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Abstract

Rogers gives three cases of infinite continued fractions which terminate for certain
parameter values. We have analyzed the associated integrals and produced equivalent
rational factor ratios.
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1 Introduction

In 1907 Rogers introduced the three continued fractions (c.f.s),
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Rogers in his first paper derived these by an intricate manipulation of power series;
the forms (1), (2), and (3) are given in Rogers’ second paper (Supplementary note).
Although convergence questions are addressed there is no attempt to analyze the
integrals involved.

Here we take the case when these c.f.s terminate, i.e. when the parameter q is
an integer. Since there is little to be gained by considering negative values of a we
assume that a is positive and an integer.

2 The case Ri(a,z) and periodicity
Note first of all some elementary properties of the binomial
(X-y)" (X =€ Y =e),

when n is a positive integer. If n is even, there is a middle term. Moreover this middle
term may be positive or negative, positive for 4n, negative for 4n+2. Returning to



Ry,and a =4n+1
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Looking at R; we find the unity above is removed.
Now Hardy (1904) introduced the Frullani integral, a simple example of which is
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In general then for a = 4n + 1,
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for |2(4n — 1)z| < 1.

Perhaps a more informative set of results is as follows, at least formally writing
y = 1/(4z):

c.f. values
a c.t.s y=4 y==1
3 o 0.937500 0.9795918
5 2 (y>2) 0.800000 0.9375000
27:[/2 2 12
7 % (y>3) 0.546875 0.9375000
R (y > 4) 0.7734375
2 w2\, 27 92y, 27 12
11 “’2 yig)igl(yi’;éé’%y;: (y > 5) 0.6332715
13 =60 —)w =2) (> 6) 0.4189453
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3 The case Rs(a,x)

3.1 Basic formulas

Ry(a,z) = tanh {1/ 7smh(2at)et/“dt} (— > 2a — 1)
0

2 t cosh(t) x
_ax (12 —a?)z® (22— a?)2® (3% —a?)a® (4% — a?)a?
1+ 1+ 1+ 1+ 1+

When a? = 1, or 22 etc., the c.f. terminates. In the notation of §2 the hyperbolic
component of the integral is

X2n _ Y2n
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when a = n, a positive integer. Using Frullani integrals, the integrand leads to

PHa) =P (=) 1
Ry(n,z) = 2)( 2)( 3 (E>2n—1)

where .
rP@) = [[{1+(-1)°’2n-2s - 1)z} (n=1,2,--") (4)
s=0
For examples,
2z 3z(1 — 52?)
Rg(l,x) =, RQ(Q,Q?) = 1_733:2, RQ(?),.’E) = 1_713:];2,
4x(1 — 1922 5z(1 — 4622 + 189z*
Ro(4,z) = x( x%) Ro(5. ) = x( x* + 189z%)

1 —34z2 + 105z’ 1 — 70262 + 789x4

The denominators are taken to be positive.

3.2 Fixed points and asymptotes

Consider the case n = 4. Here
rP(z) = (1+ 72)(1 — 52)(1 + 32)(1 — 2)

so that for example,

1 1
rf) (——) =0, and Ry (4, —?> = —1.

Similarly R,(4,1) =1 and we are lead to the fixed points located as follows:
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n = 4: Fixed points for x in the terminated c.f.

1 1 1 1 1 1
z -l -3 —5 -7 7 5 3 1
Ro(d,z) 1 -1 1 -1 1 -1 1 -1

These exact fixed points are scarcely evident in the rational fraction in Ry(5,z). In
general these points can be easily identified. For example, for Ry (5, x) we look at

(1492)(1 — 7z)(1 + 5z)(1 — 3z)(1 + z),

and for example z > 0, the points are

(%71)7 (;,—1), (%71)7 (%5_1);(%,1).

Returning to n = 4, zeros of Ry(4, z) are solutions to
ri (@) = ri? (~x),
and potential asymptotic solutions to
i (2) + 7 (—2) =0,

in both cases it appears that the factors in R(4, z) are relative primes.

Figure 1 refer to the second Rogers c¢.f. Ry(n,z), with n =4, n =5 and n = 8.
Note that Ry(4,2) — —qio-, whereas Ry(5,2) — 0o, as £ — oo. From Figure 1
(n = 8) it is evident that the asymptotics are becoming dense. Overall the Figures
make it clear that Ry(a,x) when a is an integer can be zero, +oo, and for a specified

L L ... forn =8) take the values +1 or -1.

set of rational functions (53, 13,

4 The case Rs3(a,r) and terminating c.f.

The c.f. terminates when a? = 22, 42, -- -, but the integral comes out resembles that
occurring in Ry(a,x). Thus a = 2n in R3 may be derive from R, taking a = n; note
that R3 involves tanh ¢ whereas R, involves tanh %q&. We find

PPN i C0) e [0
W@+ ()P
where r(?)(z) is given in (4). There are no asymptotes for real z; the zeros are from
that of 7 (z) — r@(—z), and r?(z) + r? (—x).
Examples:

a=2inc.f, n=1in R;.

R3(1, .I) =



Figure 1: Rogers Case 2 with n = 4 (left), n = 5 (right), and n = 8 (center)

a=4in c.f., n =2 in R;.

réz)(:v) =(1+32)(1—2)=1+2r—32°
(1+22—32%)°— (1 -2z -3z  4z(l - 32?)
(1422 —322)2+ (1 — 22 — 322)2 1 — 222 + 9z

R3(2, 33) =

5 Further examples of terminating c.f.

The graphics for R3(n,x) are similar to those of Ry(n,x) except there are no real
asymptotics.

It is appropriate to mention some examples of c.f.s which terminate, for a partic-
ular parameter values, given in Wall (1948, p346)

(L+2) = (=2 ke =12 (=222 K -39
(1+2)F+(1—-2)% 14+ 3+ 5+ 7+

(a) -+, (see Rs(n,x))
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Figure 2: Rogers Case 3 with n = 2 (left), and n = 4 (right)
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From Wall (1948, p347), there is a more complicated c.f. related to ®(b+1,c+
1;2)/®(b, ¢; 2), where
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From Stieltjies (Wall, 1948, p359),
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o — ¢ Tt 1+ 2+ 1+ 2+ 1+ ozt

where m = (1 —¢)/(1 —c%), a > 0,b >0, ¢ > 0, and z in the complex plane split
from —oo to 07. But we may take a negative with an appropriate restriction on z;
for example, when a = —1 the integral relates to

1 1 cb
l—clz+c—-1 z|’

agreeing with the terminated c.f.




From Wall (1948, P352),

00 e~ %ut" ldy

0 (tzap _ 1 az bz (a+1)z (b+1)z (a+2)z (b+2)z
ocwuTidu 14 14 1+ 1+ 1+ 1+ 1+
(1+2u)b—1

provided the integrals exist, and for z in the split z-plane. The parameter b for
negative integer values terminates the c.f..
From Perron (Vol 2, 1957, p36),
124+ n? 32+ n? 52 +n?

nim
1 cee = th(—) 2> —1).
+ o o o n.co 1 (n )

Here we may set n to be Ni, N an integer, terminating the c.f.. We may also take
n = 0 and limit of the hyperbolic function, to obtain the known c.f.
41123252 T 1 12 3% 52

R Y Wuls NI H IR WU
From Perron (1957, p33), for Psi function
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for z > 0, 1 > n? > —oo. This expansion may be compared with Rogers’ case
Ry(a, ) in (2). For n = 3,
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which agrees with the c.f. approach.
The hyper-geometric ratios

F(a,b+1,c+1;2)
F(a,b,c;2)

expressed as the Gauss c.f. provides several examples of c.f.s which terminates.

6 Concluding remarks

For a few moderate to small values of the parameter a in the three Rogers’ c.f.s we
have found exact rational function equivalents, featuring fixed points and for R; and
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R, factoring asymptotes. The c.f. equivalents are possibly valid for all z; this might
be considered using analytic continuation approaches .
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