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In 1998, Bowman and Shenton introduced an asymptotic formula for the third central moment of a
maximum likelihood estimator θ̂α of the parameter θα, a = 1, 2, . . . , s. From this moment, the asymp-
totic skewness can be set up using the standard deviation. Clearly, the skewness, measured in this way
is location free, and scale free, so that shape is accounted for. The computer program is implemented
by insertion of the values of expectations of products of logarithmic derivatives, a tiresome task.
But now using Maple, the only input consists of the values of the parameters and the form of the
density or probability function. Cases of up to four parameters have been implemented. However,
in this paper we present two- and three-parameter cases in detail. Future improvements in handling
Maple may lead to the implementation of the general case. Bowman and Shenton [Bowman, K.O.
and Shenton, L.R., 1999, The asymptotic kurtosis for maximum likelihood estimators. Communica-
tions in Statistics, Theory and Methods, 28(11), 2641–2654.] also developed an asymptotic formula
for the kurtosis, which is not used here. This study was initiated in our monograph [Shenton, L.R.
and Bowman, K.O., 1977, Maximum Likelihood Estimation in Small Samples (Charles Griffin and
Co., Ltd.)].

Keywords: Binomial mixtures; Covariance matrix; Hessian matrix; Hybrid mixtures; Logarithmic
derivatives; Poisson mixtures

1. Introduction

Given a density or probability function f (x; θ ), depending on s parameters θ1, θ2, . . . , θs , we
have given [1] a formula for the asymptotic skewness for the maximum likelihood estimator θ̂i ,
of θi, i = 1, 2, . . . , s. Briefly, the denominator is based on the maximum likelihood covariance
matrix which itself is the inverse of the Hessian matrix.
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The Hessian matrix leading to the maximum likelihood covariances is

�s =




[θ1, θ1] [θ1, θ2] · · · [θ1, θs]
[θ2, θ1] [θ2, θ2] · · · [θ2, θs]

...
...

...
...

[θs, θ1] [θs, θ2] · · · [θs, θs]


 , (1)

where in expectations

[θi, θj ] = E

{
∂ ln f (x; θ )

∂θi

∂ ln f (x; θ )

∂θj

}
(i, j = 1, 2, . . . , s),

the derivatives being assumed to exist. For the case when f (x; θ ) is a continuous probability
density, this becomes

[θi, θj ] =
∫ ∞

−∞

{
∂ ln f (x; θ )

∂θi

∂ ln f (x; θ )

∂θj

}
f (x; θ ) dx (i, j = 1, 2, . . . , s),

existence being assumed, i.e., convergence of the integral. For the discrete case, the support
being x = 0, 1, . . . ,

[θi, θj ] =
∞∑

x=0

{
∂ ln f (x; θ )

∂θi

∂ ln f (x; θ )

∂θj

}
f (x; θ ),

the summation being assumed to be convergent. Usually a stopping rule, based on the value
of the last term or terms, is involved. Asymptotic covariances are set up from the inverse of
the matrix (1); thus

Cov1(θ̂j , θ̂h) = �jh

|�s | ,
where �j,h is the minor of the element in the j th row and hth column, |�s | indicating the
determinant of the matrix �s . For example, when s = 3,

�3 =

[θ1, θ1] [θ1, θ2] [θ1, θ3]

[θ2, θ1] [θ2, θ2] [θ2, θ3]
[θ3, θ1] [θ3, θ2] [θ3, θ3]


 ,

so

Var1(θ̂1) =

[[θ2, θ2] [θ2, θ3]
[θ3, θ2] [θ3, θ3]

]

|�3| ,

Var1(θ̂2) =

[[θ1, θ1] [θ1, θ3]
[θ3, θ1] [θ3, θ3]

]

|�3| .

The subscript 1 in Var1(·) indicates the coefficient of the N−1 term, N being sample size.
The skewness formula uses a summatory notation for the N−2 coefficient in the third central

moment of θ̂α, a being 1, 2, . . . , s, and α, β, γ = 1, 2, . . . , s, namely

µ32(θ̂a) = LaαLaβLaγ ([α, β, γ ] + 3[αβγ ] + 6[αβ, γ ]), (2)
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where

• fx = f (x; θ ) is the probability function or density and θ ≡ (θ1, θ2, . . . , θs).
• Lαβ = E{(∂ ln fx/∂θα) · (∂ ln fx/∂θβ)} = ∑

(1/fx)(∂fx/∂θα)(∂fx/∂θβ). Lβα is an ele-
ment in the covariance matrix, the N−1 factor omitted.

• [α, β, γ ] = E{(∂ ln fx/∂θα)(∂ ln fx/∂θβ)(∂ ln fx/∂θγ )}, [αβγ ] = E{∂3 ln fx/(∂θα∂θβ

∂θγ )}, [αβ, γ ] = E[{∂2 ln fx/(∂θα∂θβ)}(∂ ln fx/∂θγ )]. It is assumed that a set of loga-
rithmic derivatives exist. The above expressions will be referred to as ‘square bracket’
terms.

• A non-singular covariance matrix is assumed. It will involve s(s + 1)/2 covariances.

For the asymptotic skewness, we have

√
β1(θ̂a) ∼ µ32(θ̂a)/(L

aa)3/2

√
N

=
√

β11(θ̂a)√
N

, (N −→ ∞, a = 1, 2, . . . , s) (3)

The implications of the summation formula in equation (2) for the asymptotic third central
moment of an estimator θ̂a are summarized in table 1 for the case of two parameters θ1 and θ2.

θ1 and θ2 are represented by 1, and 2, respectively. Permutations are valid in columns 3
and 5, of table 1, but not completely in [αβ, γ ], since [αγ, β] may not equal [αβ, γ ], but
[αβ, γ ] = [βα, γ ].

Previously, we have evaluated numerous terms in equation (2) and derived the asymptotic
skewness and lower order moments for the three-parameter gamma density [2], and the three-
parameter Weibull density [3], the densities being

Gamma: g(x; s, a, ρ) = e−x/a(x/a)ρ−1

a�(ρ)
(x = X − s, a > 0, ρ > 0, x > 0)

Weibull: f (x; a, b, c) = c

b
yc−1e−yc

(
y = x − a

b
, x > 0, b > 0

)
.

Using a Maple program, it is now possible to avoid evaluating the derivatives in equation (2)
and merely specifying the density or probability function. The density or probability function
must have derivatives with respect to the parameters which exist in a certain domain.

Here, we describe applications to the two-component Poisson mixture distribution and the
two-component hybrid mixture (Poisson and binomial) distribution. It is gratifying to note
that the abbreviated Maple approach checks out for the gamma density [two cases, (1) s is
known, (2) s is unknown], and the Weibull density.

The asymptotic skewness
√

β1(θ̂a) is chosen as a guide to sample size because skewness

measured by moments (µ3/µ
3/2
2 ) is location free and scale free; bias and variance do not in

Table 1. Formula (2), θa, a = 1 or 2.

α β γ LaαLaβLaγ [αβγ ] [αβ, γ ] [α, β, γ ]
1 1 1 (La1)3 [111] [11, 1] [1, 1, 1]
1 1 2 (La1)2La2 [112] [11, 2] [1, 1, 2]
1 2 1 (La1)2La2 [121] [12, 1] [1, 2, 1]
2 1 1 (La1)2La2 [211] [12, 1] [2, 1, 1]
1 2 2 La1(La2)2 [122] [12, 2] [1, 2, 2]
2 1 2 La1(La2)2 [212] [21, 2] [2, 1, 2]
2 2 1 La1(La2)2 [221] [22, 1] [2, 2, 1]
2 2 2 (La2)3 [222] [22, 2] [2, 2, 2]
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generally represent the shape of a distribution. If we set
√

β1(θ̂a) to be a quantity ε, then
sample size is

N∗(θ̂a, ε) =

{√
β11(θ̂a)

}2

ε2
,

and we could take 1 ≤ ε ≤ 2, or more demanding ε = 0.1.
An application of the Maple system to sets of data on sister chromatid exchanges on blood

lymphocytes is briefly considered.
We first of all take the case of the two-component Poisson mixture distribution.

2. The two component Poisson mixture distribution

Probability function:

P(x; θ, π ) = π1
e−θ1θx

1

x! + (1 − π1)
e−θ2θx

2

x! (0 < π1 < 1, θ1 > 0, θ2 > 0, x = 0, 1, . . .).

Some examples of variance and skewness are given in table 2.

Comments to table 2:

• In cases 1 and 2, note the improvement in the moments as the difference |θ1 − θ2| increases
from 1 to 5. Note also the next case in which the difference narrows again to unity with a
consequent increase in moment values. A similar phenomena is evident in cases 8 and 9.

• Case 10 shows the decrease in most values when the difference |θ1 − θ2| = 10.
• Our tabulations are all for θ2 > θ1. To produce the moment for θ1 > θ2, we must use the

transformations θ1 ↔ θ2 and π1 ↔ π2. Thus for the case θ1 = 2, θ2 = 1, π1 = 0.2, we
look up in our table for θ1 = 1, θ2 = 2, π1 = 0.8. Thus, this explains the sign change.

• When π1 = 0.2, there is emphasis on the second component for which the proportion is
0.8. This suggests the observed fact that

√
β11(π̂1) is positive. When π1 = 0.8, it follows

that negative values of
√

β11(π̂1) are to be expected. Note that we are considering E[π̂1 −
E(π̂1)]3.

Table 2. Two-component Poisson mixture distribution.

Variance
√

β1

Case θ1 θ2 π1 θ̂1 θ̂2 π̂1 θ̂1 θ̂2 π̂1

1 1.0 2.0 0.2 822.97 77.30 154.68 −23.19 147.56 193.02
2 1.0 6.0 0.2 15.37 11.22 0.34 5.60 0.97 3.42
3 5.0 6.0 0.2 29,604.27 2,067.12 4,935.37 −224.15 975.35 1,155.20
4 1.0 2.0 0.5 116.81 148.51 125.01 −46.44 58.00 1.32
5 3.0 4.0 0.5 1,262.71 1,340.23 1,269.85 −183.69 196.81 3.21
6 5.0 6.0 0.5 4,588.84 4,713.37 4,579.49 −369.60 382.24 3.51
7 1.0 2.0 0.8 34.75 538.54 82.20 −95.61 36.73 −134.70
8 3.0 4.0 0.8 415.37 6,039.41 987.91 −403.51 111.53 −498.42
9 3.0 9.0 0.8 6.90 112.78 0.40 0.25 0.38 −4.44

10 5.0 6.0 0.8 1,576.69 23,325.07 3,819.66 −841.21 215.89 −1,004.06
11 5.0 15.0 0.8 8.38 123.70 0.22 0.81 −0.27 −1.99
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Table 3. Skewness for the hybrid and corresponding Poisson–
Poisson distribution.

π1

√
β11(θ̂)

√
β11(p̂)

√
β11(π̂1)

0.2 Hybrid 28.84 −89.37 132.71
P.P. (θ1 = 2, θ2 = 1) 36.73 −95.61 −134.70

0.5 Hybrid 49.57 −50.92 8.10
P.P. 58.00 −46.44 1.32

0.8 Hybrid 130.40 −46.05 −161.04
P.P. 147.56 −23.19 193.02

3. Asymptotic skewness for the two-component hybrid case, Poisson and binomial
mixture distribution

Probability function:

P(x; θ, p, π1|n) = π1
e−θ θx

x! + (1 − π1)

(
n

x

)
px(1 − p)n−x,

(θ > 0, 0 ≤ p ≤ 1, 0 < π1 < 1, n = 1, 2, . . .).

We chose a case for which the binomial component is approximately a Poisson distribution,
i.e., n = 50, p = 0.2, θ = 2. For three values of the proportion parameter, π1 comparisons
with the corresponding two-component Poisson–Poisson mixture distribution are given in
table 3.

Comments to table 3:

• The parameters are chosen so as to produce a close comparison between hybrid and
Poisson–Poisson mixture distribution. Thus, n is fairly large, p is fairly small.

• The agreement between the two assessments is quite satisfactory but there is a sign change
for

√
β11(π̂1).

The asymptotic variances of the hybrid Poisson and binomial mixture distribution are of
less interest, but have been studied in Bowman and Shenton [4].

In our paper [4], evidence was provided that the low-order asymptotic moments of maximum
likelihood estimators for the two-component hybrid case would exist even when the compo-
nents were assigned close values; for example, θ = 1.0, p = 0.1, n = 10, for which when

π1 = 0.5, for example, we have
√

β11(θ̂) = 2568,
√

β11(p̂) = 1233, and
√

β11(π̂1) = 48.8.

4. An application to the four parameter case

Byers and Shenton [5] considered a data set concerning sister chromatid exchange and the
possible effect of smoking on individuals involved. There were four categories, female non-
smokers, male non-smokers, female smokers, and male smokers. A model used to fit the



980 K. O. Bowman and L. R. Shenton

Table 4. Standard errors and skewness of male non-smokers, n = 8300.

Parameters λ̂1 θ̂ λ̂2 π̂1

ml Estimators 7.1005 0.0272 12.5499 0.9213
Asymptotic standard error 0.0778 0.0208 0.6822 0.0292
Asymptotic skewness 0.0004 0.8327 1.7450 0.7144

discrete data was a mixture of Poisson–Poisson and Poisson distributions, with probability
function

P(x; λ1, θ, λ2, π1) = π1λ1(λ1 + θx)
x−1e−(λ1+θx)

x! + (1 − π1)e−λ2λx
2

x!
for x = 0, 1, . . . , 0 < π1 < 1, 0 ≤ θ < 1, λ1 > 0, λ2 > 0. The first component is the
Poisson–Poisson distribution, and this reduces to a Poisson distribution when θ = 0.

In a preliminary study of asymptotic skewness using the Maple system, we give the fol-
lowing moments for maximum likelihood estimators for the sub-group male non-smokers, for
which the sample size n = 8300, and there being four parameters (table 4).

Comments to table 4:

• The standard errors given here were computed by Maple, and in substance agree with those
given by Byers and Shenton [5] using the Splus program. To interpret standard errors,
keep in mind the associated mean. Thus, σ(λ̂1) relates to the mean of λ̂1, which is 7.1005;
similarly for σ(λ̂2). But means of θ̂ and π̂1 are small in value.

• The asymptotic skewness for λ̂1 is small so that asymptotic normality might be suggested;
a small skewness may imply a small kurtosis because of inherent correlation. Even with a
sample size of 8300, a similar conclusion is not obvious for the θ̂ , λ̂2 and π̂1 distributions.

• The four data sets are given in Bowman et al. [6], table 1.
• The maximum likelihood solutions, model fits, and other aspects including Splus assess-

ments are given in Byers and Shenton [5].

5. The sample size and almost normality for maximum likelihood estimator

5.1 Sample size

In 1922, Fisher [7] introduced the notion of efficient estimator; this considered the ratio
‘(Variance using maximum likelihood estimator)/(Variance of other consistent estimator)’. A
consistent estimator of a parameter τ , say t (x1, x2, . . . , xn), is such that

E{t (x1, x2, . . . , xn)} = τ + τ1/n + · · · , (n −→ ∞).

Fisher claimed in his 1922 paper that most moment methods were inefficient, information
thereby lost. Fisher over-looked the question of sample size and admitted his error in the
1950s [8].

We are not making the same mistake with respect to our asymptotic skewness formula for

maximum likelihood processes.
√

β11(θ̂) is the coefficient of N−1/2 in the real skewness. It
is a statistic based on sample moments. Our suggestion is that in a sustained study of ‘bell
shaped’ data sets, the skewness should be calculated in pilot studies to guide the researcher
with the choice of sample size.
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Table 5. Sample size for pseudo-normality, Poisson–Poisson
mixture of two components, three parameters.

θ1 θ2 π1 N∗(θ̂1, 0.1) N∗(θ̂2, 0.1) N∗(π̂1, 0.1)

1.0 2.0 0.2 5.38E+04 2.18E+06 3.73E+06
0.5 2.16E+05 3.36E+05 1.74E+02
0.8 9.14E+05 1.35E+05 1.81E+06

1.0 6.0 0.2 3.14E+03 9.41E+01 1.17E+03

Under regularity conditions, maximum likelihood estimators are asymptotically normal [9].
One step towards this state is to make the skewness small in values; our interpretation of small
here is |√β1| = 1/10. The sample sizes are shown in tables 5 and 6.

Comment to table 5: Several million are required when θ2 − θ1 = 1 but the number is
significantly reduced for π1 = 0.2 when θ2 − θ1 = 5.

Comment to table 6: Samples as large as several millions are indicated. Note the entries
can be rescaled to apply to other scales of ε; for example, if ε = 1, the estimates are divided
by 100.

Note, however, that Geary [10] showed that there is a minimum property of the determinant
of the covariance matrix which is asymptotic and holds for maximum likelihood methods.

5.2 Further examples

Aside from cases mentioned in this paper and references, we could think of Poisson-negative
binomial, binomial-negative binomial, χ2

1 − χ2
2 (χ2 with different degrees of freedom),

lognormal (three parameters) distributions and others. The three volumes on distributions
by Johnson et al. [11–13] provide many more examples.

5.3 Programs

5.3.1 Introduction of Maple. In this section, two Maple programs, two- and three-
parameter cases are listed. Users must supply the distribution as a (pf). The parameters are t1
and t2 for the two-parameter case, t1, t2, and t3 for the three-parameter case.

Variables D1, D2, and D3 are first, second, and third derivatives with respect to parameters.
After the third derivatives are derived, user must supply the maximum likelihood estimator

values for the parameters and compute expectation of ‘squared bracket’ terms. For the contin-
uous distribution, integration is used, and for discrete distribution summation is used over the
range of x.

Table 6. Sample sizes for pseudo-normality, two-component hybrid
(Poisson binomial).

θ1 p n π1 N∗(θ̂1, 0.1) N∗(θ̂2, 0.1) N∗(π̂1, 0.1)

2.0 0.02 50 0.2 8.32E+04 7.99E+05 1.76E+06
0.5 2.46E+05 2.59E+05 6.56E+03
0.8 1.70E+06 2.12E+05 2.59E+06
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The matrix (L) is the covariance matrix, for example L11 is the N−1 term of the variance
of the θ̂1.

U3t1 and U3t2 are N−2 terms of the µ3 of θ̂1, θ̂2, and so on.

5.3.2 Program 1. This is the program for the maximum likelihood estimators of the two-
parameter gamma distribution (continuous density), â and ρ̂. Suppose the estimators were
calculated by a standard statistical program package. This program will compute the N−1

terms of variances and N−1/2 terms of skewness.

#Find skewness of ml estimators of 2 parameter gamma dist
#Reference paper is Bowman and Shenton [1].

with(linalg);

# pf = Gamma probability function
pf := exp(−x/t1)∗xˆ(t2-1)/(t1 t̂2∗GAMMA(t2));
LL := log(pf);
# W = 3× (2× 2× 2), need 1st to 3rd order derivatives,
# 2× 2× 2 represents
# all possible combination of derivatives of 2 parameter
# case.
W := array (1..3,1..8,

[[1,1,1,1,2,2,2,2],[1,1,2,2,1,1,2,2],[1,2,1,2,1,2,1,2]]);

D1 := simplify(vector(2,[diff(LL,t1),diff(LL,t2)]));
for i from 1 to 2 do

D2[2∗i-1] := diff(D1[i],t1); D2[2∗i] := diff(D1[i],t2);
D11[2∗i-1] := D1[i]∗D1[1]; D11[2∗i] := D1[i]∗D1[2]; od;

for i from 1 to 4 do
D3[2∗i-1] := simplify(diff(D2[i],t1));
D3[2∗i] := simplify(diff(D2[i],t2)); od;

# Having completed all the symbolic operations.

# Substitute the parameter values for t1 and t2.
a := 1; r := 2; f := subs(t1=a,t2=r,pf);
for i from 1 to 2 do

d1[i] := subs(t1=a,t2=r,D1[i]); od;

# Substitute the parameter values for t1 and t2; and take
# expectation by
# integration (continuos distribution).
for i from 1 to 4 do

d2[i] := subs(t1=a,t2=r,D2[i]); f11[i] := subs(t1=a,
t2=r,D11[i]);
ef11[i] := evalf(int(f∗f11[i],x=0..infinity));
f2[i] := evalf(int(f∗d2[i],x=0..infinity)); od;

for i from 1 to 8 do
d3[i] := subs(t1=a,t2=r,D3[i]);
f3[i] := evalf(int(f∗d3[i],x=0..infinity)); od;

for i from 1 to 4 do
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f21[2∗i-1] := evalf(int(f∗d2[i]∗d1[1],x=0..infinity));
f21[2∗i] := evalf(int(f∗d2[i]∗d1[2],x=0..infinity));
f111[2∗i-1] := evalf(int(f∗f11[i]∗d1[1],x=0..infinity));
f111[2∗i] := evalf(int(f∗f11[i]∗d1[2],x=0..infinity)); od;

# Compose Hesian matrix
H :=matrix(2,2,[[ef11[1],ef11[2]],[ef11[3],ef11[4]]]);
# Find covariance matrix by inverting H
L := inverse(H);

# Compute the value of equation (2).
for i from 1 to 8 do

A[i] := f111[i]+3∗f3[i]+6∗f21[i];
B[i] := evalf(L[1,W[1,i]]∗L[1,W[2,i]]∗L[1,W[3,i]]);
C[i] := evalf(L[2,W[1,i]]∗L[2,W[2,i]]∗L[2,W[3,i]]); od;
AA := vector(8,[A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8]]);
BB := vector(8,[B[1],B[2],B[3],B[4],B[5],B[6],B[7],B[8]]);
CC := vector(8,[C[1],C[2],C[3],C[4],C[5],C[6],C[7],C[8]]);
BBT := transpose(BB); CCT := transpose(CC);

U3t1 := evalf(multiply(BBT,AA)); U3t2 := evalf(multiply
(CCT,AA));

# Compute standardized skewness values.
rb1a := U3t1/L[1,1] (̂3/2); rb1rho := U3t2/L[2,2] (̂3/2);

5.3.3 Program 2. This is the program for the maximum likelihood estimators of the three-
parameter Poisson mixture distribution (discrete distribution), θ̂1, θ̂2, and π1. Suppose that
the estimators were calculated by standard statistic program package as Program 1. As the
number of parameters increase, the requirement of a large sample size is expected. Note the D3
is computed differently from Program 1. There are 27 different combinations of derivatives;
however, only 17 are a distinct set of combinations of three parameters. Therefore, it will save
a lot of time and space to compute only those distinctive sets. It will be more so when the
program is extended to four parameters. There will be 64 combinations of derivatives and it
may be important to save time and space of computing.

#Find skewness of ml estimators of 3 parameter mixture
# distribution
#Reference paper is Bowman and Shenton [2].
#parameters of mixture of a Poisson-Poisson is t1, t2 and t3

with(linalg);

# pf = 3 parameter mixture distribution (discrete
# distribution).
pf := t3∗exp(−t1)∗t1ˆx/x!+(1-t3)∗exp(−t2)∗t2ˆx/x!;
LL := log(pf);

# W =3× (3× 3× 3), need 1st to 3rd order derivatives
# 3× 3× 3 represents
# all possible combination of derivatives of 3 parameter
# case.
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W :=array(1..3,1..27,
[[1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3],
[1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3],
[1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3]]);

D1 := vector(3,[simplify(diff(LL,t1)),simplify(diff(LL,t2)),
simplify(diff(LL,t3))]);
for i from 1 to 3 do

D2[3∗i-2] := simplify(diff(D1[i],t1));
D2[3∗i-1] := simplify(diff(D1[i],t2));
D2[3∗i] := simplify(diff(D1[i],t3));
d11[3∗i-2] := D1[i]∗D1[1];
d11[3∗i-1] := D1[i]∗D1[2];
d11[3∗i] := D1[i]∗D1[3]; od;

i := 1; D3[3∗i-2] := simplify(diff(D2[i],t1));
D3[3∗i-1] := simplify(diff(D2[i],t2));
D3[3∗i] := simplify(diff(D2[i],t3));

i := 2; D3[3∗i-2] := D3[2];
D3[3∗i-1] := simplify(diff(D2[i],t2));
D3[3∗i] :=simplify(diff(D2[i],t3));

i := 3; D3[3∗i-2] := D3[3];D3[3∗i-1] := D3[6];
D3[3∗i] := simplify(diff(D2[i],t3));

i := 4; D3[3∗i-2] := D3[2];D3[3∗i-1] := D3[5];D3[3∗i] := D3[6];
i := 5; D3[3∗i-2] := D3[5];

D3[3∗i-1] := simplify(diff(D2[i],t2));
D3[3∗i] := simplify(diff(D2[i],t3));

i := 6; D3[3∗i-2] := D3[6];D3[3∗i-1] := D3[15];
D3[3∗i] := simplify(diff(D2[i],t3));

i := 7; D3[3∗i-2] := D3[3];D3[3∗i-1] := D3[6];D3[3∗i] := D3[9];
i := 8; D3[3∗i-2] := D3[6];D3[3∗i-1] := D3[15];D3[3∗i] := D3[18];
i := 9; D3[3∗i-2] := D3[9];D3[3∗i-1] := D3[18];

D3[3∗i] := simplify(diff(D2[i],t3));
# Having completed all the symbolic operations.

# Substitute the parameter values for t1, t2, and t3.
a := 5; r := 6; s := 0.5; f := subs(t1=a,t2=r,t3=s, pf);

lim := r∗10;
for i from 1 to 3 do

d1[i] := subs(t1=a,t2=r,t3=s,D1[i]); od;
# Substitute the parameter values for t1, t2, and t3; and
# take expection by
# sum over the region from 0 to limit (lim). (discrete
# distribution).
for i from 1 to 9 do

d2[i] := subs(t1=a,t2=r,t3=s,D2[i]);
f11[i] := subs(t1=a,t2=r,t3=s,d11[i]);
ef11[i] := evalf(sum(f∗f11[i],m=0..lim));
f2[i] := evalf(sum(f∗d2[i],m=0..lim)); od;

for i from 1 to 27 do
d3[i] := subs(t1=a,t2=r,t3=s,D3[i]);
f3[i] := evalf(sum(f∗d3[i],m=0..lim)); od;
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for i from 1 to 9 do
f21[3∗i-2] := evalf(sum(f∗d2[i]∗d1[1],m=0..lim));
f21[3∗i-1] := evalf(sum(f∗d2[i]∗d1[2],m=0..lim));
f21[3∗i] := evalf(sum(f∗d2[i]∗d1[3],m=0..lim));
f111[3∗i-2] := evalf(sum(f∗f11[i]∗d1[1],m=0..lim));
f111[3∗i-1] := evalf(sum(f∗f11[i]∗d1[2],m=0..lim));
f111[3∗i] := evalf(sum(f∗f11[i]∗d1[3],m=0..lim)); od;

# Compose Hesian Matrix.
H := matrix(3,3,[[ef11[1],ef11[2],ef11[3]],
[ef11[4],ef11[5],ef11[6]],
[ef11[7],ef11[8],ef11[9]]]);

# Find covariance matrix by inverting H.
L := inverse(H);

# Compute the value of equation (2).
for i from 1 to 27 do

A[i] := f111[i]+3∗f3[i]+6∗f21[i];
B[i] := L[1,W[1,i]]∗L[1,W[2,i]]∗L[1,W[3,i]];
C[i] := L[2,W[1,i]]∗L[2,W[2,i]]∗L[2,W[3,i]];
E[i] := L[3,W[1,i]]∗L[3,W[2,i]]∗L[3,W[3,i]]; od;

AA := vector(27,[A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9],
A[10],A[11],A[12],A[13],A[14],A[15],A[16],A[17],A[18],

A[19],A[20],A[21],A[22],A[23],A[24],A[25],A[26],A[27]]);
BB := vector(27,[B[1],B[2],B[3],B[4],B[5],B[6],B[7],B[8],B[9],
B[10],B[11],B[12],B[13],B[14],B[15],B[16],B[17],B[18],
B[19],B[20],B[21],B[22],B[23],B[24],B[25],B[26],B[27]]);
CC := vector(27,[C[1],C[2],C[3],C[4],C[5],C[6],C[7],C[8],C[9],

C[10],C[11],C[12],C[13],C[14],C[15],C[16],C[17],C[18],
C[19],C[20],C[21],C[22],C[23],C[24],C[25],C[26],C[27]]);
EE := vector(27,[E[1],E[2],E[3],E[4],E[5],E[6],E[7],E[8],E[9],

E[10],E[11],E[12],E[13],E[14],E[15],E[16],E[17],E[18],
E[19],E[20],E[21],E[22],E[23],E[24],E[25],E[26],E[27]]);
BBT := transpose(BB);
CCT := transpose(CC);
EET := transpose(EE);

U3t1 := evalf(multiply(BBT,AA)); U3t2 := evalf(multiply(CCT,AA));
U3t3 := evalf(multiply(EET,AA));

# Compute standardized skewness values for t1, t2, and t3.
rb1t1 := U3t1/L[1,1]ˆ(3/2); rb1t2 := U3t2/L[2,2]ˆ(3/2);
rb1t3 := U3t3/L[3,3]ˆ(3/2);

For details of programming, see Heck [14].

6. Conclusion

We have given a simple formula for the third standardized central moment of a maximum
likelihood estimator where s parameters are involved; this moment is the asymptotic skewness.
In general, when modeling a ‘bell shaped’data base, skewness is more important than kurtosis,
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and for the normal distribution, the skewness is zero. Therefore, reducing the asymptotic
skewness in value to a small quantity enables one to set up a simple size which would provide
pseudo-normality.

For mixture distributions, closeness of the components obviously leads to greater variances,
which indeed might approach infinity. The Maple version of the asymptotic skewness leads
to a measure of sample size; it does not completely solve the sample size problem but it does
supply additional information. It may be mentioned that we have also given a complicated
formula for the asymptotic kurtosis in the form

β2 ∼ 3 + K(θ̂)

n
,

n the sample size.
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