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Abstract

First of all we introduce an orthogonal system associated with the mixture probabil-
ity function. Then for maximum likelihood estimators, Parseval expansions are introduced
related to logarithmic derivatives of the mixture probability function. In this way approxi-
mants are set up for the maximum likelihood covariance determinant.

For a hybrid mixture of Poisson-binomial, three parameters are involved and the covari-
ance determinant approximant turns out to be a quartic for a ratio r, this relating to the
means of the two components in the mixture. We prove explicitly that the zeros of this
quartic are strictly complex; a mathematical proof is needed since computational values do
not state the nature of the zeros. A study of a hybrid mixture of Poisson-negative bino-
mial, two components, shows that the covariance approximant is a quartic, again having
strictly complex zeros. In addition we briefly consider mixtures of gamma components,
firstly with scale varying with fixed shape, and secondly, shape varying with fixed scale.
Another mixture mentioned consists of two lognormal densities.

Lastly it is well known that estimation procedures for mixtures are sensitive to sample
size, because of the closeness of the individual components. From a statistical point of view
this characteristic is almost self-evident. There is therefore interest in a distance concept
of probability function differences dual to Matusita (1955) who also introduces the dual

notion of affinity between two probability functions.

Key words and phrases; affinity, covariance determinant, covariance matrix, distance, maxi-
mum likelihood, orthogonal system, Parseval expansion, persymmetric determinant, quartic

Zeros.



1 Introduction

In a previous paper (Bowman and Shenton, 2003) we have used approximants to the maxi-
mum likelihood covariance determinant to throw light on the asymptotic variances of max-
imum likelihood estimators of the parameters in Poisson mixture and binomial mixture
distributions. For these distributions, the probability functions are

79,4 9.78

Poisson : (z,0,m) E T i

O m=10<m <1,6,>0) (1)

n
Binomial :  Py(z;n,0) Zm« r1-6,)""" (0<06,<1l,n=1,2,--)

We give an example for the Poisson mixture.
For s = 2 in (1), the maximum likelihood estimators are 61, 6, and 7.

Then for the first order asymptotic variances,

Vary(61) ~ {Ws/Wa} / {n2(61 — 62)*},
Van( 2) ~ {W3/W2}/{ﬂ'2 91 02)4}1
Vari (1) ~ {4W3/Wa} / {(01 — 62)°},

where W is the persymmetric determinant

Mo M1t Mg
W, = M1 H2 e Ms+41
Ms  Hs+1 0 H2s

What happens when we consider a two component mixture of a Poisson and a binomial
distribution? An account of discrete mixtures is given in Johnson, Kotz and Kemp (1993).
The essential quantity is the denominator of the variance matrix in determinant form. In
this paper we give the canonical form for the two component hybrid mixture (Poisson-
binomial), and their covariance denominator complex zeros.

The question arises as to the characteristics of a two component mixture that ensure
strictly complex zeros associated with the maximum likelihood covariance denominator.

We have studied a mixture of (a) Poisson and negative binomial distributions, (b) gamma



components, one in which the shape varies, and the other in which the scale varies, (c)
log-normal components. It appears that zeros associated with the maximum likelihood
covariance denominator are only strictly complex for two cases, first the hybrid Poisson-
binomial, and second the hybrid Poisson-negative binomial distribution.

It is clear that the closeness of components in a mixture will create an estimation
problem; for example take the case of a Poisson mixture with parameters ; = 1, and
0> = 1.01. The hybrid cases of Poisson-binomial, and Poisson-negative binomial have
support for x = 0,1,2,--+; is this infinite range the clue? Note that our Parseval expansions
relate to derivatives and differences; thus for the two component Poisson, we have expansions
associated with %, %, and P (z)— Py (z); derivetives and differences. These derivatives

and differences also occur in the maximum likelihood covariance matrix.

The notion of differences has been associated with distance and affinity by Matusita

(1955), who looks at the distance \/p;(z) — /p2(z) between two probability functions.
If the Matusita’s distance is zero then there is high affinity. This aspect of mixtures is

mentioned in the study.

2 A Poisson-Binomial Mixture Distribution

2.1 Basic formulas

Vgl e~ 0%

n
—— || 0316

Z

P(z;0,7) =

Mean, py = 7161 + (1 —m)nfy (01 >0,0< 6y <1,n=2,3,---,m + 71 =1).
Factorial Moments: Poisson 6%, Binomial n{*)%, s = 0,1,---. For the mixture of Poisson-

binomial, factorial moments are
pig =m0 + (1 —m)n6s (0 <m <1).

Maximum Likelihood Estimators are 01, 9,\2, 1,
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Parseval Expansions are

—0)) et
L_0) .« o =~ {Aogo(z) + Argi(z) + -} P,

01
— 0 n e
(& —nb) 02(1 — 65)"% ~ {Boqo(z) + Biqi(z) +---} P,
02(1 - 92) T
6_010%‘ n - -
o 05(1 —02)""" ~ {Coqo(z) + Crqs(z) +---} P
) x

where P = P(z; 0, ).

We use an orthogonal system
o
Z QT(-T)QS(-T)P(J:;Q’ E) = ¢r5r,s (7"’ s=0,1,-- )
=0

and
QT(m) = [LX’XQ""’XT]/WT*I (X :-T_Nllar = 1,2,"-;,W0 = 1)
Wy = [po, i1, + 5 or]

ie. gg =1, q1 = X =z — pf. p} is the mean of the mixture random variate.

Ho M1
q2($) = [17X’ XQ]/Wla Wy = [UOaNI] =
1 p2

See Bowman and Shenton, 2003, equations (4) and (5).



2.2 Covariance approximation

A1 Aspe Aszds

= W%W% B B B
P192¢3 191 Bady By
Cig1r Capa Csds
¢1=Wi1=p2, ¢2=Wo/Wi, ¢3=W3/Ws.
We have

A =1,

0 1142\
Asgo = \po 1 po |+ Wi =4d3[0,1,a0]/W1

M1 2 g3

and (12:1+2(91 —,u'l) =142X;, A1 =61 —
A3¢3 :d4[0,1,042,043]/W2

where

(w — 01) e 0o (z — pp)?

!

0 0
3”1 89 VQ + 3/1’112 89 I

kas 0
Z T — ) —Pl(x 0)) (P =e%67/x))
o,
06,
0

P )
= g, W81 T 3v1z + vn) = 3 g (v + ) + 3T v

using Stirling numbers of the Second Kind, and factorial moments related to Pi(z,61).
Hence

a3 =302 + 60, + 1 — 3u) (20, +1) + 3u2.
Simila,rly for B1¢1, BQ¢2 and Bg(ﬁg.
Bi¢r =n = B,

Baygy = d3[0, B1, B2] /Wh,
B3¢z = d40, B, B2, B3]/ Wa



where

Bo=n{l1+2[(n—1)8 — m]},
Bs=n {3(n —1)®02 4 6(n — 1)8y + 1 — 35, [2(n — 1) + 1] + 3;/12} .

For Cl¢1, CQ¢2 and 03(]53.

gy =3 O ™) grt— 0,7 b (@ — ) = 01 — by —
161 = o 5(1—02) (z — p1) = 01 — by = 7,
=0 ’ x

Caga = d3[0,71,72] /W1,
Cs¢s = du[0,71,72,73]/ W2
where
Yo = 02 + 6, — (n D02 + nby) — 24" (0) — nby)
= 07 — nP03 + 0, — by — 24} (61 — nby)

= (01 — n62) (01 + nby +1 — 2u}) + nb3.

Note that 61 — nfs is not a factor unless nﬁg =0.

00 6—9191 n B
B=y — - 05(1 —02)" % b (z — ph)?
=0 z: T

=01 + 307 + 07 — (nha + 302 + n®63) — 341 (01 + 67 — nby — n'202) + 32 (61 — nby).

Again 01 — nfy is not a factor unless y3 = 0 where
75 = 360" — ) + 03(n® — ) — B (n? — )
= nf2(3nfy — 205 + 3 — 3u})

2
We have now Aj = JI};;;S (A%)?2, where

1 d3[0,0él,052]/W1 d4[0, O[l,OtQ,Oég]/WQ
Az = n d3[0, B1, B2] /W1 d4|0, B1, B2, B3]/ W2
01 —nby  d3[0,71,7]/W1  da[0,71,72,73]/Wa




a determinant whose elements are determinants. Inspection reveals no factors, and there is

support for this statement using the function [factor] from MAPLE system.

2.3 Zeros of A; and the covariance denominator

By linear reductionism by columns,

1 20, 362
A3 =mn 1 2(n—1)0y 3(n— 1)(2)9%
01 —nby 6?2 — n(2)0% 63 — n(?’)H%

and by expansion
A3 = nd5[r* —4(n — 1)r® +6(n — 1)%% — 4nBr + (n — 1)n®)] (2)
where r = 6, /6,. Defining X =7 — (n —1),
A% = nf3[X* +4(n — 1)X + 3(n — 1))
The quartic in X has zeros depending on the real root of the cubic
u® —12(n — 1)%u — 16(n — 1)? = 0,

for which the discriminant A = —64(n — 1)*(n? — 2n). There is therefore one real root,
which is
1
u; = 4(n — 1) cos (§ arctan vVn? — 2n> =4(n — 1) cos(6/3)
(n =2,3,---,0< 6 < 7'('/2,0 :9(7?,))

The formula in NBS (1964, p17, 3.8.3) is incorrect. The sign in the final quartic (the
product of two quadratics) should be £, F and not +, +. Using the formula CRC Tables
(1996)

len—1+m{ Vi +iy/d1 — M}

rp=n—1+ n—l{ Vo1 —i/ ¢ — 4¢2—3}
—1{\/_+1 ¢1+\/M} (3)

ra=n—1+ n—1{\/q7—1 ¢1+\/M}

8

rs=n—1+4+4/(n



(n=2,3,---,¢1 :cosg,tanﬂz n(n — 2)).

Clearly (/4¢? — 3 < ¢ for n = 3,4,---, 0 < 6 < w/2, so that the four zeros are complex of
the form a; + ibj, j = 1,2,3,4, and b; # 0. When n = 1 the quartic in 7 reduces to 65(r%),
and when n = 2 the zeros are 0, 0, 2 +41/2. The zeros of the quartic in (2) are complex and
involve irrationals such as \/a + Vb where a and b are exact terms; the irrationals can not
be identified using finite arithmetic on a computer. As a check (3) insert 7 — (n — 1) = X
in (2) using MAPLE. Clearly then the associated Aj can not be zero under the specified

domain of the parameters.

2.4 Asymptotic variance approximants

We find
2
n d3[07/81762]/W1
. 01 — nbz d3[0,v1, 7]/ W1
Venio~ T ’
_ (W3/W3)[re — (61 — nbr)B2/n]?
77 (A%/n)?
and

7o — (01 — nbo)B2/n = (01 — 1) (01 + nbs + 1 — 2u}) + nb2 — (01 — n) (1 + 2[(n — 1)82 — p}])
= (01 — n02)(01 — nfy + 292) + 7’7/0%
so that

N [(01 —nb2) (01 — nby + 205) + TLH%PWg/Wg
0 ~
Ven) (B3P ’

or

[(01 - n92)(01 — nly + 202) + nH%]QWg/WQ
72{[01 — (n — 1)62]* +4(n — 1)[6; — (n — 1)8]05 + 3(n — 1)205}2°

Varl (él) ~

Similarly
2
1 ds [O, ay, sz]/Wl
01 — nb2 d3[0,71,72]/W1

Varu ()~ a3 ’




(W3 /Wa)[y2 — (01 — nb)ao)?

m3(A3)?2
and
Yo — (91 — nﬁg)ag = (91 — nag)[el +nby+1— 2/1,’1 —-1- 2(91 — p,’l)] 4+ neg
= (91 — n02)(n62 - 01) + TLH%
Thus,
- [(01 — nb2)(nba — 01) + nO2)°> W3/ Wo
Vary(62) ~ . ;
W%(As)z
or

[(01 — n02)2 - TLQ%PW?,/WQ

Vars(nb) ~ i o 1050 + 4n — 6 — (n— 0103+ 30— ]

Similarly,
4(W3/Wa)[(n — 1)6; — 61)°
(A3/n)? '

Var1 (7f1) ~

or
4(W3/W2)[01 — (n — 1)92]2
{[61 — (n —1)8)* +4(n — 1)[61 — (n — 1)0:]03 + 3(n — 1)205}2°

Var1 (7f1) ~

Comments:

e Compare with the 3pPoisson (91, 6, 7t1), in which, for example,

. 4(Ws /W:
Varl (7'!'1) ~ w
and
Varl(él) ~ W3/W2 Varl (ég) ~ Wg/W2

7r%(01 —92)4’ 7r§(91 —92)4’

e It appears that in this case of a hybrid mixture (Poisson and binomial), variances of
maximum likelihood estimators are not likely to be sensitive to the difference of the
means, i.e. (f1 —nbs). In other words, in the case of two components, affinity between

components is a major estimation problem.
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3 Poisson-Negative Binomial Mixture Distribution

Probability density:

me—019f+ T'(k+x) 6%

Ple:8m) = TTTR) (1t o)

= (k> 0,62 >0)

Probability generating function of Poisson: ef1(t=1) (61 > 0)
Probability generating function of negative binomial: (6, + 1 — 6ot) 7% (2 > 0)
Factorial Moments: Poisson 65, negative binomial [['(k + s)/T'(k)]05, (s = 0,1,---).
Means are, for Poisson 6;; for negative binomial k65.
The unexpurgated version of A3 in this case, under row by row reductionism reduces

to, apart from a constant,

1 20, 302
A3 = 1 2(k +1)6, 3(k+2)@03 |,
01— kby 67— (k+1)P03 6} — (k+2)P63

having used factorial moments. Then defining r = 61/60

1 2r 3r?
Aj=06;] 1 2(k +1) 3(k +2)®@
r—k r2—(k+1)® - (k+1)0
=05{r* — 4k + ¥ +6(k + 1)Pr? — 4k +2)Or + (k + 1)(k +2)®}

=05{(r—k—-1D*+4k+1)(r —k—1)+3(k+1)?}.

For the zeros of this quartic we need the real root of the cubic
ud —12(k +1)%u — 16(k +1)2 = 0.
The discriminant is
A =64(k +1)* —64(k +1)5 = —64(k + 1)* (k> +2k) (k> 0).
Hence there is one real root, and we have the irreducible case. We use
p=rcosf, q=rsinf

11



where
=8(k+1)2 ¢=8(k+1)2Vk2+ 2k,

yielding tan 6 = V&2 + 2k, and r? = 64(k + 1)*(k + 1), the solution to the cubic being
1
=4(k + 1) cos (§ arctan v k2 + 2k> )

The zeros are found from the two quadratic

w2
(5 -] =0
(see CRC, 1996) where ag = 3(k + 1), yielding,

r1,2:(k+1)+\/(k+1){—¢j:i h — 4¢2—3},
rsa=(k+1)+/(k+1) {¢:l:i\/¢+ \/ 4? —3}

U
vzj:\/ulfu+ 7143

where k£ > 0, and

1 1
1 = cos (garccosk_i_l).

Here the roots of the quartic equations are strictly complex, so that the quartic can not be

zero under the stated conditions.

4 Mixture of Gamma Distributions
4.1 Gamma distributions with known shape parameter

The mixture, in the 5p case (a1,a9,as, 7, m2) is

3. e z/“’(w/a) 3
'T a, 7T ; F(p) :;WTP'I‘(:L') ($>O,p>0,a1,a2,a3>0).

This 5p case is chosen since it relates to the significant characteristics of the general case.

Now
0P, (z;a,)  (z — pay)
%a. = 22 P.(z;a,) (r=1,2,3)
and
AS — 7'('%71'%7'('% *)2
P19203Pa s

12



where

1 dso, ozl LoD Wy e dglo, 0, ol o)Wy
1 dso, ozl 82wy - dglo, a§2),a§2),---,ag2)]/w4

At=| 1  dso, al a1 /wy dg[0, al .oV o)Wy (4)
a —ag  ds0, ’71 Doy dglo, 71 Dl e 0wy
ay—az d3[0,77 A YWy oo dgf0,47 48, ) W

in the notation of §2, along with,

. s S sep) 0 o
ag) :;(—1)t . (/lll)t(p'i‘s—t—].)( t)a—arar t (7":1’2,"'73) (5)

since the non-central moments of the regular gamma density {e */%(z/a)? */[aT(p)]} are

vl =a (p+r—1)"). Moreover

o0 e—ﬂ?/a1 z/a p—1 e—z/a,g z/la p—1
7gr):/o { (z/ar1)f™" (z/a3) (& — 4 Dds

a1'(p) a3T(p)
— (s)(,8 s s ! (s—1)(,s—1 s—1
= (s~ 1O o) | "Ll s =2 Ve a7 (6)
S1 (s=2)(,5—2 _ 52 s 5] 150 0
+ ) pr(p+s—3) (™" —a3™ ") +---+(=1) p7’ (a1 — a3)
s
Comparing (4) and (5) we note symbolic isomorphism
ai — 4 — saf_l, 7@_1 — a‘g’_l — (s — 1)af_2
a; — as a; —asg

and so on. Hence reduction of determinants in (6) by columns, and noting the common

factor in each column, we have

A;=(p+1)P(p+2)¥(p+3)W(p+4®

1 2a1 3a? 4a3 5a}
1 2a9 3a3 4a3 5a3
X 1 2a3 3a} 4a} 5a}

81(1,3) 82(1,3) 83(1,3) 84(1,3) 85(1,3)
81(2,3) 82(2,3) 83(2,3) 84(2,3) 85(2,3)

13



The asymptotic variance approximations:

Vari(di) ~ {Ws/Wal/{n?[(a1 — a2)(a1 — a3)]*[(p + 4) )]}
Vari(dz) ~ {Ws/Wa}/{n3[(a2 — a1)(az — a3)]*[(p + 4) )]}
Vari(ds) ~ {Ws/Wa}/{m3[(as — a1)(az — a2)]*[(p + 4)®)]?}
(2)
(1)

~
~
~

a
a2
Q
Vary(2) ~ {4(ar — 2as + a2 Wa/ Wi} {{(az — ar)(az — ag)[%[(p + O}
Vary (1) ~ {4(az — 2a1 + a2 Wa/ Wi} {{(a1 — a2) (a1 — ag)[%[(p + O}
4.2 Gamma distributions with known scale parameters

In this case

Tre
P(z;p,m) = 1;1 (o) = ;mPT(x) (> 0,p, >0,a > 0)

and the estimators are g1, g2, g3, 71, 1. We find for the asymptotic variance approximants

Vari(p1) ~ {Ws/Wa/{n2[(p1 — p2)(p1 — p3)]*a'®}
Vari(p2) ~ {Ws/Wa}/{m3[(p2 — p1)(p2 — p3)]*a'®}
Vari(gs) ~ {Ws/Wa}/{m3[(03 — p1)(p3 — p2)]*a'’}
Vary (1) ~ {4(p1 — 2p2 + p3)*Ws/Wa}/{{(p2 — 1) (p2 — p3)]%a'’}
Vary(m1) ~ {4(p2 — 2p1 + p3)*Ws/Wa}/{{(p1 — p2)(p1 — p3)]°a'’}

5 Log-Normal Distribution

Basic Density:

1
V2rox

P(x;0) = ¢ 3line—01"/0? (0 real,z > 0)

Mixture of Two Distributions

P(x;0) = m P(x;01) + moP(z;62)

The rth non-central moments of a single component is

1,2, 2
U;« — er0+2r o

14



MLE

W3 /Wy
77 (61 — 02)* (exp(a?))
AW W
(62 — 61)8(exp(c?))

Vari(61) ~

Vary (1) ~

Mixture of Three Distributions

P(z;0) = m P(x;01) + moP(x;02) + w3 P(x; 63)
MLE

) W5 /Wy

Vari(61) ~ 72 (01 — 62)4(61 — 03)%(exp(c25))
AWs5 /W4 (01 — 20 + 03)°

(65 — 01)5(62 — 03)5 (exp(0 %))

V(I/I‘l (7f2) ~

For an account of the log-normal distribution, see Johnson, Kotz, Balakrishnan, (1994).

6 Further Remarks and Matusita’s Distance

We have now concluded Poisson mixtures, binomial mixtures, Poisson-binomial hybrid mix-
tures, and Poisson-negative binomial hybrid mixtures. The asymptotic variance approxi-
mants involve A*, the determinant in the denominator. For Poisson mixtures A* can be
zero whenever two components are identical; the zeros, in the case of two components, are of
order (6, —62) for él, ég, but of order six, (6; —63)° for 7 proportion 7, estimates being by
maximum likelihood. But for the two hybrid cases considered (Poisson-binomial, Poisson-
negative binomial), the associated A* is a quartic in r (r = 61/6,), and this quartic has 4
strictly complex roots, so that A* can not be zero for the domain of the variates considered.

It follows that in a certain sense A* is a measure of closeness of the components.

15



Matusita (1955) and several subsequent papers introduced the notion of distribution
closeness in the form of a distance. Ahmad (1985) gives a very interesting abbreviated

account of Matusita’s ideas. For the generalized distance, we have

00 1r
IDll; = {z (91 @) "7~ (p2(2))""] }

=0
for probability function pi(-), ps(-) with support x =0,1,2,---.

The simplest version occur when r = 2, for which

1Dz = {i:jo [\forta) - ¢p2<x)]2}1/2

or

00 1/2
[Dllr=2 = \/5{1 - \/pl(w)pz(w)}
z=0

for which the product term is described as the affinity. For || D|| small, the distance between
the components is small, so that comparatively speaking the affinity is large. Here are some
examples.

We have three examples of the Matusita’s distance.

1. Mixtures of two Poisson distributions. 61, and 6, (61 > 65,605 > 0)
1/2
D] = {2 (1-e20/A VR 2 e
||ID|| = 0 if 6; = 6,. The affinity is

pl01,05) = e 2/ VR)

2. Mixture of two binomial distributions. 67, 69, 71 unknown, n known.

D = \/5{1 - (\/thr \/(1 P 02))n}1/2

1/2
= \/5{1 - (cos(arccos V61 — arccos 02))n} / (0<61,6,<1)

3. Hybrid mixture of Poisson-binomial distributions.

1/2Y1/2
" [ 0?7

I =v2ii-3 [

=0 ) x

05(1 —62)" "

16



4. For two component negative binomial distribution with probability generating func-

tion (1 4+ 6 — 0t)~* for a single component.

kY 1/2
|D|| = V2 {1 - (cosh(coshf1 V1+6; —cosh™t/1+ 02)) } (61,602,k > 0)

Table 1. Matusita’s distance

01 05 n  Affinity ||D||

1.0 1.5 0.9751 0.2233
1.0 2.0 0.9178 0.4055
Poisson Mixture 1.0 3.0 0.7649 0.6856
1.0 4.0 0.6065 0.8871
1.0 5.0 0.4658 1.0336

0.1 0.2 10 0.9039 0.4384
0.1 03 10 0.7144 0.7558
Binomial Mixture 0.1 0.4 10 0.5098 0.9901
0.1 0.5 10 0.3277 1.1596
0.1 0.6 10 0.1855 1.2763
1.0 0.1 10 0.9993 0.0383
1.0 0.2 10 0.9075 0.4302
Poisson-binomial 1.0 0.3 10 0.7265 0.7395
Mixture 1.0 0.4 10 0.5294 0.9702
1.0 0.5 10 0.3510 1.1393

Table 1. shows that the affinity decreases as the distance increases for each of the three
mixtures. For a mixture of two binomials (common values n) the distance is zero if 6; = 6,
since \/é + /(1 — 61)? equals unity. For the hybrid mixture (Poisson-binomial) there is no
obvious solution to make ||D|| = 0 as long as n is fixed and an integer.

There are cases for which proving the distance zero might involve problems. Similarly
for the variance approach (A}), it may be difficult to prove the corresponding zeros are all
complex, or real and complex.

As far as Matusita’s distance is concerned, problems arise when three or more (preferably
hybrid) components are involved. In this case, see Ahmad (1985).

It is also of interest to mention a study of Everitt and Hand (1981) where mixtures of
Poisson, and mixtures of binomials are studied from the viewpoint of estimation procedures,
using moment, and maximum likelihood methods. They gave simple iterative solutions

in both cases, and amusingly enough take the case of four components, involving seven

17



estimators. In their summary they do remark on the problem of closeness and its potential
for creating the necessity for large samples.

It does seem that Matusita’s distance is not a very sensitive measure of closeness of
probability functions. However for maximum likelihood estimators and approximants to
the covariance determinant using Parseval expansions and a related orthogonal system, the
singularities of this covariance approximation may be as good a measure of closeness of

probability functions, in other words a distance measure.
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