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Abstract

The object of this paper is to describe the development of ideas pertaining to
sample size and maximum likelihood estimators of parameters associated with a prob-
ability function or density function. About forty years ago we considered a Taylor
type series for a maximum likelihood estimator éa for 6,, there being s parameters
01,0,,---,0,. First order bias and first order variance were included. Because of
limitations in computer facilities, the skewness and kurtosis were avoided, and also
because of the complicated structures involved. But toward the end of the 20th cen-
tury an expression for the N=2 (IV the sample size) term in the third central moment
of 6, was found, and a year later a rather complicated expression for the N=2 term
in the fourth central moment was discovered. The skewness and kurtosis expressions
involved much heavier work in deriving expectations of products of log-derivatives
of the probability function or density, especially when 3 or more parameters were
involved. At this stage we used the Maple symbolic language to cope with the N1
and N~2 biases, the N~ and N2 variances, the N2 third central moment, and the
N~3 fourth central moment. We use the /B, = p3/0® to measure skewness. This
ratio is location and scale free, and it takes into account the shape of the distribution
involved. Since under normality v/3; = 0, we can set the observed value 51(9,1) for
a parameter f,, to a small value £ and deduce a safe - sample size to achieve pseudo
normality. Programs are provided in detail for the low order moments of a maximum
likelihood estimator, simultaneous estimation being involved.

Key-words: Asymptotics, Lagrange Expansions, Hessian matrix, logarithmic deriva-
tive, symbolic language.



1 Introduction

Our study of small sample properties of maximum likelihood (m.l.) estimators started
some forty years ago. We set up a Taylor type expansion for s parameters 61, 05, - - -, 0,
and in particular 8,, a = 1,2, -, s. Expectations of powers of the derivatives of the
logarithm of the density were derived, up to and including the fourth power. In
view of the extensive algebra involved our thoughts became directed to computer
implementation, especially for the skewness and kurtosis of estimators.

The ‘References’ include not only subjects pertinent to the present study, but
also peripheral topics such as moment methods and divergent series. In addition
summaries of previous studies on estimation problems are given in Appendix B.

Since the basic structure is set out clearly in a paper we read at the Prague (1973)
Symposium on Asymptotic Statistics (Shenton and Bowman, 1974), we now include
an abbreviated version.

2 Asymptotic statistics (Prague Symposium)

2.1 Introduction

Suppose a population consists of categorized data, the probability of an occurrence in
the jth class being p;(#), with n; observations for a sample of size N. We have given
expressions (Bowman and Shenton, 1965) for the N~!, N~2 terms in the bias of § (the
m.l. estimator), N~!, N=2, N=3 terms in pg(é), N=2, N3 terms in u:;(é), N—2, N~3,
N~* terms in m(é), o, I3, pa being central moments. In certain special cases higher
order terms in the moments can be found by special techniques. Previously, Haldane
(1953) and Haldane and Smith (1956) discussed properties of the moments of m.l.
estimators in the case of one and two parameters. Actually, as has been pointed out
by Cox and Snell (1968), Bartlett (1952) gave expressions for the N~! biases in his
paper on large - sample confidence intervals.

Here we give the first few terms in the asymptotic expansion (Lagrange) for a
m.l. estimator (mentioned by name by Haldane and Smith, 1956, p.99) in the single
parameter case. The N2 biases and covariances in the multi-parameter case are also
given with a brief outline of the derivation; these expressions have only appeared in
report form previously (Bowman and Shenton, 1965). A number of miscellaneous
asymptotic moments for m.l. and for comparison moment estimators, are included.



2.2 Taylor series approach
2.2.1 Single Parameter

We assume a population consists of a denumerable set of classes, there being n;
relative observations in the jth class for a sample of N with En; = p,(6), where p,
depends on the single parameter 6. The log likelihood is proportional to

L(n,0) = 3 _n;logp;() (1)
summed over the classes. If 0 is the m.l. estimator, then under certain regularity
conditions (with L(6) for L(n,))

$2

LY6) + 2zL® (9) + o

LO@)+---=0 (2)

where = § — 0. Now define
Cs = L(S)(Q)/L(Q)(H), s=1,2---,

so that ¢, = 1. Note that in general E L) (f) # 0. Equation (2) may be written

x x?
Cl+${1+503+504+"‘} =0
whence from Lagrange’s expansion, formally, for a well-behaved function f(-),

© 1 ds—l

_Cl s
= f(0 — (@) [a=o -
)= 10+ X g | et 100 b
In particular
=0+ cC, (3)
s=1
where
01:—1, 02:—63/2,

Cs = (c4 — 3¢3)/6,

Cy = —(c5 — 10c3¢4 + 15¢3) /24,

Cs = (cg — 10¢2 — 15¢3c5 + 105¢2¢q — 105¢3) /120,

Cs = —(c7 — 21ezes — 35c4cs5 + 210c5¢s + 280c3c; — 1260cicy + 945¢5) /720

and so on. But L) (n,0) = ¥ n;(d*/df*) log p;, and defining the discrepancies n; —
pj = €j, we have

) dr s
LO(n,0) = Lpj s log p; + Zﬁj% log p;
= L+ I5(¢)
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where in particular L(") = [;(g). Hence

o
Cy = (Ls —;ls(‘s)) Z(—ZQ(E)/LQ)T
2 r=0
and substitution in (3) and similar equations for (é —6)5, s = 2,3,--, gives an
expression which after taking expectations leads to the non-central moments of 9.
Equation (3) can be powered digitally, and then the only further requirement is a
scheme to produce expectations of low order products such as

m

117 ).

s=1

One possible approach to this problem is given by Bowman (1963).

2.2.2 Multiple parameter case
(a) N2 biases and covariances

We now assume 6 in (1) to be an h-component vector. The asymptotic multivariate
moments in general now become very complicated in structure. In addition, it does
not appear to be easy to set up an appropriate multivariate version of Lagrange
which would be readily manipulatable in this case (to get some idea of the situation
for multivariate Lagrange, see (i) I.J. Good, (1965, pp.499-517); (ii) L.R. Shenton
and P.C. Consul (1975), (iii) P.C. Consul and L.R. Shenton, (1972, pp.13-23).

The stochastic Taylor expansion for éa, (a=1,2,---,h) is now

A~

a 1 a 1 a
ea:0a+¢1+5¢2+5¢3+”'

where
(i) o1 = erg—ﬁ, 03 = 5755%, etc.;
(i) e, =np —pr, FEe, =0;
(i 86, _ 09,
i) 2 = S| i
and so.

(b) Notational
We define the multivariate derivative
am
rr =
arezam 00,004, <+ - 00y,

log p,,
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and summation being over classes,

( Fglc\ez alrﬂ1ﬁ2---ﬂmrg1'yg---'yn) = (pFOthlZ"'UélF/BI/BQ"'BWF'YI'YT"'Yn)

= [ala? Ty, 6152 T 5m7 M2

For example

Z 9 logpr 0log p, 0log p,
br 905 00,

[o, B,7] = (PTal'gIy)

Z 9 log p, 0log p,
Pr 80,005 00,

[O[ﬁ s 7] praﬁ F

0° logp,
(pT’

(c) The likelihood equations for the estimates 0, of 0,

We have
nIt =0 (a=1,2,---,h)

where I = dlog p,(0)/06,. Differentiating (4) partially with respect to n, gives

., 005
rr " =
( a[)’) anT 07
from which 50
a _ La,BFr
on, Z
where

Lag = —(pLag) = (pLal's)
LaﬂLﬁV = €ay (Kronecker delta)

“ Y-

(4)

(5)

so that L7 refers to an element in the inverse matrix [Lqs]~" where [L,s] has h rows

and columns and is assumed nonsingular.
Returning to (5) and differentiating with respect to n,, we have

... 004 905 .. 00500, .. 0%
'S 'S TF'I‘ —
o8 g, aﬂa C o+ (o 57 n an. T (Mrlas) g5
from which
320g By s BYT s r B ryeprs
B G = LPT,T + LPTTS,TT + [afy]LP LT3



It will be seen since that partial differentiation is usually commutative, the right
hand member of (7) should also have this property with respect to r,s. This is
readily verified; in fact the last member of (7) under r <+ s is invariant, using § <> e,
v < B.

Similarly, expressions may be derived for the third and fourth multivariate deriva-
tives and the associated values at = 6, n, = p, (Bowman and Shenton, 1965).

(d) Variances

For the covariances, writing Eq¢(¢) for the coefficient of N=2 in E¢(e), we have
By (0, — 04) (0 — ) = (6412 + 2413 + 3A2)/12, (8)
where

Az = By (9165 + 0361),
Ay = By(¢165 + ¢561),
Apy = E»93¢5.
From (6) and (7)
Byt = Bepe,e, Lo L { LTG50, + LT305 I + [an (L LT30S }
= 2L L L[, B, 7] + 2L% + L L** L L [ay(][B, 3, ). (9)
Expectations of products of linear forms such as €7'¢3? - - -, present no particular
problem, especially for low orders (see for example, Shenton, 1959, and Bowman
1963).
Expressions similar to (9) for A3, Ass may be set up, and substituting in (8) and
simplifying finally leads to

CO’Ug(éa, éb) = 01 + O3 + Oy,
where

0, =-L",

O3 = 1 L** L™ {[ad, B,7] + [83, o, 7] + [a 78] + 3[d, By] + 2[ay, d]
+ [879,a]/2 + [avé, 5]/2}

04 = L LY L L* {[aC][B, 6, €]/2 + [B7C] [, 6, /2 + [aB7][6eC] + 5lae] [86¢] /2
+ [B7¢I[0e, o] + [erC][de, B] + 2[eBC][ve, 6] + 3[Bye][aC, 6] + 3[aye][B¢, 4]
+ [v0el[B8¢, ] /2 + [vde]lac, B]/2 + [ae, 0][7¢, B] + [Be, 0][7¢, o] + [ez, B][VC, 4]
+ [Be, a][7C, 6] + [ae, 7][B6C]} -

In this expression the summation is over the Greek symbols, each of which takes all
values from 1 to A, the number of parameters.
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(e) Biases

The N2 terms here are complicated, and after extensive algebra and simplification,
we find

EQéa = L[PVB, + Lo [P " By + L LAY LS B, + Lo [PV [ [Sn] 0 Bs (10)
where

2B, = —[afy] - 2[aB, 1],
8B; = [afvde| + 4[Bd¢e, ay] + 8[afy, de] + 4[afe, 6] + 4|afy, b, ] + 8[as, vo, €],
4B, = (2[ade(][Bn, ] + 2[Bde(][ovy, n] + 4[aBde][¢n, ¥])
([deC][Byn] + [aBde][v¢n] + 2[Bden][arc])
(2[8n, vCl[ede] + 4[Be, dnl[ary(] + 4]a, (n][Bde] + 2[an, de][Bv¢])
(4ceC, n][B, 7] + 4[ae(,71[84, n] + 4[Bde, n][ad, v])
(2[aBe, n][vd, C] + 4[Bde, n][avy, ¢] + 4]eBe, (][vd, n] + 2[den, B][ary,n])
(4[an, vCl[de, B] + 4[de, (][an, 8] + 4[an, ée][v¢, B])
(4[e¢, Bol[ary, n] + 2[aB, (n][vée]) + 2[aBde][y, ¢, nl/3,
8Bs5 = [ad(] {[Bel[nbi] + 2[veb][Bni] + 4[Ben][0d] + 8[Bnb][yei]
+ 2[Bve[nb, 1| + 4[veb0][Bn, ] + 2[nbi][Be, 7] + 4[ynb][Be, 1]
+ 8[Bn0][ve, | + 8[Bnb][vi, €] + 8[Ben][v8, i] + 8[ve0][Bn, 1]
+ A[y01][Bn, €] + 4[nb, 1][Be, 7| + 4[Be, i|[nf, ] + 8[nd, Bl[i, €]
+ 8[nb, €l[vi, B] + 4[Beb][v,m, i} + [vdi] {8[Bnb][as, (]
+ 4[8¢0][ce, 0] + 8[ag, 0][Bn, (] + 8ae, (][Bn, 0] + 8[a(, Bllen, 0]} .

+ + + + + +

It should be remarked that (10) is an expression involving four summatory terms
and these are written as “products” merely to abbreviate.

3 Extension to the skewness and kurtosis

3.1 New formula for skewness

We see that (Bowman and Shenton, 1965) N2 terms are given for bias and covariance
of m.l. estimators; another account of these is given in Shenton and Bowman (1977).
At that time (1960-1988) we found the problem of skewness of m.l. estimators, in
the simultaneous case too complicated to consider. But after some time a formula for
ugg(éa) was set up; here the estimator in question is 6, éa being the m.l. estimator,
lizo being the coefficient of N2 in the third central moment of 04, @ taking the values

8



1 to s, s being the number of parameters. For some time, the form lay in limbo. But
a little later we took a second look at the correction term involved and discovered the

new formula
ps2(6a) = LU L2L% {[1,2, 3] + 3[123] + 6[12, 3]}

given in Bowman and Shenton (1998, p.2751). Here, 1,2,3 run through the values 1
to s. A year later we defined in Bowman and Shenton (1999), the formula for the
kurtosis (both skewness and kurtosis being measured by sample moment ratios), a
rather complicated formula to say the least.

3.2 Formula for kurtosis

~

The formula for 143(6,) was introduced by Bowman and Shenton (1999), namely

R 2 6
paz(0a) = Ago + 2A30 + §A33 + ZA22- (11)

For A40, A32, A33, and A22 we have

Ay = LY LPL®LY(1,2,3,4] — 3(L*)?,

Aszy = 2L LL™L*L*{[12, 3][4,5,6]+[12, 4][3,5,6]+[12, 5][3,4,6] +[12, 6][3,4,5] }
+ 12(L*)? + 6L* L L [*4[12, 3, 4] + 6 L**L*' L* L**[12, 3, 4]
+ [123] [4’5’6]{La1L23La4La5La6+6La1La2L34La5La6+3LaaLa1L24L35La6}
— {L"' L% (2012, 3] + [123])} { L L L*°[4,5,6]} .

A33 = E3(¢111)3¢g == Al + AQ + A3 + A4

where

A = 18L* L* L** L*3[123, 4]+ 9L L* L** L**[123, 4]+ 18L*' L** L*3 L**[123, 4],
Ay = —18(L*)* + 18L* L*' L*® L*[12, 34]
+ 36L*L* L*® L* L°[12, 5][34, 6] + 36 L*' L** L** L*° L*°[12, 5][34, 6]
+ [345][12, 6]La1{18LaaL23L46La5+9LaaL23L45La6+18L23La4La5La6}’
As = [123][56, 4]{18LaaLa1L24L35La6 4+ 18[0afel [e2] 3546
+ 24LaaLa1L26L35La4 + 30La1La2L35La4La6}
+ [123] [456]La1{18LaaL24L35La6+9LaaLa2L35L46+ 18La2L35La4La6}’
A, = [1234]La1 {gLaaL23La4 + 6La2La3La4} )



Ag = E3(¢9)*[(43)* — 203 E¢3 + (E¢3)’] = By — 2B, + Bs
where
B, =C+Cy+Cs
Cy = —12(L9)? + [12, 34]{4L%* L [ [ 4 8L[*1 [2[ 43 o4}
+ [12, 3][45, 6]LalLa4{4LaaL23L56+4LaaL26L35+8La5L23La6+8La2L35La6
4 QL3[26a5 4 gre3[251a6 4 gra2yal Lss} ’
Cy = [12, 3][456] L* L {4LaaL23L56 4+ ALoap26735 L Q23 a5 a6 | gra2y35yab
4+ ALeap25736 | gra2ya5y36 | gro5radya6 | gr26yadya5 | gy 267 a3 L56} .
Cs = [123][456] L L*® { L** L L* + 2L L* L*®
4 QLaef24135 | gr24re3ras 4 gra2ya3 L45} ‘

By = 2p, {[12,3]L° {2020 L + 4L L**} + [123]L°" {L2°L* 4 2L°2 L} } |
By = 2uy, = L L*{2[12, 3] + [123]},
By = (L' L%{2[12,3] + [123]})" L
and the measure of kurtosis
ﬁg(ea) == 3 + K/N

where
K = paa(00)/ {1121(00)}" = 61120(00) /11 0u).

4 Some illustrative examples

4.1 The two parameter gamma density, location known

Probability function is

6—m/a(x/a)p—1

al'(p)

Bowman and Shenton (1982) gave formulas and numerical examples for the m.l.

g9(z,a,p) = (z>0,a>0,p>0)

moments (i}, po, p3, pa) of a, the scale estimator, and p, the shape estimator, each
for up to the terms N~%. We were very fortunate in finding those results with a
completely independent approach, providing a check. The m.l. moments for a, and p
are given in Table 1 and Table 2 (Bowman and Shenton, 1999).

10



Table 1. Comparison of two methods of evaluating
po1 and pigg (a = 1)
a p
P fig1/a*  pga/a® pig1/ p* pia2/ P
5.0 m 2.0759 -1.9549 1.8759 20.472
cm  2.0759 -1.9549 1.875912 20.47226

Table 2. Comparison of two methods of evaluating pss and py3 (a = 1)

~

a p

P pi32/a® fua3/a* {132/ p° pua3/p’
0.1 m 267.82 10259.00 4.9762 x 1072 90.535 x 1074

cm  267.8224 10259.2093  0.0050 90.5352 x 1074
1.0 m  15.2599 128.3511 10.4686 280.8125

em  15.2599 128.3511 10.4685 280.8125
50 m 8.1392 35.403  14.506 440.92

cmn 8.1392 35.4035 14.5062 440.9175
50.0 m 8.0813 24.905  15.841 497.18

cm  8.0813 24.9048 15.8410 497.1785

(m refers to the Taylor series approach given in Bowman and Shenton (1982, 1988);
cm refers to the present approach using the covariance matrix).

The agreement is quite satisfactory. In passing note that moments E(p — p)/p,
Var(p/p), ns(p/p), pa(p/p) to order N~ N=2 ... N6 are given in Bowman and
Shenton (1988, pp.63-68).

4.2 The three parameter gamma density

Probability function is

e ¥(y/a)!
al'(p)

In this case the additional parameter is s, referring to location. Details of problems

g(x;8,a,p) = (y=x—s,2>s,a>0,p>0)

relating to the m.l. estimators (8, @, p) are given in Bowman and Shenton (2002). At
this time we were thinking that sample size could be related not only to the skewness
(scale and location free), but also to the variances in the form pgs /91, second order
term to first order term. In the paper on page 397 the ratio R() = pgo()/ o1 (%), t
referring to a/a, p, and §/a, is set at a half, in all cases for p > 4 (moments of the
m.l. estimators are unreliable unless p > 4). For p = 6, s = 0, a = 1, sample sizes
are 429, 462, and 348 for §/a, p, and a/a respectively.

11



Table 3 is an extension of Table III in Bowman and Shenton (2002); the extension
refers to p = 25, 30, and 35. If the reader now considers the moments of the estimators
for p = 5(5)(35) it will be suggested that the skewness 1/51(p) tends to a finite limit,
so that for large p there is not asymptotic normality.

Table 3. Asymptotic Moment Profile (¢ = 1, s = 0), gamma density

P A H21 H22 M22/ H21 \/E K

afa 5.0 11.3830 6.5728 2352. 357.91 5.00  226.82
10.0 7.0058 14.0331 986. 70.25 2.43  412.29

15.0 6.2751 21.5214 1084. 50.39 1.82  653.97

20.0 5.9734 29.0158 1255. 43.25 1.52  891.88

25.0 5.8090 36.5125 1451. 39.74 1.33 1133.36

30.0 5.7055 44.0103 1654. 37.59 1.19 1373.48

35.0 5.6344 51.5088 1862. 36.16 1.09 1613.56

5.0 -39.3358 388.6581 166841.  429.27 14.38  528.12
10.0 206.4608 4384.7326 968686. 220.92 29.85 1807.28
15.0 659.9203  16480.7562 5404615.  327.93 38.92 3101.83
20.0 1336.3635  41176.7676  18379787. 446.36 46.14 4375.30
25.0 2237.1429  82972.7744  47099576. 567.65 52.35 5645.25
30.0  3362.6347 146368.7788 100989279. 689.97 57.88 6910.79
35.0  4712.9728 235864.7819 191706855. 812.78 62.93 8174.64
§/a 5.0 31.0033 62.1550 28868. 464.45 -4.97 511.90
10.0 -32.9230 906.1200 123957.  136.80 -18.99 636.41
15.0 -165.4481 3650.1120 648180. 177.58 -25.52 1064.05
20.0 -372.2318 9419.1085 2180849. 231.53 -30.50 1488.77
25.0 -653.7693  19338.1066 59582919.  288.70 -34.72 1913.89
30.0 -1010.2007  34532.1054  11984219. 347.05 -38.46 2336.54
35.0 -1441.5755 56126.1046  22785548. 405.97 -41.85 2758.44

>

In a simulation study, not designed to fit in with the present study, (Bowman and
Shenton, 1988, p.136) give the following moments of the m.l. estimators for a sample
of N =500 (Table 4).

12



Table 4 Variability of Moments Over Simulation Runs
§ a p
Mean  0.011 1.015 6.083
(0.044) (1.018) (5.996)
S.D 0.583 0.136 1.458
(0.516)  (0.127)  (1.226)

VB -0.853 0.098 1.43
(0.441)  (0.175)  (0.848)
By 4.80 3.15 7.70

(3.72)  (3.46)  (4.468)

(In this table, sampling is from a distribution with s = 0, a = 1, and p = 6. Par-
enthetic entries refer to theoretical values, derived from Table III in Bowman and
Shenton (2002). The simulation values are based on 5 cycles, each cycle consisting of
4,000 replications).

The agreement is fairly satisfactory. Discrepancies in the kurtosis may be expected
since in practice 8, may easily be in the range 1 to 20.

4.3 The Weibull distribution, two parameter case

The density is

f(z;a,b,c) = gyc_le_yc (x> a,y=(x—a)/b,b>0,c>0).
We assume q is known and consider low order moments of the m.l. estimators b of b,
¢ of c¢. As might be expected, polygamma functions such as the Psi function and its
derivatives occur. We have (Bowman and Shenton, 2000);

For ¢

11 (&) = c[—((3) + 3¢(2)]/[¢(2)]° = 1.379%5c,

po1(6,0) = 6¢2/m% = 0.6079¢*,  po2(é,b) = g x 6.3161 = 3.8398¢%,

s (é,b) = 216¢3 (7% — 2¢(3)) /7% = 1.6773¢3,  +/B11(é,b) = 3.5386,

pao(6,b) = 35,  paz(é,b) = 18.2992¢* — ¢*, K (é,b) = 11.6174 — 2.7033/c.
For IA),

- b [—=q¢(3)=D?*+AD — Bq D
! — —
Fulb) = c{ ROk T

where

D =¢(2) +[»@),

13



g=1+p=1+9(1), @(1)=—7)
A=2p"+6p+9/2,
B =p®+5p> +15p/2 +7/2 = q(p* + 4p + 7/2).

An alternative formula to this is

uh=® { —((3) +¢B3)y — ¢ + 572 — 572y | (D) +¥(2)? } _

c ((2)? T

iy (b,c) = g {—0.3698 + &543} . paa(byc) = {1 + WQ)P} <g>2 = 1.1087 (2)2

R 2

b
,LLQQ(b, C) = g [03624 -

1.9881  1.8429
==,

c c?
) B(cGr +Gy) b 3.6873 - 3.1587
be) = LT 7 [—1.1686 —] .V Bu(b,e) = —1.0011 ,
p32(b; ) A6 c3 t c Bu(bc) + c
- - b 34.3604  34.0696
pao(b, ) = 313y, s (b, c) = a [—24.3889 i + 2 ] ;

17.1924  17.7397
+

2

K(b,¢) = —21.8038 —
C C

where

G1 = 1087% — 12967%¢(3) + 1296+¢(3) + 43273¢(3) — 2167%y + 1087%~?
— 187*y? + 367ty — 7® — 432¢(3) — 187,
Gy = 36m* +37% — 721y + 36772 — 4327129 + 1087m%y* + 6487%+* — 432712y + 10872,

(€ is the zeta function, v Euler’s constant)

To check on these results, sample sizes of 50, 100, and 200 were considered using
50,000 cycles for n = 50, 25,000 cycles in the cases for ¢ = 1,2, 3,4, 5.

The comparisons with theory are given in Table 5, for n = 200, a = 0, b = 1.

Table 5. Comparison of theoretical and simulation moments for b and &

b c
c H1 o VBL B2 H1 o Vb1 B
2 T 0.99977 0.0372 0.0409 2.8702 2.0138 0.1120 0.2502 3.0516
S 0.99990 0.0372 0.0591 2.9863 2.0156 0.1121 0.2582 3.0836
5 T 0.99974 0.0149 -0.0261 2.8773 5.0345 0.2800 0.2502 3.0554
S 0.99979 0.0149 -0.0075 2.9886 5.0390 0.2802 0.2582 3.0836
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(T=Theory, S=Simulation: For the theoretical entries parameters b and ¢, ph (1) =
t+ w4, (f)/N, and similarly for o(t) = \/,uzl/N + p22/N?).

Considering the skewness and kurtosis in both cases, the distributions are nearly
normal in the sense that 1/, is approximately zero and 3, is approximately 3.

NAG library random number generator was used in the simulation study. Check
on the basic random number generator gave about 3-4 digit accuracy for the first 4
moments of the Weibull distribution.

The agreement is good for ¢ moments, satisfactory altogether.

4.4 'The Weibull distribution and 3 parameters estimated by
m.l.

In this case the asymptotic moments are complicated and involve considerable effort
in algebraic manipulation. Here are examples:

VCLT‘l (&) = b2’¢1(1)/A(C),
Var, (b) = b*(CG — J?)/Alc),
Var,(¢) = c*C —T?(2—1/c)]/A(c),
Covy(a,b) = =b*[GT(2 — 1/¢) + J(2)]/A(c),
Covy(a,¢) = —be®[Y(2)T(2 — 1/c) + J]/A(c),
Covy (b, &) = be2[Y(2)C + (2 — 1/¢)J]/A(c),
where
Ae) = [ (1)C —T? (2 - %) G- J*-2r (2 — %) ¥(2)J],
=1 (1-2) 5

ro-r(-H o).

G = (1) + [»(2))"

To highlight the advantages of the Maple symbolic approacha we give here further
examples of the algebraic background.

Ale) = & {%(1) [C(c) _ (2 _ 1)] _ H2(c)}

C

where

1O =1 (2 D)) + 00,50 =1 (2 1) |

Cc

1
c—1

-] e
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Defining t = 2/¢ (0 < ¢t < 1) we have

w=0(a-8)pr=» (1= ] = (- £ (-5 2L

|
s—=1 S!

After some simplification we find

(C — 1)2(140 -+ Alt -+ A2t2 + A3t3 . )

Van (C) ~ BO + Blt + B2t2 + B3t3 ... ’

where

Ay =4, =0, Ay = 72/24, Az =my/24 +((3) /4,

Ay = ((3)y/4 + 7% /48 4 297 /5760,

As = 297" /5760 + 7¢(3)7? /288 + ((3)7*/8 + m2* /144 + 3¢(5) /16,

Ag = 3¢(5)7/16 + 4577° /967680 + 5((3)%/96 + 7¢(3)72/288 + 297142 /11520
+¢(3)7%/24 + n?+* /576,

By= B, = By = B3 =0, B, = 117°/34560 — ((3)?/16,

Bs = —((3)?/16 + 11757/34560 + 71¢(3)/960 + 72 (5)/48,

Bs = —72C(3)?/32 4+ 72¢(5)y/48 4+ 7 (3)y/960 + 1937° /3628800 + 72 (3)? /384
+117%+%/69120 — ¢(3)¢(5)/32.

Numerically

C .92 4 . .566106
Vm“l(c) N0.488214—09 989 +0790780_056 .
ct c c? c

These expressions were set up partly by using the Maple system. For large c
Vari(é) ~ Ac —1)%c? (c = )
where A = 4¢(2)/[11¢(4)¢(2) — 4¢*(3)] = 0.47665188. Similarly
Vary (@) ~ Ab*c?, Var,(b) ~ Xb*(c—1)%. (¢ — o0)

This excerpt is only a part of the computer input required for the implementation of
the computer program (Fortran version program). Note that various aspects of the
Weibull distribution have been considered by Dubay (1965). In the next section we
describe the Maple factor.
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5 The advancement of symbolic computer languages

These languages appeared on the scientific horizon about four decades ago. Formac
was introduced by IBM but it had a short life in favor of main frame advances. A
small group of researchers, sponsored by Dr. J.L. Carman (Head of the Computer
Center, University of Georgia) and led by Dr. Juris Reinfelds, connected an electric
typewriter to an IBM1620; difficulties arose because climate control was neglected.
Reinfelds was mainly interested in algebraic processes, and Shenton and Hutcheson
suggested a statistical problem, that of converting crude moments into cumulants.
Examples are given below:

CRUDE MOMENTS INTO CUMULANTS
ORDER ONE
= 4K
ORDER TWO
wh = +kg + K3,
My = +rK11 + KioKor-
ORDER THREE
Wy = +K3 + 3KIK1 + K3,
Way = +Ko1 + 2K11K10 + Keokor + KigKot,
Hi11 = FK111 + Kot1K100 + K110K001 + K101K010 + K100K001K010-
ORDER FOUR
Wy = +ka + 4Kk + 3K35 + 6Kkok? + K1,
Ph1 = K31 + 3ka1K10 + Kaokor + 3Kaoki1 + 3K11KTg + 3Kaokioko1 + Kigkol,
Uhy = Koo+ 2K12K10 + 2K21 Ko1 + 2K31 + Kaokoa + Koakig + 4K 11 K1okoL + Kookay + KigKar s
Mo1p = ko1 + 2K111K100 + K201 Ko10 + K210K001 + +2K110K101 + K200K011
+ko11K300 + 2K101K100K010 + 2K110K100K001 + K200K010K001 + K1o0K010K001 5
Mi111 = K111 +Ko111K1000 T K1110K0001 +K1011 K0100 T K1101 Koo10 T+ Ko101 1010 TK1100K0011+
+K1001K0110 + K0110K1000K0001 + K0011K1000K0100 + K1010K0001K0100 + K0101K1000K0010+
+K1100K0001 0010 + K1001K0100K0010 + K1000K0001 K£0100K0010-

More details are given in the report “Tables of Crude Moments Expressed in terms
of Cumulants” by Kratky, Reinfelds, Hutcheson, and Shenton, Computer Center,
University of Georgia; Computer Center Report 1972(1). On the first page we find
the quotation “The Marquis gazed a Moment, and nothing did he say”, William
Edmondstone Aytoun (1813-1865).

Other symbolic manipulative programs were appearing in the 1970’s, including
Reduce, Mathematika, Maple, and Macysma. Shenton used the Mathematika package
at the University of Georgia in 1980 to 1990, especially the program including the

conversion of series in powers of n~! into continued fractions. Accuracy was not a
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problem since output was in integer arithmetic.
To return to our present subject, Bowman was able to use Maple to cope with the
skewness of m.l. estimators implementing the formula

p32(0a) = L L LY {[a, B, 7] + 3[aBy] + 6[aB, 7]} -

In the end, Bowman was able to reduce the problem of low order moments (y},, p/,
U1, H22, M32, Ha3) of a m.l. estimator to depend entirely on the probability function
involved. The great advantage of the approach is seen when we consider the Weibull
density. In this case 5th order derivatives appear (especially for u),); for examples
for square bracket terms such as

9% log P
=F
(0105030405 (391892893804395) ’
and i
dlog P
[0191919101] ( 891 >

Terms like these are used in expressions for asymptotic moments. We now give the
Maple program for the six basic asymptotic moments.

6 The Maple program

6.1 New Maple program

We introduced the Maple program in Bowman and Shenton (2005) to compute asymp-
totic variance and skewness of the m.l. estimators. We have extended the program
to compute N~ ! and N 2 biases, N ? variance, and N 2 fourth central moment.
The Maple program presented here is more general than the previous versions and
could be easily converted to any distribution’s (‘pf’) with parameter number (‘w’).
Further, the user must decide on the value of (‘lim’) which depends on the range of
the distribution, and for taking the expectation, use (‘int’) for integration of a con-
tinuous distribution and (sum’) for summation of a discrete distribution. The Maple
program of the two parameter gamma distribution is presented in this section.

For example, to change from the two parameter gamma distribution to the three
parameter gamma distribution, we carry out following;
(i) change ‘w :=2;’ to ‘w :=3;’

(i) change ‘pf’ to 3 parameter gamma distribution;
(iii) change ‘t :=[t1,t2]’ to ‘t :=[t1,t2,t3]’;
(iv) add the third parameter value, to include this change in all the ‘subs’ statement.
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To change from the two parameter gamma distribution to the two parameter
Weibull distribution, change ‘pf’ accordingly and supply values of the two Weibull
parameter values.

For the three parameter Weibull distribution follow the example of the two pa-
rameter gamma distribution to the three parameter gamma distribution. Bowman
and Shenton (2000) computed kurtosis of the three parameter Weibull distribution
by writing Fortran program which consisted of 3500 or so lines and it was highly
individualized. The Maple program is consisted of about 300 lines and is generalized,
it is a great advancement.

Users could make further improvement by using only bias section of the program
and correct a bias and run the rest of program using unbiased m.l. estimators.

6.2 Computer program

#Find kurtosis, skewness, u2 and ul of ml estimators

#number of parameters = w

#pf is a probability function or density (two parameter gamma density)
#t is a vector of parameters t1,t2,...,tw

#1lim is the upper range of the distribution, constant or infinity
#0utput results are Ull, Ul2, L (covariance matrix), U22, U32, rbi,
#U43, and K.

with(linalg);

w :=2; w2 :=w"2; w3 :=w"3; w4 :=w"4; wb :=w"b; w6 :=w"6;

w7 :=w"7; w8 :=w"8; w9 :=w"9; t :=[t1,t2]; 1lim :=infinity; Llim :=0;
pf :=exp(-x/t1)*x~(t2-1)/(t1"t2*GAMMA(t2)); LL :=log(pf);

#Take derivatives up to 5th order of log of pf
for il from 1 to w do
D1[i1] :=diff(LL,t[i1]);
for i2 from 1 to w do
D2[i1,i2] :=diff(D1[i1],t[i2]);
D11[i1,i2] :=D1[i1]1*D1[i2];
for i3 from 1 to w do
D3[i1,i2,i3] :=diff(D2[i1,i2],t[i3]);
D21[i1,i2,i3] :=D2[i1,i2]*D1[i3];
D111[i1,i2,i3] :=D11[i1,i2]*D1[i3];
for i4 from 1 to w do
D4[i1,i2,i3,i4] := diff(D3[i1,i2,i3],t[i4]);
D31[i1,i2,i3,i4] :=D3[i1,i2,i3]1*D1[i4];
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D22[i1,i2,i3,14] :=D2[i1,i2]*D2[i3,14];
D211[i1,i2,13,i4] :=D21[i1,i2,i3]*D1[i4];
D1111[i1,i2,i13,i4] :=D111[i1,i2,i3]*D1[i4];

for i5 from 1 to w do
D5[i1,i2,i3,i4,i5] := diff(D4[il1,i2,i3,i4],t[i5]);
D41[i1,i2,i3,i4,i5] :=D4[i1,i2,i3,i4]1*D1[i5];
D32[i1,i2,i3,i4,i5] :=D3[i1,i2,i3]*D2[i4,i5];
D311[i1,i2,i3,i4,i5] :=D31[i1,i2,i3,i4]*D1[i5];
D221[i1,i2,i3,i4,i5] :=D22[il1,i2,i3,i4]1*D1[i5]; od;od;od;od;od;

#Digits :=15; (specify the number of digits to use for accuracy)
Digits :=15;

#Input ml estimator of parameters and take expectation
a :=1; r :=2; f :=subs(tl=a,t2=r,pf);
for il from 1 to w do
d1[il1] :=subs(tl=a,t2=r,D1[il]);
for i2 from 1 to w do
d2[i1,i2] :=subs(tl=a,t2=r,D2[il1,i2]);
d11[i1,i2] :=subs(tl=a,t2=r,D11[il,i2]);
£2[i1,i2] :=evalf (int (f*d2[il1,i2],x=L1lim..1im));
£11[i1,i2] :=evalf(int (f*d11[i1,i2],x=Llim..1lim));
for i3 from 1 to w do
d3[i1,i2,i3] :=subs(tl=a,t2=r,D3[il1,i2,i3]);
d21[i1,i2,i3] :=subs(tl=a,t2=r,D21[i1,i2,i3]);
d111[i1,i2,i3] :=subs(tl=a,t2=r,D111[i1,i2,i3]);
£f3[i1,i12,i3] :=evalf(int(f*d3[il1,i2,i3],x=Llim..1lim));
£21[i1,i12,i3] :=evalf(int(f*d21[i1,i2,i3],x=Llim..lim));
£111[i1,i2,i3] :=evalf(int(f*d111[i1,i2,i3],x=L1im..1im));
for i4 from 1 to w do
d4([i1,i2,i3,i4] :=subs(tl=a,t2=r,D4[il,i2,i3,i4]);
d31[i1,i2,i3,i4] :=subs(tl=a,t2=r,D31[il,i2,i3,i4]);
d22[i1,i2,i3,i4] :=subs(tl=a,t2=r,D22[il,i2,1i3,i4]);
d211[i1,i2,i3,i4] :=subs(tl=a,t2=r,D211[il1,i2,i3,i4]);
d1111[i1,i2,i3,i4] :=subs(tl=a,t2=r,D1111[i1,i2,i3,i4]);
f4[i1,i2,i3,i4] :=evalf(int(f*d4[il,i2,i3,i4],x=Llim..1lim));
£31[i1,i2,i3,i4] :=evalf(int(f*d31[il1,i2,i3,i4],x=L1lim..1im));
£22[i1,i2,i3,i4] :=evalf(int(f*d22[il1,i2,i3,i4],x=L1lim..1im));
£f211[i1,i2,i3,i4] :=evalf(int(f*d211[i1,i2,i3,i4],x=L1lim..1im));
£1111[i1,i2,i3,i4] :=evalf(int(f*d1111[i1,i2,i3,i4],x=L1lim..1im));
for i5 from 1 to w do
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d5[i1,i2,i3,i4,i5] :=subs(tl=a,t2=r,D5[il1,i2,i3,i4,i5]);
d41[i1,i2,i3,i4,i5] :=subs(tl=a,t2=r,D41[il1,i2,i3,i4,i5]);
d32[i1,i2,i3,i4,i5] :=subs(tl=a,t2=r,D32[i1,i2,i3,i4,i5]);
d311[i1,i2,i3,i4,i5] :=subs(tl=a,t2=r,D311[i1,i2,i3,i4,i5]);
d221[i1,i2,i3,i4,i5] :=subs(tl=a,t2=r,D221[il1,i2,i3,i4,i5]);
f5[i1,i2,13,i4,i5] :=evalf(int(f*d5[i1,i2,i3,i4,i5] ,x=L1lim..1lim));
f41[i1,i2,i3,i4,i5] :=evalf(int(f*d41[il1,i2,i3,i4,i5],x=L1lim..1lim));
£32[i1,i2,i3,i4,i5] :=evalf(int(f*d32[il1,i2,i3,i4,i5],x=L1lim..1im));
£311[i1,i2,i3,i4,i5] :=evalf(int(f*d311[i1,i2,i3,i4,i5],x=Llim..1im));
£221[i1,i2,i3,i4,i5] :=evalf(int(f*d221[i1,i2,i3,i4,i5],x=Llim..1im));
od;od;od;od;od;

#Compute covariance matrix
H :=Matrix(w,w,f11); L :=inverse(H);

#Computation of U22

ii :=0;
for il from 1 to w do for i2 from 1 to w do for i3 from 1 to w do
for i4 from 1 to w do

ii :=ii+1;

AA[ii] :=f211[i1,i4,i2,i3]+f211[i2,i4,i1,i3]+f4[i1,i2,13,14]
+3*f22[i1,i4,i2,i3]+2*f31[i1,12,13,i4]+1/2*xf31[i2,i3,i4,i1]
+1/2*f31[i1,i3,i4,i2];

for jj from 1 to w do

L31[jj,iil :=L[jj,i11*L[jj,i2]1*L[13,1i4];

L42[jj,ii] :=L[jj,i11*L[jj,i2]1*L[jj,i3]1*L[jj,i4];

L43[jj,ii] :=L[jj,jjl*L[jj,i11*L[i2,i3]1*L[jj,i4];

L44[jj,ii] :=L[jj,jjl*L[jj,i11*L[i2,i4]1*L[jj,13];

L45[jj,1iil :=L[jj,jjI*L[jj,i11*L[1i3,i4]1*L[jj,i2];

od;od;od;od;od;

ii :=0;

for il from 1 to w do for i2 from 1 to w do for i3 from 1 to w do
for i4 from 1 to w do for i5 from 1 to w do for i6 from 1 to w do

ii :=ii+l;

CC[ii] :=f3[i1,i3,i6]*f111[i2,i4,i5]/2+f3[i2,13,i6]*f111[i1,i4,i5]/2

+£f3[i1,i2,i3]*f3[i4,i5,i6]+5/2*f3[i1,13,i5]*f3[i2,1i4,i6]
+f21[i4,i5,i1]1*£f3[i2,i3,i6]+f21[i4,i5,i2]*f3[i1,i3,16]
+2x£3[11,12,16]*f21[i3,i5,i4]+3*f3[12,i3,i56]*f21[i1,i6,i4]
+3x£3[11,13,i5]*f21[i2,i6,i4]+f3[i3,14,i5]*f21[i2,i6,i1]/2
+f3[i3,i4,i5]1*f21[i1,16,i2]/2+f21[i1,i5,i4]1*f21[i3,i6,12]
+£f21[i2,15,i4]1*f21[i3,i6,i1]+f21[i1,i5,i2]*f21[i3,i6,i4]
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+f21[i2,i5,i1]1*f21[i3,i16,i4]1+f21[i1,i5,i3]*f21[i2,i4,i6];
for jj from 1 to w do
L41[jj,1ii] :=L[jj,i1]1*L[jj,i2]1*L[i3,14]*L[i5,i6];
od;od;od;od;od;od;od;
for jj from 1 to w do
U221[jj] :=add(L31[jj,i]l*AA[i],i=1..w4);
U222[jj] :=add(L41[jj,il*CC[i],i=1..w6);
U22[jj] :=-L[jj,jjl+u221[jj1+U222[jj]; od;

#Computation of U32
ii :=0;
for il from 1 to w do for i2 from 1 to w do for i3 from 1 to w do
ii :=ii+1;
A[ii] :=f111[i1,i12,i3]+3*f3[i1,i2,i3]+6*f21[i1,i12,i3];
A3[ii] :=f3[i1,i2,i3];
A21[ii] :=f21[i1,i2,i3];
A213[ii] :=2*f21[il1,i2,i3]+f3[i1,i2,i3];
for jj from 1 to w do
L32[jj,iil :=L[jj,i11*L[jj,i21*L[jj,13];
L33[jj,iil :=L[jj,jjl*L[jj,i11*L[i2,i3]; od;od;od;od;
for jj from 1 to w do
U32[jj] :=add(L32[jj,i]l=*A[i],i=1..w3);
sigljjl :=sqrt(L[jj,jjl);
rbi1[jjl :=U32[jjl1/L[jj,jjl1~(3/2); od;

#Computation of U43, see equation (12)
#Computation of A40 and part of A32
ii :=0;
for il from 1 to w do for i2 from 1 to w do
for i3 from 1 to w do for i4 from 1 to w do
ii :=ii+l;
A4[ii] :=f4[i1,i2,i3,i4];
A31[ii] :=£f31[i1,i2,i3,i4];
A22[ii] :=f22[i1,i2,i3,i4];
A211[ii] :=£f211[i1,i2,i3,i4];
A1111[4i4i] :=f1111[4i1,i2,i3,i4];0d;0d;0d;0d;
for jj from 1 to w do
C40[jj] :=add(A1111[i]*L42[jj,i],i=1..w4)-3*L[jj,jjl1"2;
C211[jj] :=6x(add(A211[i]*L42[jj,i],i=1..w4)
+add(A211[i]1%L43[jj,1],i=1..w4))+12*L[jj,jjl1"2; od;
#Computation of A32
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ii :=0;

for il from 1 to w do for i2 from 1 to w do for i3 from 1 to w do

for i4 from 1 to w do for i5 from 1 to w do for i6 from 1 to w do
ii :=ii+l;
A322[ii] :=(2*f21[i1,i2,13]+f3[11,i2,i3])*f111[i4,i5,i6];
A321[ii] :=f21[i1,i2,i3]*f111[i4,i5,i6]+f21[i1,i2,i4]*f111[i3,i5,i6]+

£21[41,i2,i5]*f111[i3,i4,i6]+f21[i1,i2,i6]*f111[i3,i4,1i5];

A61[ii] :=f3[i1,i2,i3]*f111[i4,i5,i6];
A62[ii] :=f21[i1,i2,i3]*f111[i4,i5,i6];
A63[ii] :=f21[i1,i2,i5]*f21[i3,i4,i6];
A64[ii] :=f21[i1,i2,i6]*f21[i3,i4,i5];
A65[ii] :=f21[i1,i2,i3]*f21[i4,i5,i6];
A66[ii] :=f3[i3,i4,i5]*f21[i1,i2,i6];
A67[ii] :=f3[i1,i2,i3]1*f21[i5,i6,1i4];
A68[ii] :=f3[i4,i5,i6]*f21[i1,i2,13];
A69[ii] :=f3[i1,i2,i3]*f3[i4,1i5,i6];
A610[ii] :=2*A62[ii]+A61[ii];

for jj from 1 to w do
L51[jj,ii] :=L[jj,i11*L[i2,i3]1*L[jj,i41*L[jj,i5]1*L[jj,i6];
L52[jj,ii]l :=L[jj,i11*L[jj,i2]1*L[i3,i4]1*L[jj,i5]1*L[jj,i6];
L53[jj,ii] :=L[jj,jjl*L[jj,i11*L[i2,i4]1*L[i3,i56]*L[jj,1i6];
L54[jj,ii] :=L[jj,jjl*L[jj,i11*L[i2,i3]1*L[i4,i56]*L[jj,1i6];
L55[jj,ii] :=L[jj,jjl*L[jj,i11*L[i2,i3]1*L[i4,i6]*L[jj,1i5];
L56[jj,ii]l :=L[jj,jjl*L[jj,i11*L[jj,i2]1*L[i3,i5]*L[i4,i6];
L57[jj,ii] :=L[jj,jjl*L[jj,i11*L[1i2,i6]1*L[i3,i56]*L[jj,1i4];
L58[jj,ii] :=L[jj,i11*L[jj,i2]*L[jj,i4]1*L[i3,i6]*L[jj,16];
L59[jj,ii] :=L[jj,i1]1*L[i2,14]1*L[jj,i31*L[jj,i5]1*L[jj,i6];
L510[jj,ii] :=L[jj,jjl*L[jj,111*L[jj,i4]1*L[i2,i3]1*L[i5,1i6];
L511[jj,ii] :=L[jj,i11*L[jj,i21*L[jj,i41*L[i3,i5]*L[jj,16];
L512[jj,ii] :=L[jj,i11*L[jj,i3]1*L[jj,i4]1*L[i2,i6]*L[jj,15];
L513[jj,ii] :=L[jj,i1]1*L[jj,i31*L[jj,i41*L[i2,i5]*L[jj,1i6];
L514[jj,ii] :=L[jj,i11*L[jj,i21*L[jj,i31*L[jj,i4]1*L[i5,i6];
L515[jj,ii] :=L[jj,i11*L[jj,i2]1*L[jj,i3]1*L[i4,i5]*L[jj,16];
L516[jj,ii] :=L[jj,jjI*L[jj,i11*L[jj,i41*L[i2,i5]*L[i3,i6];
L517[jj,ii] :=L[jj,i1]1*L[jj,i2]1*L[jj,i41*L[jj,15]1*L[1i3,i6];
L518[jj,ii] :=L[jj,i1]1*L[jj,i31*L[jj,i41*L[i2,i5]*L[jj,i6];
L519[jj,ii] :=L[jj,i11*L[jj,i3]1*L[jj,i4]1*L[jj,i5]1*L[i2,1i6];
od;od;od;od;od;od;od;

for jj from 1 to w do
C320[jj] :=-(add(A322[i]1*L51[jj,i]l,i=1..w6));
C321[jj] :=2*(add(A321[i]*L51[jj,i],i=1..w6))
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+add (A61[i]1*L51[jj,il,i=1..w6)
+6%(add (A61[i]*L52[jj,1],i=1..w6))
+3*(add (A61[i]1*L53[jj,i],i=1..w6));
C32[jj] :=C211[jj1+C320[jjl+C321[jj]l; od;
#Computation of A33
for jj from 1 to w do
CA1[jjl :=18*(add(A31[i]*L44[jj,i],i=1..w4))
+9* (add (A31[i]*L43[jj,i],i=1..w4))
+18*(add (A31[i]*L42[jj,i],i=1..wd));
CA21[jjl :=-18xL[jj,jjl 2+18*(add(A22[i]1*L43[jj,i],i=1..w4));
CA22[jj] :=36%(add(A63[i]*L54[jj,i],i=1..w6)
+add(A63[i]*Lb61[jj,i],i=1..w6));
CA23[jj] :=18%(add(A66[i]*L55[jj,i],i=1..w6))
+9% (add (A66 [i]*L54[jj,i],i=1..w6))
+18*(add (A66 [i]*L51[jj,i],i=1..w6));
CA31[jjl :=18%(add(A67[i]*L53[jj,i],i=1..w6))
+18%(add (A67[i]1*L56[jj,i],i=1..w6))
+24x(add (A67 [11*L57[jj,1i],i=1..w6))
+30* (add (A67[1]*L58[jj,1],i=1..w6));
CA32[jjl] :=18%(add(A69[i]*L53[jj,i],i=1..w6))
+9% (add (A69[i]*L56[jj,1],i=1..w6))
+18*(add (A69[1]1*L568[jj,1i],i=1..w6));
CA4[jjl :=3%(add(A4[i]1*L43[jj,il,i=1..w4))
+6* (add (A4[i]1*L42[jj,1i],i=1..w4))
+3*(add (A4[i]1*L45[jj,1i],i=1..w4))
+3%(add(A4[i]*L44([jj,i],i=1..w4));
C33[jj] :=CA1[jj]1+CA21[jj]1+CA22[jj1+CA23[jjI1+CA31[jj1+CA32[jj]
+CA4[jjl; od;
#Computation of A22
for jj from 1 to w do for i from 1 to w4 do
c0[jj,i] :=4%L43[jj,i]1+8%L42[jj,i]l; od;od;
for jj from 1 to w do for i from 1 to w6 do
c1[jj,i] :=4%L510[jj,1]1+4*L67[jj,1]1+8*L61[jj,i]1+8+L568[jj,1i]
+8xL5612[jj,i]+8*L514[jj,i1+8*L513[j],1];
c2[jj,i] :=4*L510[jj,i1+4*L57[jj,i]1+8*L51[jj,11+8*L568[jj,1]
+4xL516[jj,1]+8*L517[jj,i]1+8%L518[jj,i]+8*L5619[jj,1]
+8xL514[jj,1i];
c3[jj,i] :=L54[jj,il+2*L61[jj,i1+2*L563[jj,i]+8*L569[jj,il]
+2*L515[jj,1] ;0d;0d;
for jj from 1 to w do
CO[jjl :=add(A22[il*cO[jj,i],i=1..w4)-12%L[jj,jjl"2;
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C1[jjl := add(A65[il*c1[jj,i]l,i=1..w6);
C2[jj] := add(A68[il*c2[jj,i],i=1..w6);
C3[jj] := add(A69[il*c3[jj,i]l,i=1..w6); od;
ii :=0;

for il from 1 to w do for i2 from 1 to w do for i3 from 1 to w do
ii :=ii+1;
for jj from 1 to w do
L2[jj,ii] :=L[jj,1i1]1*L[i2,i3]; od;od;od;od;
for jj from 1 to w do for i from 1 to w3 do
bi[jj,i] :=2#L33[jj,i]1+4*L32[jj,i];
b2[jj,i] :=L33[jj,i]+2*L32[jj,i]l; od;od;
for jj from 1 to w do
ull1[jjl :=add(L2[jj,il*A213[i],i=1..w3);
B2[jj]l :=ul1[jjl*(add(A21[il*b1[jj,i],i=1..w3)
+add (A3[i]*b2[jj,i],i=1..w3));
B3[jjl :=ulil[jjl~2*L[jj,jjl;
€22[3j]1 :=CO[jj1+C1[j31+C2[jj1+C3[531-2#B2[531+B3[15];
U43[jj] :=C40[jj1+2+C32[jj1+2/3*C33[jj1+3/2%C22[]j1;
K[jjl :=U43[jj1/L[jj,jjl~2-6%xU22[jj]1/L[jj,jjl;od;

#Computation of Ull and U12
ii :=0;
for il from 1 to w do for i2 from 1 to w do for i3 from 1 to w do
for i4 from 1 to w do for i5 from 1 to w do

ii :=ii+1;

BB3[ii] :=f5[i1,i2,i3,i4,i5]+4*f32[i2,i4,i5,i1,i3]
+8%£f32[i1,i2,13,i4,i5]+4*f41[i1,i2,i3,i5,14]

+4x£f311[i1,i2,13,i4,i5]+8*f221[11,i2,i3,1i4,1i5];
for jj from 1 to w do
L34[jj,ii] :=L[jj,i11*L[i2,i4]*L[i3,i5]; od;od;od;od;od;od;
ii :=0;
for il from 1 to w do for i2 from 1 to w do for i3 from 1 to w do
for i4 from 1 to w do for i5 from 1 to w do for i6 from 1 to w do
for i7 from 1 to w do

ii :=ii+1;

BB4[ii] :=(2%f4[il1,i4,i5,i6]1*f21[i2,i7,13]+2*f4[i2,i4,i5,1i6]
*f21[i1,i3,i7]+4*f4[i1,12,i4,i5]*f21[i6,i7,i3])
+(f4[i1,i4,i5,i6]1*f3[i2,i3,i7]+2*f4[i1,12,i4,i5]
*f3[i3,i6,i7]1+2*%f4[i2,i4,i5,i7]1*f3[11,i3,i6])
+(2%£22[i2,17,i3,i6]*f3[i1,i4,i5]+4*f22[i4,i7,i2,i5]
*f3[i1,i3,i6]+4*f22[i1,i3,i6,i7]1*f3[i2,i4,i5]
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+2x£f22[i1,i7,14,i5]*f3[i2,i3,16])+(4*xf31[i1,i5,i6,1i7]
*f21[12,i4,i3]+4*f31[i1,i5,i6,i3]*f21[i2,i4,i7]
+4*£f31[i2,i4,i5,i7]1*f21[i1,i6,i3])+(2*f31[i1,i2,i5,i7]
*f3[i3,14,i6]+4*£f31[i2,14,i5,i7]1*f3[i1,i3,1i6]
+4%£31[i1,12,i5,i6]*£f3[i3,14,i7]+2*f31[i4,i5,i7,i2]
*f3[11,13,i6])+(4*f22[i1,i7,i3,i6]*f21[i4,i5,i2]
+4*f22[i4,i5,i3,i6]*f21[i1,i7,i2]+4*f22[11,i7,i4,i5]
*£f21[i3,16,i2] )+(4*f211[i5,i6,i2,i4]*f3[i1,i3,1i7]
+2%f211[i1,i2,i6,i7]*f3[i3,i4,i5])
+2xf4[i1,12,i4,i5]*f111[i3,i6,i7]1/3;
for jj from 1 to w do
L46[jj,ii]l :=L[jj,i11*L[i2,i3]1*L[i4,i6]1*L[i5,i7];
od;od;od;od;od;od;od;od;
ii :=0;
for il from 1 to w do for i2 from 1 to w do for i3 from 1 to w do
for i4 from 1 to w do for ib5 from 1 to w do for i6 from 1 to w do
for i7 from 1 to w do for i8 from 1 to w do for i9 from 1 to w do

ii :=ii+1;

BB5[ii] :=f3[i1,i4,i6]*
(£3[i2,13,i5]*f3[17,i8,i9]1+2*f3[i3,15,i8]*f3[12,17,1i9]
+4xf3[12,15,i7]1*f3[13,18,19]+8*f3[i2,i7,i8] *f3[13,i5,i9]
+2xf3[12,13,i5]*f21[i7,i8,i9]+4*f3[13,i5,i8]*f21[i2,i7,i9]
+2xf3[17,18,19]*f21[i2,i5,i3]+4*f3[13,i7,i8]*f21[i2,i5,i9]
+8xf3[i2,17,i8]*f21[i3,i5,i9]+8*f3[12,i7,i8]*f21[i3,i9,i5]
+8xf3[i2,15,i7]*f21[i3,i8,i9]+8*f3[13,i5,i8]*f21[i2,i7,i9]
+4%£3[i3,18,i9]1*f21[i2,i7,i5]
+4%f21[i7,18,19]*f21[12,i5,i3]+4*f21[i2,i5,19]*f21[i7,i8,13]
+8xf21[i7,i8,12]*£21[13,19,i56]+8*£f21[i7,18,i5]*£f21[13,19,1i2]
+4%£3[i2,15,i8]*f111[i3,17,i9])+£f3[i3,14,i9]*
(8+£3[i2,i7,i8]*f21[i1,i5,i6]+4*£3[i2,i6,i7]*f21[i1,i5,i8]
+8%£f21[i1,15,i8]1*f21[i2,i7,i6]1+8*%f21[i1,i5,i6]*f21[i2,i7,18]
+8*£f21[i1,i6,i2]1*£f21[i5,i7,i8]);

for jj from 1 to w do
L520[jj,ii] :=L[jj,i11*L[i2,i3]*L[i4,i5]*L[i6,i7]1*L[i8,1i9];
od;od;od;od;od;od;od;od;od;od;
for jj from 1 to w do
U11[jj] ull[jj1/2;
U12[jj] -U11[jjl+1/8*(add(BB3[i]*L34[jj,i],i=1..w5))
+1/4%(add(BB4[i]*L46[jj,i],i=1..w7))
+1/8*(add (BB5[1]*L520[jj,i],i=1..w9)); od;
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The case of the two parameter gamma distribution has been checked with the
values in the table of Bowman and Shenton (1988). The case of the three parameter
gamma distribution has been checked with the values in the paper of Bowman and
Shenton (2002); see §4.2. The case of the two parameter Weibull Distribution has
been checked with the paper of Bowman and Shenton (2000). The general usage of
Maple language we refer to Heck (2003).

6.3 An application
6.3.1 Mixture distribution

A mixture of a Poisson-Poisson distribution and a Poisson distribution is consid-
ered. The Poisson-Poisson distribution is a Lagrange distribution depending on two
transformations, (i) ¢ = ug(t), and (i) f(t) = G(u), g(), and G(-) being probabil-
ity functions for a Poisson random variable. Previous studies considered binomial,
negative binomial, Gram-Charlier and Pearson discrete distributions (Bowman and
Shenton, 1998). Here we consider solutions associated with sister chromatid exchange
lymphocyte data, the data base quite large, the objective being to determine whether
smoking played a significant role. We study for example, in the case associated with
female nonsmokers (FNS), male nonsmokers (MNS), female smokers (FS), and male
smokers (MS), deriving asymptotic biases, variances, skewness and kurtosis for the
four m.l. estimators. The probability function is

P(x;ty, tg, tg, ts) = taty (ty + tox)® te H0RD) /ol 4 (1 — t,)e 42 /!

forzr =0,1,---,0<t, < 1,0 <ty < 1,t; > 0,t3 > 0. It will be seen that when t5 = 0,
the first component reduces to a Poisson probability function. Central moments are:

u= t
' (1—ty)

tl tltg

S S A

— 3:“’2t1 tl(l - t2) + tltg

e (1 —ty)? (1—1t9)3

b = 32+ {1563 + dto(1 — ty)}  t1(1 —6ty) 61113
2 (]_ — t2)4 (1 _ t2)5 (1 _ t2)6 -

Clearly 0 <ty < 1.

6.3.2 The data sets and the analysis of data

The complete data set is given in Table 6.
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Table 6

Distribution of SCE
number SCE per cell
Sample of subj. 0 1 2 3 4 ) 6 7 8 9 10 11 12 13 14 15
Total 393 16 77 338 744 1374 1888 2285 2416 2499 2264 1631 1227 911 618 443 296
Females 179 7 24 141 312 587 809 994 1045 1122 1049 762 622 471 304 225 147
Males 214 9 53 197 432 787 1079 1291 1371 1377 1215 869 605 440 314 218 149
Non-Smokers 290 11 63 269 604 1078 1454 1762 1805 1907 1695 1175 878 582 419 287 188
Females 124 4 20 103 247 447 570 722 726 806 740 519 432 293 197 128 87
Males 166 7 43 166 357 631 884 1040 1079 1101 955 656 446 289 222 159 101
Smokers 73 4 8 42 91 198 305 349 408 427 390 351 248 243 148 117 85
Females 30 1 5 14 40 78 107 140 165 174 157 154 110 101 63 45 39
Males 43 3 3 28 51 120 198 209 243 253 233 197 138 142 8 72 46
SCE per cell (continued)

Sample 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Total 209 145 99 49 41 33 18 11 2 4 4 3 2 0 0 2 1
Females 101 72 64 23 23 15 9 7 2 3 4 2 1 0 0 2 1
Males 108 73 3 26 18 18 9 4 0 1 0 1 1 0 0 0 0
Non-Smokers 116 73 57 29 16 12 8 6 1 1 2 1 0 0 0 1 0
Females 52 35 31 12 9 6 4 5 1 0 2 1 0 0 0 1 0
Males 64 38 26 17 7 6 4 1 0 1 0 0 0 0 0 0 0
Smokers 75 57 33 17 19 18 9 5 0 0 0 1 1 0 0 1 0
Females 32 31 6 8 10 11 5 3 0 0 0 0 1 0 0 0 0
Males 43 26 27 9 9 7 4 2 0 0 0 1 0 0 0 1 0

Taken from Bowman et al (1998).



The distributions appear to be unimodal, and frequencies reduce to zero when z
is near to 32.

Byers and Shenton (1999) gave the m.l. estimator values, and corresponding
standard errors in parenthesis, and they are given in Table 7.

Table 7. m.l. estimates of generalized Poisson mixture parameters

t t t ts
FNS  0.9823(0.0079) 7.1748(0.0875) 0.0954(0.0141) 16.7068(1.2750)
MNS  0.9213(0.0260) 7.1005(0.0785) 0.0272(0.0197) 12.5499(0.6092)
FS  0.8997(0.0469) 7.6431(0.2094) 0.0969(0.0435) 15.3648(1.0808)
MS  0.8496(0.0621) 7.5262(0.1765) 0.0564(0.0474) 13.8857(0.8611)

In Table 8 we give our values of biases, standard errors, skewness and kurtosis.

Table 8. Poisson-Poisson and Poisson mixture distribution
m.l.e.  Unbiased m.l.e.  Bias o V. Ba

FNS ¢ 7.1748 7.1688 0.0060 0.0859 0.0761 2.9496

N =6200 t, 0.0954 0.0974 -0.0020 0.0135 -0.2624 2.9050
ts 16.7068 16.7141 -0.0073 1.2010 0.1192 2.9730

ts  0.9823 0.9845 -0.0022 0.0075 -1.1937 5.3808

MNS ¢t 7.1005 7.1001  0.0004 0.0778 0.0555 3.0394

N =8300 t, 0.0272 0.0297 -0.0025 0.0208 -0.2940 2.8395
ts  12.5499 12.5294 0.0205 0.6822 0.2461 2.7918

ts  0.9213 0.9269 -0.0056 0.0292 -0.9198 3.7515

FS ¢t 7.6431 7.6262 0.0169 0.2101 0.1458 3.0142

N =1500 t, 0.0969 0.1048 -0.0079 0.0454 -0.3266 2.3979
t3 15.3648 15.2877 0.0771 1.1542 0.4732 2.9089

ty  0.8997 0.9102 -0.0105 0.0505 -0.8526 2.4153

MS t;  7.5262 7.5160 0.0102 0.1754 0.1317 3.0419

N =2150 t, 0.0564 0.0621 -0.0057 0.0453 -0.1892 2.4201
t3 13.8857 13.8274 0.0583 0.8242 0.4681 2.9360

ts  0.8496 0.8568 -0.0072 0.0589 -0.4666 1.7824

(a) Standard Errors:

These are given in Table 7 (parenthetic entries) and are due to Byers and Shenton
(1999). Byers used the Splus program based on the m.l. estimator values of ¢4, t1,
to, t3, namely t,, 1, t2, t3. By and large our values (Table 8) of the standard errors
(or standard deviation) agree with the Byers’ values. Notice that, (i) the values of
t3 (the second component Poisson parameter) are all greater than twelve, yet the
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standard errors are all less than 1.3, (ii) the proportion in the mixture ¢, of the
Poisson component (1 — ¢4) is quite small, (iii) the first component in the mixture
Poisson-Poisson is basically Poisson, ¢, being small.

(b) Bias (Table 8):

Using first and second order terms in F(f), the bias for the estimators is negligible
except for the proportion parameter t4, for which there is a correction of -0.01 for FS.
Note that here the sample size is NV = 1500, the smallest in the group of four.

(c) Skewness and Kurtosis:

For the Poisson-Poisson components ¢; and 5, if £, = 0 the PN P reduces to a Poisson
probability function with parameter ¢;. From the Table 7, ¢; is about 7.0 with small
sigma; also /B; and f3, are nearly normal values (0,3). Hence we may assume the
distribution is approximately normal. Looking at ¢, (a discrepancy parameter from
the Poisson), it is small in comparison to ¢;, with small variance; asymptotic normality
is quite possible. These remarks apply to the four groups, FNS, MNS, F'S, and MS.

Now t3 relates to the Poisson of the second component in the mixture; it is in
the range 12-17 and its standard deviation is small in comparison. Again asymptotic
normality is acceptable.

The skewness of the proportion parameter ¢4 is negative in the all four groups,
but for MS the kurtosis indicate a platkurtic distribution. The skewness can not be
neglected and is largest in value for FNS.

Altogether, the sample sizes are large, and the first component in the mixture
is close to a Poisson distribution, whereas there is a small proportion of the second
component which is Poisson with large parameter.

For m.l. estimators, variance and skewness have been implemented using the
Maple system. The asymptotic variance of the four parameter estimators check out
against a previous study by Byers and Shenton (1999); in this paper Byers set up a
Splus program to compute the standard errors of the four parameter model of SCE
data.

7 Conclusions

Maple symbolic programs have been set up for the moments of a m.l. estimator
éa, given a density (or probability function) defined by s parameters 61, 6s,-- -, 0.
Moments of the corresponding random variable are assumed to exist.

Moments such as um(@a) are considered; here r refers to the rth central moment, s
to the coefficient N in this moment. The bias formula is expanded to N2, variance

to N=2, s to N72, and 4 to N73.
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Asymptotic series are set up; for example

¢1]£[Q) N ¢J2\§2Q) n

E(6,) ~ 0, + (N = o0)
and similarly for E(f, — 0,)™, m = 2,3, 4.

Advances in symbolic languages are sketched. It is quite possible that the first use
of a digital computer to solve a perturbation series in celestial mechanics occurred
about 50 or so years ago. Van Dyke (1975) mentioned the case of a French astronomer
who basically considered a quintuple Taylor series carried out to a term of order nine.

One of us has developed the Maple programs given here. The main results concern
/,ng(éa), and u43(§a) for m.1. estimators. In our example of an application, the density
(‘pf”) can involve 4 parameters, and extensions to 5 or more parameters are possible.

A four parameter discrete distribution is given as an example. Here standard
errors check up from an independent approach.

The asymptotic skewness, being location free, and scale free, is an addition to our
knowledge of the behavior of m.l. estimators. The basic requirement is the existence
of expectation of logarithmic derivatives of the density or probability function.
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Appendix

A The Gamma function and asymptotic series

A.1 Euler

Both the gamma distribution and the Weibull distribution have strong associations
with the gamma functions. How do asymptotics appear?
The gamma integral,

I(z) = /0 Tetld (R(2) > 0)

is due to Euler (1700-1783). It is called, according to Whittaker and Watson (1915),
Euler’s Integral of the second kind.
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A.2 Binet

In the early part of the 19th century, Binet (1839) initiated work on InT'(z), giving
the expression

InT(z) = (z - %) Inz—z+ %m(%) + [ (% - % o L 1) ettzdt. (R(2) > 0)
(12)

Some time later Binet produced the improved result

1 1 0
lnr(z):(Z—§>lnz—z+éln(2w)+2/ arctan(t/z)
0

e—27rt -1

dt.  (R(z) > 0)

A.3 The “Remainder” term J(z)
The integral in (11) may be written

fore) —27t
5 (arctant/z)e gt
0 1—e2mt

and by integration by parts becomes

1 foo 1 zdt
%/o (ln 1— e?wt> arp R0

Hence
InT(z) = 1(z) + J(=),
where
I(z) = (z — %) Inz —z+ %1n(27r),
J(z) = —% [ {ma - e} ijtQ. (R > 0)

A.4 Series for J(z)

Now J(z) can, at least formally, be expanded in series in descending powers of z, i.e.

Jp)=2-242

z 22 23

where

1 [e’s}

Cy) = ——/ ln(l — 6727rt)dta
7w Jo
1 o0

0 = —— / In(1 — e~2")£2dt,
7w Jo
1 o0

Cs = —_/ In(1 — efQWt)tQSdt; (s=0,1,--).
7w Jo
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Expanding the logarithmic terms, we have, with 27t = u,

1 o/ 1 1 u \ 2
a=2 () (nr—=) ()

1 fore) " 6—211, 6—311, e—4u 0
- - - .. d
7r(27r)25+1/0 (e L T I
(25)! 1 1 1
= m(2m)2s L (1 + 925+2 + 33s+2 + 42512 t+- )
(2s)!

in terms of the Riemann zeta function. From N.B.S. (1970, p807),
((25 +2) = (2m)*7?| Bys1a|/{2(25 + 2)!}

so that Bovra
2542
s = =0,1,---
¢ (2s+2)(2s+ 1) (s )
in terms of Bernoulli numbers,
1 1 1
By=1, Bj=—-—=-, Bb==, B3=0, B;=——
0 ) 1 2: 2 67 3 ; 4 30,
B; =0, Bg= 1 B; =0, Bg= L
5 — Y, 6 — 427 7T — Y, 8 — 30
Hence there is the asymptotic series for J(z), namely
| Bs| | B | Bs| | Bs| ,
J(2) ~ _ _ N
(2) 12 3.4.375.6.5 7.8.47 (z = ooin |z| <)
1 1 1 1 )

~ — ) 13
12z 36023 N 12602° 168027 N 59402° (13)

A.5 Semi-convergent series

This series (13) is not divergent, but is semi-convergent, i.e. the error in using s
terms s less in value than the first term omitted provided z is real and positive. For
we have, formally the remainder after s term is

s Cs Cs+1
R = (0 { - s )

-1 s+1 00 2s 2542
— ( ) / ln(l _ eZwu){ 121’ _ u .. }
70 0 Z25+1 2543
-1
(_1)s+1 00 Ly u25 ’U,2
= T /0 ln(l — € wu)ﬁ 1 + ; du
(_1)s+1 /oo Y u25 22
= In(1 —e ™) ————=du.
T2 0 n(l—e )225 22 4+ u? “
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for z real and positive. Thus

1 oo 1 u?s Cs
R < — [T () du =

i.e. the first term omitted.

A.6 G.H. Hardy and log n!

Hardy (1949) considered the expression

n 1 B; By Bs
| | = 1 :< ——)1 — C
ogn gogm n 5 ogn —n + +1-2n+3-4n3+5-6n5

where

B, B, B3 By
C=1_ .
12734756773

Hardy remarks that the series is semi-convergent and can be used to calculate logn!,
and C with z = 1. Note that he uses

1 1 1 1 5
~ By—=—, By——, Bi= —, Bs=—.
6’ 2 307 3 4 ) 5

Blz

The series for C' may be set up from our expression in (13); since in this expression
the fifth term is larger in value than the forth, the first four showing a decreasing
sequence in values, we use

1 1 1
C~1—E+%—%—0.91865
which agrees with 1 In(27) to 3 significant digits.

There are surprising inconsistencies in Hardy’s short note (Hardy, 1949, p.329).
To use the equality symbol with no mention of an appropriate domain is rather
surprising.

Returning to InT'(z), Wall’s (1948) account and association with the theory of
continued fractions is interesting. However there is no mention of the fact that Stielt-
jes discussed the continued fraction form in 1889; Wall however includes two new
partial numerators in the continued fraction.

There are two errors to note on Wall’s account. First in his (93.5) the sign should
be negative. Second the infinite series for J(z) in terms of Bernoulli numbers is not
totally divergent.
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B Summaries of some previous papers

COMMU.STATIST.-THEORY METH., 18940, 1511-1579 (1990)

THE APPROXIMATE DISTRIBUTION OF FOUR
MOMENT STATISTICS FROM TYPE III

DISTRIBUTIONS
K.O. Bowman L.R. Shenton
Oak Ridge National Laboratory University of Georgia
P.O.Box 2009 Athens, Georgia 30602

Oak Ridge, Tennessee 37831-8083

Key Words and Phrases: continued fractions; divergent series; moments; multivariae Taylor
series; sample moments; simulation cycles.

ABSTRACT

Taylor series in the sample size are set up for the first four moments of the standard
deviation, skewness, kurtosis, and coefficient of variation, the populations being x? (gamma,
Pearson Type IIT). These moments being out of reach of purely mathematical development,
the study proceeds along two independent lines. For the one, simulation methods are used,
an attempt being made to fix a cycle length to ensure some stability - this cycles length is
pivoted on the fourth moment of the kurtosis, an expression involving sixteenth powers of
the basic x? - random variable. The second line of attack uses the Taylor moment series
which are taken out to at most sixty terms in the total derivatives. An algorithm is used to
derive the expectation of a product of powers of elements which consist of non-central sample
deviates; there are four of these involved in the kurtosis, three in the skewness, and two
in the standard deviation. There is an added parameter for sample size. This expectation
of products of powers of sample deviates generates a set of coefficients, each coefficient
multiplied by a power of n~!; the larger the moment product, the greater is the span of the
powers of n 1. If a final moment series is desired to include all contributions up to n~*, then
at least 2s terms will be required in the Taylor expansion; moreover the series may turn out
to be divergent as far as can be judged by the behavior of the terms computed. At this point,
since the series are not seen to be one-signed, and since divergence is not too chaotic (as far
as the triple factorial, say), rational fraction sequences are set up to dilute divergence (or
accelerate apparent convergence); the approach is often successful but there are problems
with small sample sizes and large skewness of the population sampled. Lastly, gross errors
in relying on basic asymptotes are noted. The study brings out unusual confluences -
computer oriented numerical analysis, distributional theory and approximation, and the

power of rational fraction a divergency reducing tools.
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PARAMETER ESTIMATION FOR THE BETA
DISTRIBUTION

K.O. BOWMAN
Mathematical Science Section, Engineering Physics and Mathematics,
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6367
L.R. SHENTON
University of Georgia, Athens, Georgia 30602

(Received November 29, 1990: in final form March 18, 1992)

Moment estimators, based on the first two sample moments, for the two index pa-
rameters of the beta density (known end-points) are studied. Four moments of these
estimators are set up using Computer Oriented Extended Taylor Series (COETS) to
60 terms followed by rational fraction approximations. These indicate, over a limited
parameter space, that allowing for simplicity of calculation and other characteristics
they are preferable to maximum likelihood estimators.

KEYWORDS: Extended Taylor series, M.l. comparisons, moment estimators, ratio-
nal fraction approximation.
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Mutation Research 403 (1998) 159-169

Sister chromatid exchange data and Gram-Charlier series

K.O. Bowman®, Wesley Edding®, Marvin A. Kastenbaum¢. L.R. Shenton?

@ Computer Science and Mathematics Division, Oak Ridge National Laboratory,
P. O. Box 2008, Bldg 6012, Oak Ridge, TN 37831-6367, USA
b Vanderbilt University, Box 5313 Station B, Nashville, TN 37235, USA
€16933 Timberlakes Drive, S.W., Fort Myers, FL 33908, USA
¢ Department of Statistics, University of Georgia, Athens, GA 30602, USA

Received 30 January 1998; revised March 1998; accepted 2 April 1998.

Abstract

Bowman et al. [K.O. Bowman, M.A. Kastenbaum, L.R. Shenton, Fitting multi-
parameter distributions to SEC data, Mutation Res., 358 (1996) 15-24] showed how
discrete Pearson and discrete Johnson translation-system distributions may be fitted
to sister chromatid exchange (SCE) data presented by Bender et al. [M.A. Ben-
der, R.J. Preston, R.C. Leonard, B.E. Pyatt, P.C. Gooch, On the distribution of
spontaneous SCE in human peripheral blood lymphocytes, Mutation Res. 281 (1992)
227-232]. When their performances were measured by the chi-square test of good-
ness of fit, these distributions proved to be only moderately better alternatives to the
poorly fitting Poisson, binomial, and negative binomial distributions. In this paper
we extend our search for better characterizations of the SCE data by calling upon
the Gram-Charlier type B approximation of the negative binomial distribution. We
introduce an innovative extension of methods described in a little-known paper by
Aitken and Gonin [ A.C. Aiken, H.T. Gonin, On fourfold sampling with and without
replacement, Proc. R.Soc.Edinburgh,55(1934) 114-125.], and show how a theorem
by Cramér [H.Cramér, Mathematical Methods of Statistics, Princeton Univ.Press,
1946.], relating to the scale factor ms/m) and its asymptotic distribution may be
used to discriminate between smokers and non-smokers of the same gender.

Keywords; Chi-squared; Factorial moment; Gram-Charlier distribution; Negative bi-
nomial distribution; Distribution; Orthogonal polynomial.
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COMMUN.STATIST-THEORY METH.,28(10),2497-2508 (1999)

THE ASYMPTOTIC MOMENT PROFILE AND
MAXIMUM LIKELTHOOD: APPLICATIONS TO
GAMMA AND GAMMA RATIO DENSITIES

K. O. Bowman

Computer Science and Mathematics Division
Oak Ridge National Laboratory
P. O. Box 2008, Oak Ridge, Tennessee 37831-6367

L. R. Shenton

Department of Statistics, University of Georgia
Athens, Georgia 30602

Key words covariance matrix; gamma density; generating functions; products of ran-
dom variables; Stieltjes integrals.

ABSTRACT

In previous papers (Bowman and Shenton, 1998, 1999a) we have given expressions
for the asymptotic skewness and kurtosis for maximum likelihood estimators in the
case of several parameters. Skewness is measured by the third standardized central
moment, and kurtosis by the fourth standardized central moment. Moments of the
basic structure are assumed to exist. The overarching entity is the covariance matrix
(Hessian form), and elements of its inverse. These entities involve Stiltjies integrals
relating to sums of products of multiple derivatives linked to the basic structure. The
first paper dealt with skewness and gives a simple expression readily computerized.
The second paper is devoted to the forth standardized central moment and although
a certain simplification is discovered, the resulting formula is still somewhat compli-
cated. It is surprising to find that the asymptotic kurtosis in general requires the
evaluation of several hundred components. The present paper studies cases involving
one, two, and three parameters and mentions strategies aimed at avoiding algebraic
and numerical errors.
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COMMUN.STATIST-THEORY METHOD., 28(11), 2641-2654 (1999)

THE ASYMPTOTIC KURTOSIS FOR
MAXIMUM LIKELITHOOD ESTIMATORS

K. O. Bowman
Computer Science and Mathematics Division
Oak Ridge National Laboratory
P. O. Box 2008, Oak Ridge, Tennessee 37831-6367

L. R. Shenton
Department of Statistics, University of Georgia
Athens, Georgia 30602

Key words: asymptotic series; expectation of random variable products; Fisher’s
linkage; percentage points; moment series; polarization operator; products of random
variables.

ABSTRACT

In general, when moments exist, the dominant term in the fourth central moment
of an estimator is three times the square of the asymptotic variance; this leads to the
value three for the asymptotic kurtosis. Working on the approach given in Bowman
and Shenton (1998) we now complete the basic asymptotic moment profile by giving
an expression for the third order term in the fourth central moment of a maximum
likelihood estimator, assuming the existence of derivatives of a density and also the
existence of the covariance matrix inverse. A four moment distributional model, such
as the Pearson system, or Johnson translation system, may be used to approximate
percentage points of the estimators.
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Far East J.Theo.Stat. 4(2)(2000), 391-422

MAXIMUM LIKELITHOOD AND THE WEIBULL
DISTRIBUTION

K.O. BOWMAN and L.R. SHENTON

Computer Science and Mathematics Division Department of Statistics
Oak Ridge National Laboratory University of Georgia
P.O.Box 2008 Athens, Georgia 30602
Oak Ridge, Tennessee 37831-6367, U.S.A.

e-mail: bowmanko@ornl.gov

Abstract

The Weibull distribution has three parameters, location a, scale b and shape c.
Maximum likelihood estimators are a, b. ¢, and solutions may not always exist; for
example the location estimate a must be less than the smallest member of the sam-
ple. We consider three estimation problems: (1) Estimation of one parameter when
the other two are assumed to be known. (2) Estimating the scale and shape param-
eters when the location parameter is known. (3) Estimating the three parameters
simultaneously.

Results being based on the covariance matrix and its cofactors, we give explicit
expressions for the asymptotic bias, 2nd order variances, skewness to order 1/ VN,
and asymptotic kurtosis to order 1/N, N being the sample size. Except for the
simultaneous estimation of a, b, ¢, the expressions for these asymptotic moments and
moment ratios are simple in form involving gamma and Riemann Zeta functions. They
provide a new basic supplement to our knowledge of maximum likelihood estimator
moments.

A surprising discovery is the part played by the location parameter whenever it
has to be estimated. For the three parameter estimation case it is already known that
asymptotic covariance only exist if ¢ > 2. It turns out that the asymptotic skewness
only exist if ¢ > 3, and the asymptotic kurtosis only exist ¢ > 4. This applies to
the asymptotic distribution of a, ZA), and ¢. The source of this characteristic is the
singularity appearing in the expectation of logarithmic derivatives. When less than
3 parameters are to be estimated the problem arises whenever a intrudes.

For the 3 parameter case, a new expression is developed for the asymptotic vari-
ance of ¢. Lastly, wherever possible simulation studies are invoked for verification
purposes.
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Weibull distributions when the shape parameter is defined

K.O. Bowman®, L.R.Shenton®
¢ Computer Science and Mathematics Division, Building 6012, Oak Ridge National
Laboratory,
P.0.Bozx 2008, MS-6367, Oak Ridge, TN 37831-6367. USA
b Department of Statistics, University of Georgia, Athens, GA 30602. USA

Received 1 April 2000; received in revised from 1 October 2000.

Abstract

The Weibull distribution, depending on parameters of location, scale, and shape, is
often useful as a model for fracture data sets. If the location parameter is to be esti-
mated then we have shown that maximum likelihood methods are not recommended.
In the data set considered here the shape parameter is known to lie between 2 and 3
or so. We therefore studied the 2 parameter model for which the shape parameter is
known, or has a probability structure. Simple moment estimators are used and some
moments of these are studied and verified by simulation.

Keyword: Envelope distribution, moment estimator, moments of sample moments,
Padé sequences, Taylor series, unbiased estimators.
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PROBLEMS WITH MAXIMUM LIKELITHOOD
ESTIMATION AND THE 3 PARAMETER GAMMA
DISTRIBUTION

K.O. BOWMAN?® and L.R. SHENTON?

¢ Computer Science and Mathematics Division, Oak Ridge National Laboratory,
P.0O.Boz 2008, MS-6367, Oak Ridge, Tennessee 37831-6367;
b Department of Statistics, University of Georgia, Ahtens, Georgia 30602

(Received 21 March 2001: In final form 3 October 2001)

The three parameters involved are scale a, shape p, and location s. Maximum
likelihood estimators are (a, p, §). Using recent work on the second order variances,
skewness, and kurtosis we establish the facts, that if the location parameter s is to be
estimated, then the asymptotic variances only exist if p > 2, asymptotic skewness only
exists if p > 3, and 2nd order variances and third order fourth central moments only
exist if p > 4. The result of these limitations is that in general very large sample sizes
may be needed to avoid inference problems. We also include new continued fractions
for the asymptotic covariances of the maximum likelihood estimators considered.
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SIAM J.Appl.Math.
Vol 23,No 2,September 1972

USE OF LAGRANGE EXPANSION FOR GENERATING
DISCRETE
GENERALIZED PROBABILITY DISTRIBUTIONS

P.C. CONSUL and L.R. SHENTON

Abstract. Considering ¢(t) and f(¢) as two probability generating functions defined
on nonnegative integers with g(0) # 0. We use Lagrange’s expansion, together with
the transformation ¢t = u - g(t). to define families of discrete generalized probability
distributions by the name of Lagrange distributions as

PriX =0]=L(g: f:0) = f(0),

1 dacfl .
Prix=al=Lg:1:2) = = {607 7O} e
for x = 1,2,3,- .-, where the different families are generated by assigning different

values to ¢(t) and f(t). General formulas for writing down the central moments of
Lagrange distributions are obtained and it is shown that they satisfy the convolution
property. The double binomial family of Lagrange distributions is studied in greater
detail as it gives a large number of discrete distributions, including Borel-Tanner
distribution, Haight’s distribution, generalized Poisson and generalized negative bi-
nomial distributions, as particular cases.
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Sankhya: The Indian Journal of Statistics
1974, Volume 36, Series B, Pt.2, pp.154-162.

MAXIMUM LIKELITHOOD ESTIMATION FOR THE
PARAMETERS OF THE HERMITE DISTRIBUTION

By Y.C. PATEL, L.R. SHENTON
Universitiy of Georgia
and K.O. BOWMAN
Oak Ridge National Laboratory

Properties of the maximum likelihood estimators of the parameters (a,b) in the
Hermite distribution, with probability generating function exp {a(t — 1) + b(¢* — 1)}
are discussed. Numerical assessments of the first and second order coefficients in the
biases and covariances are given for a limited region of the parameter space.
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Rep.Stat.Appl. Res., JUSE
Vol.17, No.3, 1970

TABLES OF THE MOMENTS OF THE MAXIMUM
LIKELIHOOD ESTIMATORS OF THE TWO
PARAMETER GAMMA DISTRIBUTION

By L.R. Shenton
Professor of Statistics, Computer Center,
University of Georgia, Athens, Georgia 30601
K.O. Bowman
Mathematical Statistician, Computer Technology Center,
Union Carbide Corporation, Nuclear Division

Oak Ridge, Tennessee, USA

The moments of the maximum likelihood estimators of the parameters p, a for
the gamma density f(z) = k(z/a)?~' exp(—z/a) are briefly tabulated. These include
the biases E(p — p)/p, E(a — a)/a, the variances Var(p/p), Var(a/a), skewness and
kurtosis. The range of values considered is approximately p = 0.2 to 3.0 and n (the
sample size) lying between 12 and 100. Some comparisons of the moments with the
usual first-order asymptotic values are made.
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