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Abstract

In a previous paper we state the dominant term in the third central moment of the

maximum likelihood estimator k̂ of the parameter k in the negative binomial probability

function where the probability generating function is (p + 1 − pt)−k. A partial sum of

the series
∑

1/(k + x)3 is involved, where x is a negative binomial random variate. In

expectation this sum can only be found numerically using the computer. Here we give

a simple definite integral in (0,1) for the generalized case. This means that now we do

have a valid expression for
√

β11(k̂) and
√

β11(p̂). In addition we use the finite difference

operator ∆, and E = 1 + ∆ to set up formulas for low order moments. Other examples of

the operators are quoted relating to the orthogonal set of polynomials associated with the

negative binomial probability function used as a weight function.
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1 Introduction

In a previous paper (Bowman and Shenton, 2007) we have given a formulas for the

basic skewness of the maximum likelihood estimators k̂, p̂ of k, p in sampling from

the probability function whose probability generating function is (p+1−pt)−k, k > 0,

p > 0. The skewness of k̂, for example, is
√

β11(k̂) which is the 1/
√
N coefficient of

the skewness itself, N the sample size. In fact from Bowman and Shenton (Section

(4.4) and (5), 2007), we have

√

β11(k̂) = [V ar1(k̂)]
3/2

{

−2E3(x)] − 3
∂F1(k, p)

∂k
+

3r

kp

∂F1(k, p)

∂r
− 4r(1 + r)

k2

}

where

r
∂F1(k, p)

∂k
= −

∞
∑

x=1

rx

x

(x− 1)!Γ(k)

Γ(k + x)
[ψ(k + x) − ψ(k)],

and

r
∂F1(k, p)

∂r
=

∞
∑

x=1

rx(x− 1)!Γ(k)

Γ(k + x)
(0 < r < 1.k > 0)

and ψ(k + x) − ψ(x) = 1
k

+ 1
k+1

+ · · ·+ 1
k+x−1

, x = 1, 2, . . ..

For the skewness of
√

β11(p̂), the triplet Tr(αβγ) = {−2E [S3(x)] − · · ·} terms

idendical to k̂ displayed in above equation. Only the multiplier triplet of Lij will be

different.

B(kkk) = −V ar1(k̂)3 p
3

k3
, B(kkp) = V ar1(k̂)

2 p
2

k2

(

pq

k
+
p2

k2
V ar1(k̂)

)

,

B(kpp) = −V ar1(k̂)
p

k

(

pq

k
+
p2

k2
V ar1(k̂)

)2

, B(ppp) =

(

pq

k
+
p2

k2
V ar1(k̂)

)3

.

The term −2ES3 = −2ES3(x, k) in algebraic form has remained a problem, al-

though numerically it is easily evaluated using the Maple implementation. In this

study we have discovered a simple definite integral form exploiting the fact that

1

kj
=

1

(j − 1)!

∫

∞

0
e−kωωj−1dω. (k > 0, j = 1, 2, . . .).

In another direction we consider the moments of the random variate 1/(k+x) using

the finite difference operators ∆ and E = 1+∆. Simple illustrations of the application

of these operators are given for examples E(xr), the rth noncentral moment, E(x −
kp)r, the rth central moment. Cumulants of the negative binomial variate are also

mentioned. A brief mention is given for the work of A.C. Aitken and H.T. Gronin,

relating to Vandermond and Gregory-Newton.
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2 Basic formulas

2.1 The probability function

The probability generating function for the negative binomial distribution we are

studying is

B(t; k, p) = (p+ 1 − pt)−k (p > 0, k > 0)

and

Pr(X = x) = (q)−k

(

p

q

)x
Γ(k + x)

Γ(k)x!
. (q = p+ 1, x = 0, 1, . . .) (1)

We may sometimes set r = p/q = p/(p+ 1), so that 0 < r < 1 and

Pr(X = x) = (1 − r)krxΓ(k + x)

Γ(k)x!
.

The probability generating function (p.g.f.) is

(p+ 1 − pt)−k. (2)

2.2 Finite difference operators E and ∆ and moments

Johnson and Kotz (1969) quote a formula for µ′

j (the jthe non-central moment) in

the form

µ′

j = (1 − p∆)−k0j.

They prove this starting with

µ′

j =
∞
∑

s=1

sj





k + s− 1

k − 1





(

p

q

)s (

1 − p

q

)k

allowing for our notation. They then say “Formally” (2) follows. Why formally?

A simpler demonstration is

µ′

j = Exj − EEx(0j) = (1 − p∆)−k(0j),

fundamentally two lines. E represents expectation.

For central moments we have

µj = E(x− kp)j = EEx(0 − kp)j = (1 − p∆)−k(0 − kp)j.

The underlined elements are those on which the E operator works. Factorial moments

µ[j] are found from
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E(1 + α)x = [p+ 1 − p(1 + α)]−k = (1 − pα)−k.

Then µ[1] = kp, µ[2] = k(k + 1)p2 and so on.

Cumulants can be set up using the equation (moments about the mean)

e
κ2α2

2!
+

κ3α3

3!
+

κ4α4

4!
+··· =

e−kpα

(p+ 1 − peα)k
,

and taking logarithmic derivatives with respect to α, leads to

1

k

(

κ2α
2

1!
+
κ3α

2

2!
+
κ4α

3

3!
+ · · ·

)

= −p+
peα

q − peα
= −q +

q

q − peα
.

Hence
{

1 +
1

kq

(

κ2α
2

1!
+
κ3α

2

2!
+
κ4α

3

3!
+ · · ·

)}

H(α, p) = 1

where

H(α, p) = 1 − pα− p2α2

2!
− · · · − pjαj

j!
− · · · .

Equating coefficients of αj

j!
to zero leads to the recurrence for cumulants, namely

κj−1 = p











j

1



κj +





j

2



 κj−1 + · · ·+




j

j − 1



κ2 + kq







for j = 1, 2, . . ., κ1 being zero.

In the case of a geometric distribution, (k = 1), the reader is referred to is Shenton

and Bowman (2001).

2.3 The shape of the probability function

Johnson and Kotz (1969) sketch the probability function in four cases (p.128); (k, p) =

(1, 2), (2,1), and (5,0.4), the fourth case being kp = 2.

Some properties

(i) If kp > q there is a mode at the least integer not less than kpq; two equal

modes if kp = q.

(ii) If kp < q the mode is at k = 0.

These brief descriptions seem sufficient to demonstrate that shape characteristics

of the probability function may be complicated.
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2.4 Further formulas involving E and ∆

For the binomial random variate, Aiken and Gonen (1934-1935) find the expression

Pj(x) = (1 + p∆)−(n−j+1)x(j) (j = 1, 2, . . . ; 0 < p < 1)

for a member of the orthogonal set {Pj(x)} with

∆Pj(x) = jPj−1(x : X, n− 1),

and the inverse,

x(j) = (1 + p∆)n−j+1Pj(x).

For a Poisson variate,

κj(x) = e−m∆x(j)

with ∆κj = jκj−1 and inverse x(j) = em∆κj(x). These results have been, to some

extent, overlooked in the literature partly because of the unfortunate titles referring

to “fourfold sampling”.

A year earlier than the above paper (vol. LIM, 1932-1933), Aiken published a

paper “On the Graduation of Data by the Orthogonal Polynomials of Least Squares”.

In the first few pages he set out the fundamental properties of the operators ∆ and

E (note that Euler in the eighteenth century mentions ∆). Aiken defines ‘summation

by parts’ and the half interval difference δux = ux+ 1

2

− ux− 1

2

, and also states several

identities including some due to Vandermond. Examples:

Identities in Factorial Polynomial.

(xxi) (x+m)(r) = x(r) + rx(r−1)m + r[1]x
(r−2)m(2) + · · ·+m(r).

(xxii) (x+m)(r) = x(r) + x(r−1)m+ x(r−2)(m+ 1)(2) + · · ·+m(r).

(xxiii) (x−m)(r) = x(r) − rx(r−1)m+ r[1]x
(r−2)(m+1)(2) −· · ·+(−)r(m+ r− 1)(r).

(xxiv) (x −m)(r) = x(r) − x(r−1)m + x(r−2)(m + 1)(2) − · · · + (−)r(m + r − 1)(r).

The above give various forms of Vandermonds’s familiar algebraic forms. or these it

is generally assured that r is a positive integer, x and m reals in symbollic forms we

may work

(x +m)(r) = Em(x + 0)(m) = (1 + ∆)mx(r),

(x−m)(r) = E−m(x− 0)(m) = (1 + ∆)−mx(r).

Aiken seems to regard these identities as examples of the Gregory-Nelson interpola-

tion formulas.
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In the sequel we shall consider the psi function difference ψ(k + x) − ψ(k) =
1
k

+ 1
k+1

+ · · · + 1
k+x−1

, (k > 0, x = 1, 2, . . .) and its derivatives using the finite

dirrerence calculus.

2.5 Skewness,

√

β11(k̂),
√

β11(p̂)

In a recent paper, Bowman and Shenton (2007), we have studied the skewness (µ3/σ
3)

of maximum likelihood estimators k̂, p̂ for k, p respectively. The final approximation

for the skewness of k̂ is

√

β11(k̂) = [V ar1(k̂)]
3/2

{

−2E[S3(x)] − 3
∂F1(k, p)

∂k
+

3r

kp

∂F1(k, p)

∂r
− 4r(1 + r)

k2

}

where
∂F1(k, p)

∂k
= −

∞
∑

x=1

rx

x

(x− 1)!Γ(k)

Γ(k + x)
[ψ(k + x) − ψ(k)],

and

r
∂F1(k, p)

∂r
=

∞
∑

x=1

rx(x− 1)!Γ(k)

Γ(k + x)
(0 < r < 1, k > 0)

and ψ(k + x) − ψ(x) = 1
k

+ 1
k+1

+ · + 1
k+x−1

, x = 1, 2, . . ..

In this the term −2ES3(x) occurs. Now

S3(x) ≡ S3(x, k) =
1

k3
+

1

(k + 1)3
+ · · ·+ 1

(k + x1)3
(k > 0, x = 1, 2, . . .).

We could not find an exact value for its expectation, namely

(1 + p)−k
∞
∑

x=1

(

p

q

)x
Γ(k + x)

Γ(k)x!

(

1

k3
+

1

(k + 1)3
+ · · · + 1

(k + x− 1)3

)

but noted it is simpler to use

(1 − r)k
∞
∑

x=1

rxΓ(k + x)

x!Γ(k)

(

1

k3
+

1

(k + 1)3
+ · · · + 1

(k + x− 1)3

)

where r = p/(1 + p), so 0 < r < 1; clearly convergence now seems possible.

Using the Maple code implementation we found the first few terms for this and

similar expressions, in powers of r. Here are examples,

E(S1S2) coeff.r =
1

k2

coeff.r2 =
2k3 + 2k2 + 2k + 1

2k2(k + 1)2
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coeff.r3 =
3k5 + 21k4 + 42k3 + 36k2 + 24k + 8

6k2(k + 1)2(k + 1)2

coeff.r4 =
4k7 + 31k6 + 273k5 + 723k4 + 971k3 + 726k2 + 396k + 108

12k2(k + 1)2(k + 2)2(k + 3)2

coeff.r5 =
A

60k2(k + 1)2(k + 2)2(k + 3)2(k + 4)2

A = 15k9 + 310k8 + 2760k7 + 13940k6 + 42985k5 + 80430k4 + 88760k3

+ 60000k2 + 28800k + 6912

E(S3) coeff.r =
1

k2

coeff.r2 =
k2 − k − 1

2k2(k + 1)2

coeff.r3 =
3k3 + 3k2 − 6k − 4

3k2(k + 1)2(k + 2)2

coeff.r4 =
11k4 + 42k3 + 13k2 − 66k − 36

4k2(k + 1)2(k + 2)2(k + 3)2

coeff.r5 =
2(25k5 + 190k4 + 395k3 − 10k2 − 600k − 288)

5k2(k + 1)2(k + 2)2(k + 3)2(k + 4)2

It is difficulat to derive a pattern so further terms are not considered.

3 The psi function difference, its derivatives and

associated moments

Using the operators ∆ and E of the finite difference calculus, we have

E 1

(k + x)j
= EEx 1

kj
= (1 − p∆)−k 1

kj
(j = 1, 2, . . .)

=
1

kj
− kp

1!

(

1

kj
− 1

(k + 1)j

)

+
k(k + 1)p2

2!

(

1

kj
− 1

(k + 1)j
+

1

(k + 2)j

)

− · · ·

=
1

(j − 1)!

∫ 1

0

tk−1(ln 1
t
)j−1dt

(p+ 1 − pt)k
,

valid for k > 0, p > 0, j = 1, 2, . . .. Using moments for j = 1, 2, 3, 4 we can set up

the skewness (µ3/σ
3) and kurtosis (µ4/σ

4) for the negative binomial random variate

1/(k + x). Figures showing the structure and form of these measures are given in

Figure 1.
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Figure 1:
√
β1E

(

1
k+x

)

and β2E
(

1
k+x

)

Tabulation of the moments are given in Table 1.
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Table 1. Moments of the variate 1
k+x

of the negative binomial distribution

k p 0.1 0.5 1.0 5.0 10.0

0.1 µ′

1 9.9136 9.6351 9.3809 8.4515 7.9693

σ 0.8834 1.7943 2.3116 3.4980 3.9040√
β1 -10.1227 -4.7161 -3.4691 -1.8200 -1.4061

β2 103.4818 23.2540 13.0468 4.3222 2.9859

0.5 µ′

1 1.9371 1.7408 1.5708 1.0288 0.7998

σ 0.2853 0.5498 0.6733 0.8240 0.8095√
β1 -4.3280 -1.6835 -0.9754 0.2522 0.7123

β2 19.8195 3.9288 2.0532 1.2042 1.6809

1.0 µ′

1 0.9531 0.8109 0.6931 0.3584 0.2398

σ 0.1491 0.2735 0.3190 0.3169 0.2736√
β1 -2.9115 -0.8618 -0.2301 1.1700 1.8887

β2 9.6847 1.9890 1.3453 2.9941 5.5811

5.0 µ′

1 0.1846 0.1416 0.1098 0.0396 0.0221

σ 0.0212 0.0334 0.0335 0.0183 0.0112√
β1 -1.0487 0.1558 0.6252 1.7541 2.2195

β2 3.0766 2.3058 3.0432 8.2987 12.5965

10.0 µ′

1 0.0917 0.0688 0.0525 0.0181 0.0100

σ 0.0081 0.0121 0.0116 0.0056 0.0033√
β1 -0.6732 0.2299 0.5679 1.2067 1.3774

β2 2.8220 2.7234 3.3027 5.6950 6.7217

Comments: The coefficient of variation (σ/mean) is in general small, especially if k

is small. The general structure is difficult to describe and the main interest is to give

evidence that the ∆ and E approach to moment description works.

4 Integrals for ESj(x, k)

By definition

Sj(x, k) =
1

kj
+

1

(k + 1)j
+ · · ·+ 1

(k + x− 1)j
(x = 1, 2, . . .)

and is related to the psi function

ψj−1(x) − ψj−1(x, k)
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ψ(x) = d
dx

ln Γ(x), ψ1(x) = d
dx
ψ(x) and so on

We have

E [Sj(x, k)] = E
{

1

kj
+

1

(k + 1)j
+ · · ·+ 1

(k + x− 1)j

}

=
1

(j−1)!
E
{∫

∞

0
(e−kωωj−1+e−kωωj−1e−ω+e−kωωj−1e−2ω+· · ·+e−kωωj−1e−(x−1)ω)dω

}

=
1

(j−1)!
E
{∫

∞

0
(e−kωωj−1(1 + e−ω + · · ·+ e−ω(x−1))dω

}

=
1

(j−1)!
E
∫

∞

0

e−kωωj−1(1 − e−ωx)dω

1 − e−ωx

and from (2)

ESj(x, k) =
1

(j − 1)!

∫

∞

0

e−kωωj−1(1 − (p+ 1 − pe−ω)−kdω

1 − e−ω

=
1

(j − 1)!

∫ 1

0

tk−1(ln 1
t
)j−1[1 − (p+ 1 − pt)−k]dt

1 − t
(3)

where (j = 1, 2, · · · , k > 0, p > 0). This new form is readily evaluated, the range

being 0 < t < 1, and checks against the tabulation of S1(x, k), S2(x, k), S3(x, k) given

in section 3.2.3 of Bowman and Shenton (2007); it also provides an exact expression for

the term −2ES3(x, k) appearing in section 4.4 for the skewness of k̂, the maximum

likelihood estimator of k. The skewness
√

β11(k̂) refer to the normed value of the

second order term in the third central moment. A similar term appears in
√

β11(p̂).

There is interest in expression (3) when j = 1 and for j = 2. Thus for j = 1

ES1(x, k) =
∫ 1

0

tk−1[1 − (p+ 1 − pt)−k]dt

1 − t
(k > 0, p > 0) (4)

But it is readily shown from the probability generating function (3) that ES1(x, k) =

ln(p+ 1), for p > 0. Thus (4) is independent of k provided k > 0.

From the generating function (2) we have when j = 2

(1 − r)k
∞
∑

x=1

rxΓ(k + x)

x!Γ(k)
S1(x, k) = ln(p+ 1)

leading to

E [S1(x, k)]
2 − ES2(x, k) = ln2(p+ 1)

so the left side of this expression does not depend on k. Note that (4) defines ES2(x, k)

as an integral and is equal to Fisher’s ikk (Fisher, 1941).
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Lastly, we may remined readers that Fisher’s ikk parameter is given by Fisher as

ikk =
r

k
+

r2

2k(k + 1)
+

4r3

6k(k + 1)(k + 2)
+ · · · (r =

p

p+ 1
)

=
∞
∑

x=1

rx(x− 1)!

x

Γ(k)

Γ(k + x)
(p > 0, k > 0, 0 < r < 1)

and for the most part its validity depends on pattern recognition, actually the first

three terms in the series. Our result in (3) depends on manipulation of

ikk =
∞
∑

x=0

1

qk

(

p

q

)x
γ(k + x)

Γ(k)x!
[ψ1(k) − ψ1(k + x)) ,

where the psi function difference is

1

k2
+

1

(k + 1)2
+ · · ·+ 1

(k + x− 1)2
. (k > 0, x = 1, 2, . . .)

which relates to (3) with j = 2.

5 Conclusion

The integral in (4) above for ESj(x, k), namely

ESj(x, k) = (1 + p)−k
∞
∑

x=1

(

p

q

)

Γ(k + x)

x!Γ(k)

(

1

kj
+

1

(k + 1)j
+ · · ·+ 1

(k + x− 1)j

)

(5)

is simple in form and probably new, we have not found it in Nielsen’s (1965) Handbook

for the Gamma Functions (first published in 1906).

Now it is exactly proved from the generating function in §1.1 that

ES1(x, k) =
∫

∞

0
tk−1 1 − [1 + p(1 − t)]−kdt

1 − t
= ln(p+ 1) (6)

for k > 0, p > 0. The integral involves k yet is independent of <k for all k > 0,

For completness we must add that there are many identities involving S1(x, k),

S2(x, k) and so on; see Bowman and Shenton (1965, p.30). For example

2ES3(x, k) = 3ES1(x, k)S2(x, k) − E [S1(x, k)]
3 + ln3(p+ 1).

Note that a portion of this will be independent of k, k > 0. Howeveer we have

been unable to find integral forms like expression (6) for expressions such as products

E [Si(x, k)Sj(x, k)], i, j being positive integers.
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