field f on M; retraction R
Input: ρ ′ ∈ (0,1), initial iterate x0 ∈M
Output: Sequences of iterates {xk}

1: for k = 0,1,2, . . . do
— Model-based Minimization —

2: Obtain ηk by approximately solving (2.6)
— Compute next iterate —

3: Set xk+1 = Rxk(ηk)
4: end for

The new trust-region definition modifies the model minimization, and these modifications must be
reflected in the truncated conjugate gradient solver. The trust-region definition occurs in the solver in
two cases: when testing that the CG iterates remain inside the trust-region and when moving along
a search direction to the edge of the trust-region. In the case of a trust-region collision during the
model minimization, the truncated CG for RTR (Algorithm 2.2, lines 7 and 13) would move along the
prescribed search direction to the edge of the trust-region, performing the search:

find τ > 0 such that η = η
j + τd j satisfies ‖η‖N .

Due to the simple description of the trust-region, this search is easily performed. It requires only the
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solution of a quadratic equation in one variable (namely, τ); see, for example, (Conn et al., 2000, pg.
206).

The analogous operation for the implicit trust-region is the following:

find τ > 0 such that η = η
j + τd j satisfies ρx(η) = ρ

′.

In general, this may not be as easily accomplished. Later theorems and lemmas prove the existence of
satisfactory points. However, finding them may require a search of ρx along directions of interest. In
such a case, it is desirable to relax the search, so that we require only a point inside the trust-region (not
necessarily on its edge). Therefore, our presentation of truncated CG for the IRTR assumes only this.
The updated truncated conjugate gradient algorithm is displayed in Algorithm 2.4.

ALGORITHM 2.4 Input: Iterate x ∈M, grad f (x) 6= 0; trust-region parameter ρ ′ ∈ (0,1); convergence
criteria κ ∈ (0,1), θ > 0; model mx as in (2.2); symmetric/positive definite preconditioner N :
TxM→ TxM

1: Set η0 = 0x, r0 = grad f (x), z0 = N−1r0, d0 =−z0
2: for j = 0,1,2, . . . do

— Check κ/θ stopping criterion —
3: if ‖r j‖6 ‖r0‖min

{
κ,‖r0‖θ

}
then

4: return η j

5: end if
— Check curvature of current search direction —

6: if gx (Hx[d j],d j) 6 0 then
7: Compute τ > 0 such that η = η j + τd j satisfies ρx(η) > ρ ′

8: return η

9: end if
— Generate next inner iterate —

10: Set α j = gx (z j,r j)/gx (Hx[d j],d j)
11: Set η j+1 = η j +α jd j

— Check trust-region —
12: if ρx(η j+1) < ρ ′ then
13: Compute τ > 0 such that η = η j + τd j satisfies ρx(η) > ρ ′

14: return η

15: end if
— Use CG recurrences to update residual and search direction —

16: Set r j+1 = r j +α jHx[d j]
17: Set z j+1 = N−1r j+1
18: Set β j+1 = gx

(
z j+1,r j+1

)
/gx (z j,r j)

19: Set d j+1 =−z j+1 +β j+1d j
20: end for

The benefit of the classical trust-region definition is that trust-region membership is easily deter-
mined, requiring only a norm calculation. The implicit trust-region, on the other hand, requires check-
ing the value of the update vector under ρ . Furthermore, there are two occasions in the truncated CG
method that require following a search direction to the edge of the trust-region. In the case of the implicit
trust-region, this will not in general admit an analytical solution and may require a search of ρ along
the direction of interest. In general, each evaluation of ρ will require evaluating the objective function
f , which will be unallowable in many applications.
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In the case that ρ admits an analytical solution, it may be possible to easily and efficiently search
for a satisfactory value of ρ along a tangent vector, in order to evaluate step 12 and satisfy steps 7 and
13 of Algorithm 2.4. If there is simply an efficient method for testing or even bounding below ρ , a
backtracking or binary search may be used to satisfy steps 7 and 13. Therefore, it is technically possible
to apply the IRTR method to any objective function; it bears restating that the efficiency of the method
is tied to the efficiency of evaluating and searching ρ .

We show in Section 4.2 that in a specific but very important application—computing the leftmost
eigenvector of a generalized eigenvalue problem—the IRTR algorithm can be implemented in a remark-
ably efficient way and yields an algorithm that outperforms state-of-the-art methods on certain instances
of the problem. In addition to providing an efficient application of the IRTR, this analysis will provide a
new look at an existing eigensolver, the Trace Minimization method Sameh and Wisniewski (1982) and
Sameh and Tong (2000). Before this, Section 3 will show that the IRTR inherits all of the convergence
properties of the RTR.

3. Convergence Analysis for IRTR

The mechanisms of the IRTR method are sufficiently different from those of the RTR method that
we must construct a separate convergence theory. We first study the global convergence properties of
the IRTR method (Algorithm 2.3). As in Absil et al. (2007), we assume mild conditions on the cost
function and the retraction; no assumptions are made concerning the method used to solve the model
minimization (2.6), except that there is a “sufficient decrease” on the model. For the RTR and Euclidean
trust-region methods, this is tied to the so-called Cauchy decrease. The modification of the trust-region
definition in the IRTR scheme requires revisiting the concept of the Cauchy point, and this endeavor
constitutes most of the effort in the global convergence analysis of Section 3.1.

We then analyze the convergence of the proposed method around nondegenerate local minima.
Specifically, this analysis is conducted in the context of Algorithm 2.3/2.4, referring to the IRTR method
where the trust-region subproblems are solved using the tCG algorithm with stopping criterion (2.4). It
is shown that the iterates of the algorithm converge to nondegenerate stationary points with an order of
convergence min(θ +1,2).

3.1 Global Convergence

The main objective of this section is to show that the sequence {xk} generated by Algorithm 2.3 satisfies
limk→∞ ‖grad f (xk)‖ = 0. This is the stronger of two global convergence results shown for the RTR
presented in Absil et al. (2007).

In the discussion that follows, (M,g) is a complete Riemannian manifold of dimension d and R is a
retraction on M, as defined in Absil et al. (2007). We assume that the domain of R is the whole of T M.
We denote by Pτ←0

γ v the vector of Tγ(τ)M obtained by parallel transporting the vector v ∈ Tγ(0)M along
the curve γ . We denote by ∇ the Riemannian connection on M and by dist(x,y) the distance between
two points on the manifold:

dist(x,y) = inf
γ

{∫ 1

0
‖γ̇(t)‖d t

}
,

where γ is a curve on M such that γ(0) = x and γ(1) = y.
We define

f̂ : T M→ R : ξ 7→ f (R(ξ )), (3.1)
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and denote by f̂x the restriction of f̂ to TxM, with gradient grad f̂x(0x) abbreviated grad f̂x. Recall
from (2.2) that mx has the form

mx(ξ ) = f̂x(0x)+gx
(
ξ ,grad f̂x

)
+

1
2

gx (ξ ,Hx[ξ ]) ,

with a direction of steepest descent at the origin given by

pS
x =− grad f̂x

‖grad f̂x‖
. (3.2)

The first-order convergence results for trust-region methods typically assume that mxk(ηk) is a suffi-
ciently good approximation of f̂xk(ηk). In (Conn et al., 2000, Theorem 6.4.6), this is guaranteed by the
assumption that the Hessian of the cost function is bounded. As in Absil et al. (2007), we will weaken
this assumption and assume that the cost function is radially Lipschitz continuously differentiable. This
concept is defined here for convenience.

Definition 3.1 (Radially L-C1 Function) Let f̂ : T M → R be as in (3.1). We say that f̂ is radially
Lipschitz continuously differentiable if there exist reals βRL > 0 and δRL > 0 such that, for all x ∈M,
for all ξ ∈ TxM with ‖ξ‖= 1, and for all t < δRL, it holds∣∣∣∣ d

dτ
f̂x(τξ ) |τ=t −

d
dτ

f̂x(τξ ) |τ=0

∣∣∣∣ 6 βRLt. (3.3)

The main effort here regards the concept of the Cauchy point. Introduced by Powell in his early
papers on the convergence of trust-region methods (Powell (1970a,b, 1975)), the Cauchy point is defined
as the point inside the current trust-region which minimizes the quadratic model mx along the direction
of steepest descent of mx. In trust-region methods employing a spherical or elliptical definitions of
the trust-region, the Cauchy point is easily computed. This follows from the fact that moving along a
tangent vector (in this case, the gradient of mx) will cause you exit the trust-region only once and never
re-enter it. However, for the IRTR method, depending on the function ρx, it may be possible to move
along a tangent vector, exiting and re-entering the trust-region numerous times. Therefore, it may be
difficult to compute the Cauchy point; in some cases, the Cauchy point may be at infinity.

One solution is to restrict consideration to a local trust region. Definition 3.2 defines the relevant
segment along the direction of steepest descent, and Definition 3.3 defines the local Cauchy point.
Theorem 3.1 describes the form of the local Cauchy point, while Theorem 3.2 gives a bound on its
decrease under the model mx. All of these results are analogous to theorems and concepts from classical
trust-region theory; see Nocedal and Wright (1999); Conn et al. (2000).

Definition 3.2 (Local Trust-Region) Consider an iterate x∈M, grad f̂x 6= 0, and a model mx as in (2.2).
Let ρx be defined as in (2.3) and let pS

x be the direction of steepest descent of mx, given in (3.2). The
local trust-region along pS

x is given by the following set:{
τ pS

x : 0 < τ 6 ∆x
}

,

where ∆x specifies the distance to the edge of the trust-region along pS
x , given by

∆x = inf
{

τ > 0 : ρx
(
τ pS

x
)

< ρ
′} . (3.4)
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The local Cauchy point will fulfill the same role as the Cauchy point, except that it is confined to the
local trust-region instead of the entirety of the trust-region. The formal definition follows.

Definition 3.3 (Local Cauchy Point) Consider an iterate x ∈ M, grad f̂x 6= 0, and a model mx. The
local Cauchy point pL

x is the point

pL
x = τx pS

x , (3.5)

where

τx = argmin
06τ6∆x

mx(τ pS
x ),

and where ∆x and pS
x are from Definition 3.3.

The local Cauchy point can be computed without leaving the trust-region. This makes it an attractive
target when solving the trust-region subproblem using a feasible point method. In fact, the truncated
conjugate gradient described earlier in the paper (Algorithm 2.4) begins with the local Cauchy point and
makes reduction from there. As such, the global convergence result for IRTR will require that every
solution to the trust-region subproblem produces at least as much decrease in mx as the local Cauchy
point. Therefore, we wish to describe this decrease. Before that, we present some helpful properties of
the local Cauchy point.

THEOREM 3.1 Consider an iterate x ∈ M, grad f̂x 6= 0, and ρ ′ ∈ (0,1). Then the local Cauchy point
takes the form

pL
x = τx pS

x ,

where

τx =

{
∆x, if γx 6 0

min
{

∆x,
‖grad f̂x‖3

γx

}
otherwise

γx = gx
(
grad f̂x,Hx[grad f̂x]

)
.

Furthermore, if f̂x is bounded below, then τx < ∞.

Proof. Assume first that γx 6 0. Then mx monotonically decreases as we move along pS
x , so that the

minimizer along pS
x inside [0,∆x] is τx pS

x = ∆x pS
x .

Assume instead that γx > 0. Then mx has a global minimizer along pS
x at τ∗pS

x , where

τ∗ =
gx

(
−pS

x ,grad f̂x
)

gx (pS
x ,Hx[pS

x ])
=
‖grad f̂x‖3

γx
.

If τ∗ ∈ (0,∆x), then τ∗ = min{∆x,τ∗}= τx is the minimizer of mx along pS
x in the local trust-region,

and τx pS
x is the local Cauchy point. Otherwise, ∆x 6 τ∗. Note that mx monotonically decreases along pS

x
between [0,τ∗], so that the minimizer of mx along pS

x between [0,∆x] occurs at ∆x = min{∆x,τ∗} = τx,
and τx pS

x is the local Cauchy point.
Assume now that f̂ is bounded below. We will show that τx < ∞. First consider when γ > 0. We

have that τx = min{τ∗,∆x}. But τ∗ is finite, so that τx is finite as well.
Consider now that γ 6 0. Assume for the purpose of contradiction that τx = ∞. Then ∆x = ∞, and
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for all τ > 0, ρx(τ pS
x ) > ρ ′. Then

lim
τ→∞

f̂x(0)− f̂x(τ pS
x ) = lim

τ→∞
ρx(τ pS

x )
(
mx(0)−mx(τ pS

x )
)

> lim
τ→∞

ρ
′ (mx(0)−mx(τ pS

x )
)

= ∞.

But this contradicts the assumption that f̂ is bounded below. Therefore, our initial assumption is false
and τx is finite. �

The next theorem concerns the decrease in mx associated with the local Cauchy point, as described
above. The proof is a straightforward modification of the classical result; see (Nocedal and Wright,
1999, Lemma 4.5) or (Conn et al., 2000, Theorem 6.3.1).

THEOREM 3.2 Take an iterate x ∈M, grad f̂x 6= 0, and ρ ′ ∈ (0,1). Then the local Cauchy point pL
x (as

given in Theorem 3.1) has a decrease in mx satisfying

mx(0)−mx(pL
x ) >

1
2
‖grad f̂x‖min

{
∆x,
‖grad f̂x‖
‖Hx‖

}
.

The last result needed before presenting the global convergence result proves that, under the radially
Lipschitz continuous assumption on f̂ , our local trust-region in the direction of steepest descent always
maintains a certain size. This property is necessary because the decrease in the local Cauchy point is
tied to the size of the local trust-region. The local trust-region cannot be allowed to shrink to zero if we
are to obtain a sufficient decrease of the model under the local Cauchy point. The following lemmas
guarantee that this situation does not occur.

LEMMA 3.1 Assume that f̂ is radially L-C1. Assume that there exists βH ∈ (0,∞) such that ‖Hx‖6 βH
for all x ∈M. Then for all ρ ′ ∈ (0,1), there exists β∆ > 0 such that, for all x ∈M, grad f̂x 6= 0, and all
t ∈ (0,1],

ρx
(
t min

{
β∆‖grad f̂x‖,δRL

}
pS

x
)

> ρ
′.

Proof. As a consequence of the radially L-C1 property, we have that∣∣ f̂x(ξ )− f̂x(0)−gx
(
grad f̂x,ξ

)∣∣ 6
1
2

βRL‖ξ‖2, (3.6)

for all x ∈M and all ξ ∈ TxM such that ‖ξ‖6 δRL.
Note that

ρx(ξ ) =
f̂x(0)− f̂x(ξ )

mx(0)−mx(ξ )
= 1− f̂x(ξ )−mx(ξ )

mx(0)−mx(ξ )
.

Let t ∈ (0,1]. Let ξ be defined

ξ = t min
{

β∆‖grad f̂x‖,δRL
}

pS
x .

Since
f̂x(ξ )−mx(ξ ) = f̂x(ξ )− f̂x(0)−gx

(
grad f̂x,ξ

)
− 1

2
gx (ξ ,Hx[ξ ])

it follows from (3.6) and from the bound on ‖Hx‖ that∣∣ f̂x(ξ )−mx(ξ )
∣∣ 6

1
2

βRLt2 min 2 {
β∆‖grad f̂x‖,δRL

}
+

1
2

βHt2 min 2 {
β∆‖grad f̂x‖,δRL

}
.

(3.7)
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Also note that

mx(0)−mx(ξ ) = t min
{

β∆‖grad f̂x‖,δRL
}
‖grad f̂x‖−gx (ξ ,Hx[ξ ])

and

|mx(0)−mx(ξ )|> t min
{

β∆‖grad f̂x‖,δRL
}
‖grad f̂x‖

− t2 min 2 {
β∆‖grad f̂x‖,δRL

}
βH .

(3.8)

Then combining (3.7) and (3.8), we have∣∣ f̂x(ξ )−mx(ξ )
∣∣

|mx(0)−mx(ξ )|
6

1
2

(βRL +βH)t min
{

β∆‖grad f̂x‖,δRL
}

‖grad f̂x‖− t min
{

β∆‖grad f̂x‖,δRL
}

βH

6
1
2

(βRL +βH)β∆‖grad f̂x‖
‖grad f̂x‖−β∆‖grad f̂x‖βH

=
1
2

(βRL +βH)β∆

1−β∆ βH
,

because t min
{

β∆‖grad f̂x‖,δRL
}

6 β∆‖grad f̂x‖. Then it is easy to see that there exists β∆ > 0 such
that

1
2

(βRL +βH)β∆

1−β∆ βH
< 1−ρ

′.

�

COROLLARY 3.1 (BOUND ON ∆x) It follows from Lemma 3.1 that, under the conditions required for
the lemma, ∆x > min

{
β∆‖grad f̂x‖,δRL

}
.

The convergence theory of the RTR method Absil et al. (2007) provides two results on global con-
vergence. The stronger of these results states that the accumulation points of any series generated by the
algorithm are critical points of the objective function. The definition of the implicit trust-region allows
to immediately prove this result, without passing first via the weaker result. The result and approach
are analogous to a classical result from Euclidean trust-region theory originally given in Shultz et al.
(1985); see (Nocedal and Wright, 1999, Theorem 4.8) or (Conn et al., 2000, Theorem 6.4.6) for modern
representations. Theorem 3.3 proves this for the IRTR method described in Algorithm 2.3.

THEOREM 3.3 (GLOBAL CONVERGENCE) Let {xk} be a sequence of iterates produced by Algo-
rithm 2.3, each grad f̂x 6= 0, with ρ ′ ∈ (0,1). Suppose that there exists βH ∈ (0,∞) such that each
‖Hxk‖6 βH . Suppose that each f̂xk is C1, and that f̂ is radially L-C1 and bounded below on the level set

{x : f (x) 6 f (x0)} .

Further suppose that each update ηk produces at least as much decrease in mxk as a fixed fraction of the
local Cauchy point. That is, for some constant c1 > 0,

mxk(0)−mxk(ηk) > c1‖grad f̂xk‖min

{
∆xk ,
‖grad f̂xk‖

βH

}
,

where the terms in this inequality are from Theorem 3.2.
Then

lim
k→∞
‖grad f (xk)‖= 0.
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Proof. Assume for the purpose of contradiction that the theorem does not hold. Then there exists ε > 0
such that, for all K > 0, there exists k > K such that

‖grad f (xk)‖> ε.

From the workings of Algorithm 2.3,

f (xk)− f (xk+1) = f̂xk(0)− f̂xk(ηk) = ρxk(ηk)
(
mxk(0)−mxk(ηk)

)
> ρ

′ (mxk(0)−mxk(ηk)
)

> ρ
′c1‖grad f̂xk‖min

{
∆xk ,
‖grad f̂xk‖

βH

}

> ρ
′c1‖grad f̂xk‖min

{
β∆‖grad f̂x‖,δRL,

‖grad f̂xk‖
βH

}
,

where the last inequality results from Corollary 3.1. Then for all K > 0, there exists k > K such that

f (xk)− f (xk+1) > ρ
′c1ε min

{
β∆ ε,δRL,

ε

βH

}
> 0.

But because f is bounded below and decreases monotonically with the iterates produced by the algo-
rithm, we know that

lim
k→∞

( f (xk)− f (xk+1)) = 0,

and we have reached a contradiction. Hence, our original assumption must be false, and the desired
result is achieved. �

3.2 Local Convergence

The local convergence results for the IRTR require significantly less modification from the RTR than did
the global convergence results. For the sake of brevity, only original proofs will be provided. Neglected
proofs may be found in Absil et al. (2007).

First, we ask one additional constraint be placed upon the retraction, in addition to the definition of
retraction from Absil et al. (2007). This is that that there exists some µ > 0 and δµ such that

‖ξ‖> µdist(x,Rx(ξ )), for all x ∈M, for all ξ ∈ TxM,‖ξ‖6 δµ . (3.9)

In particular, the exponential retraction satisfies (3.9) as an equality, with µ = 1. The bound is also
satisfied when R is smooth and M is compact.

We will state a few preparatory lemmas before moving on the to local convergence results.

LEMMA 3.2 (TAYLOR) Let x∈M, let V be a normal neighborhood of x, and let ζ be a C1 tangent vector
field on M. Then, for all y ∈V ,

P0←1
γ ζy = ζx +∇ξ ζ +

∫ 1

0

(
P0←τ

γ ∇γ ′(τ)ζ −∇ξ ζ
)

dτ,

where γ is the unique minimizing geodesic satisfying γ(0) = x and γ(1) = y, and ξ = Exp−1
x y = γ ′(0).
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LEMMA 3.3 Let v ∈M and let f be a C2 cost function such that grad f (v) = 0 and Hess f (v) is positive
definite with maximal and minimal eigenvalues λmax and λmin. Then, given c0 < λmin and c1 > λmax,
there exists a neighborhood V of v such that, for all x ∈V , it holds that

c0dist(v,x) 6 ‖grad f (x)‖6 c1dist(v,x).

The first local convergence result states that the nondegenerate local minima are attractors of Al-
gorithm 2.3/2.4. This theorem is unmodified from the same result for the RTR; see (Absil et al., 2007,
Theorem 4.12), which itself is closely related to the Capture Theorem (Bertsekas, 1995, Theorem 1.2.5).

THEOREM 3.4 (LOCAL CONVERGENCE TO LOCAL MINIMIMA) Consider Algorithm 2.3/2.4–i.e., the
Implicit Riemannian Trust-Region algorithm where the trust-region subproblem (2.1) is solved using
the modified truncated CG algorithm–with all the assumptions of Theorem 3.3 (Global Convergence).
Let v be a nondegenerate local minimizer of f , i.e., grad f (v) = 0 and Hess f (v) is positive definite.
Assume that x→ ‖H−1

x ‖ is bounded on a neighborhood of v and that (3.9) holds for some µ > 0 and
δµ > 0. Then there exists a neighborhood V of v such that, for all x0 ∈V , the sequence {xk} generated
by Algorithm 2.3/2.4 converges to v.

Now we study the order of convergence of the sequences that converge to a nondegenerate local
minimizer. This result is the same as for the RTR; see (Absil et al., 2007, Theorem 4.13). However, the
proof is slightly modified. The previous proof showed that the trust-region eventually becomes inactive
as a stopping condition on the truncated CG; this requires review under the new trust-region definition.

THEOREM 3.5 (ORDER OF LOCAL CONVERGENCE) Consider Algorithm 2.3/2.4. Suppose that R is
C2 retraction, that f is a C2 cost function on M, and that

‖Hxk −Hess f̂xk(0xk)‖6 βH‖grad f (xk)‖, (3.10)

that is, Hxk is a sufficiently good approximation of Hess f̂xk(0xk). Let v ∈ M be a nondegenerate local
minimizer of f , (i.e., grad f (v) = 0 and Hess f (v) is positive definite). Further assume that Hess f̂x(0x)
is Lipschitz-continuous at 0x uniformly in a neighborhood of v, i.e., there exist βL2, δ1 > 0 and δ2 > 0
such that, for all x ∈ Bδ1(v) and all ξ ∈ Bδ2(0x), there holds

‖Hess f̂x(ξ )−Hess f̂x(0x)‖6 βL2‖ξ‖. (3.11)

Then there exists c > 0 such that, for all sequences {xk} generated by the algorithm converging to v,
there exists K > 0 such that for all k > K,

dist(xk+1,v) 6 c(dist(xk,v))
min{θ+1,2} .

Proof. We will show below that there exist ∆̃ , c0, c1, c2, c3, c′3, c4, and c5 such that, for all sequences
{xk} satisfying the conditions asserted, all x ∈ M, all ξ with ‖ξ‖ 6 ∆̃ , and all k greater than some K,
there holds

c0dist(v,xk) 6 ‖grad f (xk)‖6 c1dist(v,xk), (3.12)

‖ηk‖6 c4‖gradmxk(0xk)‖6 ∆̃ , (3.13)

‖grad f (Rxk(ξ ))‖6 c5‖grad f̂xk(ξ )‖, (3.14)

‖gradmxk(ξ )−grad f̂xk(ξ )‖6 c3‖ξ‖2 + c′3‖grad f (xk)‖‖ξ‖, (3.15)

‖gradmxk(ηk)‖6 c2‖gradmxk(0)‖θ+1, (3.16)
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where {ηk} is the sequence of update vectors corresponding to {xk}. With these results at hand, the
proof is concluded as follows. For all k > K, it follows from (3.12) that

c0dist(v,xk+1) 6 ‖grad f (xk+1)‖= ‖grad f (Rxk(ηk))‖,

and from (3.14) that
‖grad f (Rxk(ηk))‖6 c5‖grad f̂xk(ηk)‖,

and from (3.13) and (3.15) and (3.16) that

‖grad f̂xk(ηk)‖6 ‖gradmxk(ηk)−grad f̂xk(ηk)‖+‖gradmxk(ηk)‖
6 (c3c2

4 + c′3c4)‖gradmxk(0)‖2 + c2‖gradmxk(0)‖θ+1,

and from (3.12) that
‖gradmxk(0)‖= ‖grad f (xk)‖6 c1dist(v,xk).

Consequently, taking K larger if necessary so that dist(v,xk) < 1 for all k > K, it follows that

c0dist(v,xk+1) 6 ‖grad f (xk+1)‖
6 c5(c3c2

4 + c′3c4)‖grad f (xk)‖2 + c5c2‖grad f (xk)‖θ+1

6 c5((c3c2
4 + c′3c4)c2

1(dist(v,xk))2 + c2cθ+1
1 (dist(v,xk))θ+1)

6 c5((c3c2
4 + c′3c4)c2

1 + c2cθ+1
1 )(dist(v,xk))min{2,θ+1}

for all k > K, which is the desired result. It remains to prove the bounds (3.12)-(3.16).
Equation (3.12) comes from Lemma 3.3 and is due to the fact that v is a nondegenerate critical point.

Equations (3.13)-(3.15) are proved in Absil et al. (2007).
It remains only to prove (3.16). Let γk denote ‖grad f (xk)‖. It follows from the definition of ρk that

ρk−1 =
mxk(ηk)− f̂xk(ηk)
mxk(0xk)−mxk(ηk)

. (3.17)

From Taylor’s theorem (3.2), there holds

f̂xk(ηk) = f̂xk(0xk)+gxk (grad f (xk),ηk)+
∫ 1

0
gxk

(
Hess f̂xk(τηk)[ηk],ηk

)
(1− τ)dτ.

It follows that∣∣mxk(ηk)− f̂xk(ηk)
∣∣ =

∣∣∣∣∫ 1

0

(
gxk

(
Hxk [ηk],ηk

)
−gxk

(
Hess f̂xk(τηk)[ηk],ηk

))
(1− τ)dτ

∣∣∣∣
6

∫ 1

0

∣∣gxk

(
(Hxk −Hess f̂xk(0xk))[ηk],ηk

)∣∣(1− τ)dτ

+
∫ 1

0

∣∣gxk

(
(Hess f̂xk(0xk)−Hess f̂ (τηk))[ηk],ηk

)∣∣(1− τ)dτ

6
1
2

βHγk‖ηk‖2 +
1
6

βL2‖ηk‖3.
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It then follows from (3.17), using the bound on the Cauchy decrease, that

‖ρk−1‖6
(3βHγk +βL2‖ηk‖)‖ηk‖2

6γk min{∆k,γk/β}
,

where β is an upper bound on the norm of Hxk . Since ∆k > min{β∆ γk,δRL} (Corollary 3.1) and
limk→∞ γk = 0 (in view of Theorem 3.3), we can choose K large enough that ∆k > β∆ γk, for all k > K.
This and ‖ηk‖6 c4γk yield

‖ρk−1‖6
(3βH +βL2c4)c2

4γ3
k

6min
{

β∆ , 1
β

}
γ2

k

.

Since limk→∞ γk = 0, it follows that limk→∞ ρk = 1.
Therefore, the trust-region eventually becomes inactive as a stopping criterion for the truncated CG.

Furthermore, because {xk} converges to v and Hess f (v) is positive definite, it follows that Hxk is positive
definite for all k greater than a certain K. This eliminates negative curvature of the Hessian as a stopping
criterion for truncated CG.

This means that the truncated CG loop terminates only after sufficient reduction has been made in
‖gradmxk(ηk)‖ with respect to ‖gradmxk(0xk)‖:

‖gradmxk(ηk)‖6 ‖gradmxk(0xk)‖
θ+1,

(choosing K large enough that ‖gradmxk(0xk)‖θ < κ for all k > K), or the model minimization has been
solved exactly, in which case gradmxk(ηk) = 0. In either case, we have satisfied (3.16). �

4. Applications

In this section, we review and discuss the essential ingredients for applying the IRTR-tCG method,
Algorithm 2.3/Algorithm 2.4. We then apply the IRTR method to the solution of generalized symmetric
eigenvalue problems. Numerical experiments show that the IRTR modification can improve on the
efficiency of the classical trust-region mechanism.

4.1 Checklist

The following ingredients are required for applying the IRTR method to optimizing a cost function f on
a Riemannian manifold (M,g):

1. a tractable numerical representation for points x on M, for tangent vectors in TxM, and for the
inner products gx(·, ·) on TxM,

2. a tractable retraction Rx : TxM→M,

3. formulas for f (x), grad f (x), and an approximate Hessian Hx[ξ ] that satisfy the properties required
for convergence in Section 3,

4. an efficient formula for evaluating or bounding ρx(ξ ) and an efficient method for searching along
ρx(tξ ), as needed by steps 7, 12 and 13 of Algorithm 2.4.
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The first three of these are requirements of the RTR method, with the third being required of trust-
region methods in general. The fourth requirement is unique to the IRTR.

All trust-region methods assume the ability to evaluate ρ for the purpose of accepting/rejecting
candidate iterates, as well as updating the trust-region radius. However, the occurrence of this evaluation
is relatively rare, occurring once per outer iteration. Each evaluation of ρ in general requires evaluating
the objective function f . The rarity of evaluating the objective function is one of the attractions of trust-
region methods; for many problems, evaluating the objective function is significantly more expensive
than evaluating the surrogate m.

However, in the case that ρ can be efficiently computed, either directly via f and m or indirectly via
some other formula or bound, it is possible to implement the IRTR. With simply an efficient formula for
ρ , Armijo-style backtracking searches can be employed to find a point in the implicit trust-region which
satisfy sufficient decrease conditions. This is similar to the technique employed in the Generic RTR
package (Baker et al. (2007)). This is an important point, as the global convergence result Theorem 3.3
requires a sufficient decrease with respect to the local Cauchy point.

The application considered in the next section provide formulas for evaluating ρ which are suffi-
ciently efficient to demonstrate the benefits of the IRTR method.

4.2 Application: Extreme Symmetric Generalized Eigenspaces

The generalized eigenvalue problem is often used as an example in Riemannian optimization, because
of its familiarity, its importance in numerous application, and its position as a function over a non-trivial
Riemannian manifold; see Helmke and Moore (1994); Edelman et al. (1998); Lundström and Eldén
(2002); Absil et al. (2002, 2004, 2007). In this section, we will demonstrate the applicability of the
IRTR for the solution of generalized eigenvalue problems. Along the way, our analysis will provide a
novel derivation of the Trace Minimization method of Sameh and Wisniewski (1982) and Sameh and
Tong (2000). Furthermore, this problem will illustrate the potential efficiency of the IRTR method over
the RTR method.

Given two n×n matrices, λ is an eigenvalue if there exists a non-zero vector v such that

Av = Bvλ .

If A is symmetric and B is symmetric/positive definite then the generalized eigenvalue problem is said
to be symmetric/positive definite. In this case, the eigenvalues are all real and the eigenvectors are
B-orthogonal (and can be chosen B-orthonormal).

Let the eigenvalues of the pencil (A,B) be λ1 6 λ2 6 . . . 6 λn. Consider the p leftmost eigenvalues,
λ1, . . . ,λp, and corresponding eigenvectors, v1, . . . ,vp. We will assume below, though it is not strictly
necessary, that λp < λp+1. It is known that the n× p matrix containing the leftmost eigenvectors is a
global minimizer of the generalized Rayleigh quotient

f : Rn×p
∗ → R : X 7→ trace

(
(XT BX)−1(XT AX)

)
,

where Rn×p
∗ is the set of n× p real matrices of full column rank.

It is easily shown that the generalized Rayleigh quotient depends only on the subspace spanned
by the columns of X , denoted colsp(X). Therefore, f induces a real-valued function on the set of p-
dimensional subspaces of Rn. This set is the Grassmann manifold Grass(p,n), and it can be endowed
with a Riemannian structure.
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As in Absil et al. (2004, 2007), we will treat the Grassmann manifold Grass(p,n) as the quotient
manifold Rn×p

∗ /GLp of the noncompact Stiefel manifold by the set of transformations that preserves col-
umn space. In this approach, a subspace in Grass(p,n) is represented by any n× p matrix whose columns
span the subspace. A real function h on Grass(p,n) is represented by its lift h↑(X) = h(colsp(X)).
This flexibility in representing points on the Grassmann means that some extra consideration has to be
made when looking for a unique representation of tangent vectors. To represent a tangent vector ξ to
Grass(p,n) at a point X = colsp(X), we will define a horizontal space HX . Then ξ is uniquely repre-
sented by its horizontal lift ξ↑X , which is in turn defined by the following conditions: (i) ξ↑X ∈HX and
(ii) D h(X )[ξ ] = D h↑(X)[ξ↑X ] for all real functions h on Grass(p,n). In this way, the horizontal space
HX represents the tangent space TX Grass(p,n).

To simplify the derivation of the gradient and Hessian of the Rayleigh cost function, we define the
horizontal space at X as

HX =
{

Z ∈ Rn×p : ZT BX = 0
}

(4.1)

and employ the non-canonical Riemannian metric

gX (ξ ,ζ ) = trace
(
(XT BX)−1

ξ
T
↑X ζ↑X

)
, . (4.2)

We use the retraction
RX (ξ ) = colsp(X +ξ↑X ) (4.3)

The objective function is the generalized Rayleigh quotient, defined from this point forward as
follows:

f : Grass(p,n)→ R : colsp(X) 7→ trace
(
(XT BX)−1(XT AX)

)
. (4.4)

The retraction is used to lift this function from the manifold to the tangent plane, yielding

f̂ : T Grass(p,n)→ R : ξ 7→ f (R(ξ )), (4.5)

and, as before, f̂X is this function restricted to TX Grass(p,n).
We denote by PBX the orthogonal projector onto the horizontal space HX :

PBX := I−BX(XT B2X)−1XT B

An expansion of f̂X yields:

f̂X (ξ ) = trace
((

(X +ξ↑X )T B(X +ξ↑X )
)−1 (X +ξ↑X )T A(X +ξ↑X )

)
= trace

(
(XT BX)−1XT AX

)
+2trace

(
(XT BX)−1

ξ
T
↑X AX

)
+ trace

(
(XT BX)−1

ξ
T
↑X

(
Aξ↑X −Bξ↑X (XT BX)−1XT AX

))
+HOT

= trace
(
(XT BX)−1XT AX

)
+2trace

(
(XT BX)−1

ξ
T
↑X PBX AX

)
+ trace

(
(XT BX)−1

ξ
T
↑X PBX

(
Aξ↑X −Bξ↑X (XT BX)−1XT AX

))
+HOT,

(4.6)

where the introduction of the projectors does not modify the expression since PBX ξ↑X = ξ↑X . Then using
the Riemannian metric (4.2), we can make the following identifications:

(grad f (X ))↑X =
(
grad f̂X (0X )

)
↑X = 2PBX AX , (4.7)(

Hess f̂X (0X )[ξ ]
)
↑X = 2PBX

(
Aξ↑X −Bξ↑X (XT BX)−1XT AX

)
. (4.8)
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An efficient implementation of the implicit RTR requires an understanding of the improvement ratio
ρ , repeated here:

ρX (ξ ) =
f̂X (0X )− f̂X (ξ )

mX (0X )−mX (ξ )
,

for all ξ ∈ TX Grass(p,n) and where mX is the quadratic model chosen to approximate f̂X :

mX (ξ ) = f (X )+gX (grad f (X ),ξ )+
1
2

gX (HX [ξ ],ξ ) . (4.9)

Note that the model Hessian HX has been left unspecified, as its effect on mX , and therefore on ρX ,
may cause us to prefer one form over another. In the discussion that follows, we will examine two
choices for the model Hessian.

4.2.1 Case 1: TRACEMIN Model We assumed above the matrices A and B are both symmetric and
that B is positive definite. Consider the case now where A is positive semi-definite. Consider also the
following choice for the model Hessian:

(HX [ξ ])↑X = 2PBX APBX ξ↑X .

This operator is symmetric/positive definite, hence the model (2.2) admits a unique unconstrained min-
imizer. For simplicity, assume also that the basis X representing X is B-orthonormal (this is easily
enforced in the retraction). The trust-region subproblem (2.6) now consists of the following:

minimize trace
(
XT AX +2ξ

T
↑X PBX AX +ξ

T
↑X PBX APBX ξ↑X

)
,

such that ξ
T
↑X BX = 0 and ρX (ξ ) > ρ

′.
(4.10)

If we neglect the trust-region requirement, then we are left with the following problem:

minimize trace
(
XT AX +2ξ

T
↑X PBX AX +ξ

T
↑X PBX APBX ξ↑X

)
,

such that ξ
T
↑X BX = 0.

(4.11)

This precisely is one of the approaches suggested for the Trace Minimization Algorithm (TRACEMIN)
in Sameh and Wisniewski (1982) and Sameh and Tong (2000). The authors show in those works the
following inequality:

f̂X (ξ ) = trace
((

I +ξ↑X )T Bξ↑X
)−1 (X +ξ↑X )T A(X +ξ↑X )

)
6 trace

(
(X +ξ↑X )T A(X +ξ↑X )

)
= mX (ξ ).

(4.12)

Recall from the model definition that mX (0X ) = f̂X (0X ). Inserting this into Equation (4.12), we
yield the following:

f̂X (0X )− f̂X (ξ ) > mX (0X )−mX (ξ ).

Then any ξ ∈ TX Grass(p,n) produces at least as much decrease in the objective function as in the
model. Returning to the context of the implicit trust-region, this means that ρ satisfies the following:

ρX (ξ ) =
f̂X (0X )− f̂X (ξ )

mX (0X )−mX (ξ )
> 1.
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As a result of this and the assumption that ρ ′ 6 1, the implicit trust region (2.6) is the whole of
TX Grass(p,n), and the solution of (4.11) is the unique solution of (4.10). In this way, the Trace Mini-
mization method is equivalent to the Implicit Riemannian Trust-Region method for a particular choice
of the model Hessian. The Trace Minimization method inherits the convergence analysis of the IRTR,
in addition to that provided by its authors.

Note that because the entirety of the tangent plane lies inside the implicit trust-region and because
the model Hessian is positive definite, the truncated CG algorithm will terminate only when it has
sufficiently reduced the gradient of the model, i.e., the residual of the linear system

HX [ξ ] =−grad f (X ).

Then these methods could be described as quasi-Newton approaches, with the added benefit that the
implicit trust-region mechanism provides stable convergence only to local minimizers.

However, an unfortunate consequence of the Hessian choice (HX [ξ ])↑X = 2PBX APBX ξ↑X is that it
does not adequately approximate the actual Hessian of f̂ . As a result, the method yields only a linear rate
of convergence. This result was known by the authors of TRACEMIN, due to the relationship between
optimal TRACEMIN and the subspace iteration method; see Sameh and Wisniewski (1982) or Sameh
and Tong (2000). The approach in the following subsection addresses the slow convergence by using a
more accurate model Hessian.

4.2.2 Case 2: Newton Model Relax the TRACEMIN assumption that A is positive definite. Consider
the case where the quadratic model mX is chosen as the Newton model, i.e., the quadratic Taylor
expansion of f̂X :

mX (ξ ) = f (X )+gX (grad f (X ),ξ )+
1
2

gX

(
Hess f̂X (0X )[ξ ],ξ

)
.

We wish to perform an analysis of ρX for the Newton model just as we did for the TRACEMIN
model. Assume as before that X is represented by a B-orthonormal basis, i.e. XT BX = I. Take some
tangent vector η ∈ TX Grass(p,n). Consider the denominator of ρX (η):

mX (0X )−mX (η) =−gX (grad f (X ),η)− 1
2

gX (HX [η ],η)

=−2trace
(
η

T
↑X AX

)
− trace

(
η

T
↑X Aη↑X −η

T
↑X Bη↑X XT AX

)
= trace

(
η

T
↑X Bη↑X XT AX−2η

T
↑X AX−η

T
↑X Aη↑X

)
= trace

(
M̂

)
,

(4.13)

for M̂ = ηT
↑X Bη↑X XT AX−2ηT

↑X AX−ηT
↑X Aη↑X . Consider the numerator:

f̂X (0X )− f̂X (η) = f (colsp(X))− f (colsp(X +η↑X ))

= trace
(

XT AX−
(
(X +η↑X )T B(X +η↑X )

)−1 (X +η↑X )T A(X +η↑X )
)

= trace
((

I +η
T
↑X Bη↑X

)−1 (
η

T
↑X Bη↑X XT AX−2η

T
↑X AX−η

T
↑X Aη↑X

))
= trace

(
(I +η

T
↑X Bη↑X )−1M̂

)
.

(4.14)
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Combining Equations (4.13) and (4.14) allows ρX (η) to be written as follows:

ρX (η) =
trace

(
(I +ηT

↑X Bη↑X )−1M̂
)

trace
(
M̂

) . (4.15)

Note that in the specific case of p = 1, i.e., the solution for a single eigenpair, the Equation (4.15)
simplifies to

ρX (η) =
1

1+ηT
↑X Bη↑X

. (4.16)

This formula provides both of the ingredients for an efficient implementation of Algorithm 2.3/2.4: a
trivial evaluation of ρX (η), and an efficient search along η for some ρX (tη) = ρ ′. Contrast this with
the formula (4.15), which currently defies efficient evaluation and/or search.

This formula for ρX enables the two actions required to efficiently implement the IRTR: an efficient
method for evaluating ρX (η); and the ability to efficiently move along a search direction to the edge
of the trust-region. The result can be thought of as an inexact Newton iteration along with stopping
criterion that ensure strong global convergence results and a fast rate of local convergence.

This technique, like that resulting from applying the RTR to this problem, has many similarities to
the Jacobi-Davidson method Sleijpen and Van der Vorst (1996). In Notay (2002), the author developed
an analysis which (inexpensively) provides knowledge of the residual of the outer (eigenvalue) iteration
based on the conjugate gradient coefficients used to solve the Jacobi-Davidson correction equation.
Notay suggests exploiting this information as a stopping criterion for the inner iteration. His suggestion
involves stopping the inner iteration when the marginal decrease in the outer residual norm is less than
some fraction of the marginal decrease in the inner residual norm. The implicit trust-region, on the
other hand, is comprised of strictly those points where the decrease under the objective function is some
fraction of the decrease of the quadratic model. In this regard, both approaches strive to stop the inner
iteration when it becomes inefficient or irrelevant with regard to the outer iteration, though the IRTR
does this in a way that yields strong global convergence results.

4.2.3 Numerical Results This section illustrates the potential efficiency of the IRTR method over the
RTR method for the problem of computing the leftmost eigenpair of a symmetric/positive definite matrix
pencil. The IRTR is also compared against the LOBPCG method from Knyazev (2001), as implemented
in Hetmaniuk and Lehoucq (2006). This method was chosen because it implements a state-of-the-
art optimization-oriented, CG-based eigensolver. Both methods were implemented in C++ using the
Anasazi eigensolver package of the Trilinos package (see Baker et al. (2005) and Heroux et al. (2003)).
Tests were conducted in serial (i.e., one processor).

The pencil used for experimentation derives from a finite element discretization (with linear basis
functions) of a one-dimensional Laplacian. The parameter n refers to the number of elements in the
discretization. The parameter ρ ′ is the acceptance parameter for the RTR and the trust-region parameter
for IRTR. IRTR was evaluated for multiple values of ρ ′, to illustrate the effect of the parameter on the
efficiency of the method. Table 1 lists the results of the comparison.

This testing shows that the IRTR has the potential to exceed the performance of the RTR, while
maintaining competitiveness against methods designed specifically for solving this class of problems.
One benefit of the IRTR method is to reduce the number of parameters controlling the iteration by elim-
inating those parameters corresponding to the trust-region radius. However, the performance parameter
ρ ′ still must be selected by the user. The results in Table 1 indicate that the performance of the method



22 of 24 C. G. BAKER ET AL.

is tied to this parameter. Future research and experiments are necessary to determine how this parameter
should be selected.

5. Concluding remarks

We presented the Implicit Riemannian Trust-Region method, a modification to the classical trust-region
mechanism. This work shows that the explicit radius of the classical trust-region mechanism can be
relaxed, as long as the objective function decrease is some fixed fraction of the model decrease. The
resulting method has the potential for increased performance.

The algorithm was described in the context of Riemannian optimization. The Riemannian setting
adds a small amount of overhead relative to a Euclidean setting, especially for those readers not familiar
with Riemannian geometry. On the other hand, a Riemannian manifold structure can be thought of as
the most basic structure that the optimization domain must possess for smooth optimization techniques
to be applicable. We believe that the greater generality of the approach is worth the effort.

The capability for increased performance was demonstrated via the computation of an extreme
eigenvector of a symmetric matrix pencil. On this problem, the algorithm outperformed the RTR method
as well as a state-of-the-art eigensolver. Future research is necessary to identify other applications ap-
propriate for the IRTR method.
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