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Abstract

For a Poisson mixture of s components (2s — 1 parameters) approximate asymptotic

variances are set up being based on the maximum likelihood covariance matrix. An asso-

ciated orthogonal system is used in expressions for expansions of logarithmic derivatives of

the basic probability function. Linear reductions of the determinants which appear lead

to unexpected canonical forms related to dichotomized alternants. A brief account of the

binomial mixture is included.
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1 Introduction

We consider maximum likelihood estimators for the parameters of the Poisson finite mixture,

—ergz
P (5,0, ) Zm , Oom=10<m<1,6,>0,r=1,-,52=01,,-)

(1)

and the asymptotic variances of estimators. From Kendall (1946), with some regularity

conditions, the probability function being f(z;01, 62, -,05), sample size n, the asymptotic

covariances of the maximum likelihood estimators () are given by
n- Cov(éj,ék) =Aj/A (j,k=1,2,---,s)
where A is the Hessian determinant

L () (3o

and Aji is the minor of the element in jth row and kth column. The integral in (2) may

(2)

be replaced by a Stieltjes form, thus including cases of discrete random variates.

We shall obtain canonical approximants to Aj; and A for the Poisson mixture of Poisson

probability functions introducing expressions for 6g;f in terms of orthogonal polynomials.

High central moments of a single Poisson random variate are required, and although the
cumulants are all the same, this does not avoid some complications when central moments
are required; for central moments a simple difference-differential equation is however useful.

From Kendall (1943),

pr+1 = 10pr—1 + Odp,.

A closed form for the orthogonal system related to a mixture of weigh function is ap-
parently not known. This poses a problem, but we can sequentially construct a set of cases.

Thus, for example, in terms of determinants

1 X X?
Ko M1
q2(2,0,7) = | g py po |+ ) (3)
M1 2
M1 p2 p13



1 X x%2Xx3
Ho p1 K2
Ho H1 B2 B3
g3(z,0,m) = — | M1 p2 43
M1 2 B3 pa
M2 U3 K4
H2 U3 e 5

where pu; is the sth central moment relating to the mixture in (1) and X = z — u, p) the
mean of the Poisson mixture, z being the associated random variable. The denominators

in (3) are “integral squares”, and

Ko p1 H2
Ho 1
E(g5(x)) = d2 = |y o pa | + = Wo/W1, (¢ = Wi = po)
M1 2
M2 K3 Ha
Ho p1 p2 p3
Ko p1 M2
B 2 3 py
E(q3(z)) = + |\ p1 po puz | = Wsa/Wa.
K2 [3 pa s
B2 p3 a4
M3 pa p5 He

It will be clear that ¢ involves central moments of the Poisson mixture up to and including

H2s-

2 Logarithmic derivatives

Taking a simple case consider a mixture of 2 components (3 parameters, 3pP) with maximum

likelihood estimators 91, ég, 71. Then

- /P(ZE;Q,E),

10lnP (x—@l) e g

7r_1 061 01 !

1 0lnP z— 0\ e 202

79 892 ( 02 ) ! / (xaga E);
OdlnP 6_01 0-715 6—020%

Then the element (1,1) in the Hessian determinant (2) is

2
© rx—0\?% [e0ro®
ng‘;( 01 ) < a:!l> [P(x:0, )
r=




and for (1,3),

E (w—0r) (o) (o eo3
p— P . .
™ ZZ:() ( 91 ) ( .T‘ .’L" .T' / (‘Z"Qa E)
The associated orthogonal system is
3" 4:(@)s(2) P38, ) = e,y
=0

¢ being a positive real, § the Kronecker delta function.

We introduce approximation series,

z—0 e—Glez
( 0 1) p L Apgo(x) + A1q1(z) + Azga(z) + Asgs(x),

T — 9 67029$
( - 2) p 2 ~ Bogo(z) + B1gi(z) + Baga(z) + Bsgs(z),

(e‘al 07 e 02 03

2! 2! ) ~ Cogo(z) + C141(z) + Caga(z) + Cg3(2).

Clearly Ay = By = Cy = 0, and C4, Co, C3 contain the factor (f; —63). These approximants

are introduced in the Hessian determinant in (2) yielding

Y1 AR X ABrdr 1 A Cry
A =7in3 |53 B Arge 3 B2gr X3 BrCry
33 CrArdr 1 CrBrée X3 Gy
A1y Az Asds || A1¢1 Bigr Cig
Bi¢1 Bago B3gs | | Aaga Baa Cago (4)
Ci1¢1 Cagpo Csdz | | Asps Bags Csgps

_ 1
" idods

i.e.
2

Arg1 Axds Aszds

7T27T2 7T27T2
A ~ 112 B B B — 1'2 *2. 5
¢1¢2¢3 1¢1 2¢2 3¢3 ¢1¢2¢3 3 ( )

Cigr Caga Css
More terms could be added to the expansion in (4), but the above reduction would not be
possible. Paradoxically the more parameters that are involved suggests sharper approxi-

mants because we are using an orthogonal system.



The extension of (5) to additional parameter is obvious, but complications arise since

the elements are compound determinants. For example,

mo == (5 S =
z=0 \ U1 T o
. , 1 X X2
Aopr = (m ;101) e_xl!()% pro 1 po |+ Wi
. K1 p2 p3
0 1 142X
=lwop  p2 |+ W
M1 p2 p3
1 X X?2Xx3
Agds = _i": (x;91> e—el'ef Ho 1 f2 [13 W
z=0 N V1 T\ po p3 pa
K2 (3 pa Hs
0 1 142X 1+36;+3X\ +3)2
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where A\ = 01 — pl, Ao = 6 — p|. Hence there is the approximation

2
0 1 142\
1 po 0 pp | T d®(6,)
M1 p2 U3
0 1 142X\
Ay~ T3 (A1 — M) 1 0 LW d® (6y)
2T Gigads 7 Ho H2 m ?
M1 p2 U3
0 1 14X+
1 po O o - Wi d® (01, 02)
M1 p2 K3
where
0 1 1+4+2(0;—ph) 1+4360; +3) + 3\
1 0
D (9,) = — " & W (i=1,2)
0 w2 M3 4
B2 U3 22! M5
and
0 1 14+X+X 1+3(91+92—,u'1)+)\%+)\1)\2+)\%
Mo M1 K2 H3
d(3)(91, 92) = — - WZa
M1 H2 M3 Ha
K2 p3 Ha K5

the determinant itself being defined as A3(6, ). so that

As(f, m) = mimy (A — A2)?[A5(0, 7).

3 Canonical form for Aj in the 3pP case

We use column by column reductionism. A multiple of the first column subtracted from

the second column reduces the second column to [2A1,2X9, A1 + Ao]’, a matrix transpose.



Next using multiples of the first column and reduced second column and subtracting from

the third column results in the reduced third column
[143601 4+ 3\ + 32,1+ 3024+ 3X + 322, 1+ 3(01 + 02 — ph) + AT+ Mo + A2
and for A3 itself

1 2\ 1+ 3u) +6X; + 302
3@0,m) =1 2Xx 1+ 3u) + 622 + 303 )
1 A +Xz 143(61 +62 — ph) + A2+ Mg + A3

and a surprising canonical form
1 2\ 32

A0, )= |1 2x 33 ’
1 A+ X )\%—F)\l)\g—}-)\%

which we describe as a dichotomized alternant determinant.

Factoring leads to

A3(0,m) = (A — Xo)’
so that for the denominator of the asymptotic covariance determinant we have
As(0, 1) ~ mims (A — Xo)® = wimy (01 — 69)%. (6)

It is not possible to say what accuracy we have but if |#; — 65| is small we think it should
be acceptable (see 2.4.3 in Bowman and Shenton, 2002). From (4), (5) and (6) we have

2
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Similarly
~ Ws /Wy
Vari(62) ~ w+———-
a7"1( 2) W%(Al — )\2)4
AWs Wy

Va’l"l (7?1) ~ m



Table 1. Comparison of 3pP Variances: Theoretical Approximation vs True
01 92 ™1 Varl (él) Var1 (ég) V(J,T'l(Tfl)

1.0 2.0 0.2 822.97 77.30 154.68 Exact

1103.58 68.97  176.57 Approx.
1.0 6.0 0.2 15.37 11.22 0.34 Exact
86.09 5.38 0.55 Approx.

50 6.0 0.2 29604.26  2067.12  4935.37 Exact
31675.27  1979.70  5068.04 Approx.

1.0 2.0 0.5 116.81 148.51 125.01 Exact
140.27 140.27 140.27 Approx.

3.0 4.0 0.5 1262.71 1340.23 1269.85 Exact
1301.67  1301.67 1301.67 Approx.

50 6.0 0.8 4588.84  4713.37  4579.50 Exact
4624.83  4624.83  4624.83 Approx.

1.0 2.0 038 34.75 538.54 82.20 Exact
33.80 540.88 86.54 Approx.

3.0 4.0 0.8 415.37  6039.41 987.91 Exact
385.94  6175.05 988.01 Approx.

3.0 9.0 08 6.90 112.78 0.40 Exact
6.64 106.16 0.47 Approx.

50 6.0 0.8 1576.69 23325.08 3819.66 Exact
1494.09  23905.50  3824.88 Approx.

5.0 15.0 0.8 8.38 123.70 0.22 Exact.
7.17 114.70 0.18 Approx.

Comments: Gratifying support for the basis of the approximant, especially when the differ-
ence |0; — 62| is unity. Even when this difference is large, there are cases in our computations

when the approximation is quite good.



4 The five parameter Poisson mixture (5pP)

4.1 The canonical form

The estimators are él, ég, 0},, 71, and 7. This extension (3pP to 5pP) adds two additional

dimensions, so that we need

X [z —0;\ e lioF ,
> (5 -y =n0) (=1.23)
z=0 t )

and

D

z=0

X, [etigr  e7bi07 s o
o @) =) (=1 =3i=27=3)
where s =4 and s = 5. For the central moments of a single Poisson component (parameter

0)
pi=0+100%  ui =0+ 256% +156°.

We find,
va(01) = 1+ T(2X1) + 6(3A2) + 6A3 + 1/ [10 + 6(2A;)]
and
vy(1,2) = 14 781(1,2) + 682(1,2) + 853(1,2) + 1 (10 + 681)
Artl_yrtl
where 8,(X;, \j) = ﬁ, r = 0,1,---. When these are inserted in the determinant

%, the same column reduction process will eliminate all elements excepting 43 and the
corresponding 8.

Similarly

S (e—ez'g.m e %07
Z —

>

| |
=0 x: x:

) (z—py)° =

14 15(2X;) + 25(3A2) + 10(4X3) 4+ 5X; + ph[25 4+ 40(2);) + 10(3M\3)] + 152,

to a certain extent corresponding to

> (e%iw et

>

z=0

. . ) (z—p1)® = 141581 + 2582 + 1083 + 84 + 11 (25 + 4081 + 1082) + u'Z.

Underscored symbols highlight the correspondence between the two equations. Thus column

reduction will eliminate all terms except 5Af and 84. Very surprising!



In general consider

x e Vigr 40,
VSZZ m!z ( 0; Z)(w—,ull)s

T= 0
0 e lig?
—Zx—ul — (3:1,2...)
= 00; !
o s 0 e %ip?
— (_1)7‘ ',L.sfrlujll'r_ 7
DR WA
o s S —0;pz
= | s 4 62,0 4y a0y O C
z=07r=0 r 892' z!
S
O W AR SR
r
where Sl(n) is a Sterling number of the second kind.
Example: s =3
= [3) 8 g 2) g2 (3—r) g3—r
va= Y1) || i g {8500 85,07 - 8760
r=0 T ?
0

= 20 {8870; + 55707 + 8§67 — 311 (s5V0; + 8762) + 3u2s{V0; |

=14 3(260;) + 307 — 3u) (1 + 26;) + 3u'?,
since Sgl) =1, S:(f) =3, 8:(),3) =1, Sg ) = 1, 8(2) 1. Note that 0] will always be multiplied
by (r + 1) as an essential component of the multiplier.

Again, if

>

=0
then expanding (z — p})® by the binomial leads to a pattern in 6; + 6;, 9,-2 +0;0; + 9]2, and

! x!

00 e—9i9$ e YigT o
( - - J) (z —m)°* = v;"(4,4)

so on, in exact correspondence with the pattern displayed for v, (6;). For example,
sk 2 _p2 3 _p3 2
12 :ei_0j+3(0i_9]')_’_91'_9]'_3“/ 0; — 0]' 0 9 _|_3 0_0j
0, -0, 0:—0,  6;—0; " 0;—0 0; — 0; 9—9 0; — 0;
=1-1+3(6; +0;) + 07 + 0:6; + 65 — 3y (1 + 0; + 0;) + 3,

to be compared to

14 3(1 +260;) + 367 — 3u (1 + 26;) + 3u2.
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4.2 Canonical forms for the covariances

For the asymptotic covariance denominator we have approximately,

As(Om) ~ — T (A3(6,m))?
T bigadsdags 0
where
1 2\ 32 403 5% (61)
1 2)\g 303 403 5\ (62)
Ar=] 1 223 303 ar3 5M | (83) - (7)

$1(1,3) 85(1,3) 83(1,3) 84(1,3) 85(1,3) | (m)
81(23 3) 82(21 3) 83 (21 3) 84(25 3) 85(25 3) (7['2)

The entries on the extreme right show correspondence between rows and logarithmic deriva-
tives.

Note in particular: (a) the last two rows of the determinant have factors A\; — A3, and
A2 — Ag respectively. (b) to study covariances refer to (4) and (5), not to minors of (7).

It is evident that (7) has factors A\; — A3 and A9 — A3 relating to rows 4 and 5 of the

determinant. A closed form can be found by linear operations on rows, such as Z2=£L Thjs

2)-(1)-
reduction program of linear operators can be used in general provided, for example, Ri and
Rj have a factor in common, thus Rs — Ry is not valid. There may be an optimal reduction
strategy.

When more parameters are involved, such as 7pP, 9pP. --., a computer factorization

package (MAPLE, Mathematika) may be considered.

4.3 Variances and identities for the 5pP case

By two approaches, reductionism and the MAPLE system on factors, we find
mins

s adadads

For Vary(6:), derived from (4) and (5), the approximants are

{(M = X2) (A2 — As) (A — Ag)}P.

Ws /W,
(A1 — A2) (A1 — Az)

Varl (él) ~

11



the numerator of this variance being

12X 312 403
252 1 2\ 3)\2 4)3
— T35 (A= Ag)? (A2 —As)? ’ 3 5l C =) (a—g)
1920304 1 8:1(1,3) 8(1,3) 85(1,3)
1 81(2,3) $5(2,3) 84(2,3)
where

A= (A2 = A3)° (A = 22)? (M1 = X3)
producing an identity for the determinant. Thus also

Ws /W,
m5{ (A2 — A1) (A2 — A3)}

Varl (ég) ~

and

Ws /W,

Vary(63) ~ m3{(As — A1) (As — A2)}*

For Vari(m;) we consider

1 2\ 32 4723
1 2) 33 403
12X 3X3 423
1 81(2,3) 82(2,3) 83(2,3)

leading to
4(hg — 22X\ + >\3)2(W5/W4)

{1 = A2) (A1 — Ag)}°

Vcw“l (’/1:1) ~

bl

and similarly,
4(A1 — 2\ + )\3)2(W5/W4)

{2 = M) (A2 — A3)}°

Some numerical comparisons are given in Table 2.

Varl (7?2) ~

12

2,2 A %2
o MiT3A]

(1P23¢04)

=22 — A3)2(A1 — A3) (A2 — A1) (ha — 201 + A3)



Table 2 Approximants and true value for Vary(61), Vari (62), Vari(6s), Vari (1), Var ().

0, 6, 63 m T Vary (91) Var: (0}) Vary (9A3) Vari (i) Vari(2)
1.0 1.5 25 1/3 1/3 Exact 97800 595789 12551 328185 217113
Approx 176144 891731 11009 556703 396325

AJE 1.8 15 0.88 1.7 1.8

0.1 0.5 Exact 1223631 304824 10287 373094 244840

Approx 2224114 450383 8688 632637 450383

A/E 1.8 1.5 0.84 1.7 1.8

1.0 20 25 1/3 1/3 Exact 8117 867186 211822 10606 470467
Approx 12048 975879 192766 14874 433724

A/E 1.5 1.1 0.9 14 0.9

0.1 0.5 Exact 100332 454024 176029 12078 563404

Approx 153381 496955 153381 17042 496955

A/E 1.5 1.1 0.9 1.6 1.7

05 08 1.5 1/3 1/3 Exact 256831 1258381 16610 2270547 1747291
Approx 437989 1824195 14776 3655317 2941508

AJE 1.7 15 0.9 1.6 1.7

0.1 0.5 Exact 3395444 668659 13861 2707559 2081280
Approx 5735884 955583 12094 4308286 3466966

A/E 1.7 1.4 0.9 1.6 1.7
05 1.0 12 1/3 1/3 Exact 75958 13291081 3775517 410677 57042156
Approx 92822 13929076 3625853 484947 55716304
A/E 1.2 1.1 1.0 1.2 1.0

0.1 0.5 Exact 1050209 7446537 3315073 513599 72101446
Approx 1266379 7601439 3091745 595457 68412955
A/E 1.2 1.0 0.9 1.2 1.0

Comments: The most important component of the asymptotic variance approximants is
W5 /Wy, where Wy involves central moments up to ug, Ws central moments up to pip.
Note that these associated determinants involve + and - signs, so that accuracy may be a
problem.

The comparisons in the table for the ratio (Approx./Exact) are sometimes as large as
1.8 when 63 = 2.5, when m; = my = m3. However for 6, = 0.5, 8 = 1.0, §3 = 1.2 and

varying proportions, the ratios are nearly unity. In conclusion, we may say the tabulations

13



give some support to the underlying basic assumptions.

5 The case of 7TpP

5.1 Variances, Varl(gl),

Van (71,'\3)

VU,Tl (ég), V(l?"l (ég),

Var; (0A4), Vary(m),

The MAPLE and Mathematika system have been used. We found:

Vaﬁ (éz) ~

Var1 (7?3) ~

Wr /W

7Tz'2 {H?*:l

(i — A}

A(Wr/We)F7 (X)

(i=1,2,3,4)

where [[; means a zero term is omitted, and

Fr(X) = 303 — 205(61 + 02 + 04) + 0102 + 0104 + 0204

5.2 Identities for the 7pP

1

= (M

Concerning 73

—_

—_

=2F7() (A3 — A1) (A3 = A2) (A3 = Aa) (A = A2) (Ao = M) (A1 — M)’

2o
2)3
204

\/
N
Py

AL —

2)\1
2A9
2)3
24
81(1,4)
81(2,4)

372
32
372
1,

)
23)* (M

32
302
3\3
32
82(1,4)
82(2,4)

43

403

4N}
83(1,4)
83(2,4)
83(3,4)

— A1) (A2 = A1)3 (2 = A3) (Aa — A3)?

403
403
43
403
83(1,4)
83(2,4)
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5AS
54
53
$4(1,4)
84(2,4)
$4(3,4)

51
5)3
53
5\%
84(1,4)
84(2,4)

{3 = A1) (A3 = A2) (A3 — Ay)}©

623
673
673
(1,4)
85(2,4)
(3,4)

85

85

63
63
623
623
85(1,4)
85(2,4)

Varl (7192) ’



Further forms of (8) and (9) may be devised by suitable interchange of subscripts in the

A’s and arguments in the §’s.

6 9pP results and other remarks

3y Wo/Ws
Vari(0;) W?{H?*Zl(,\i WY
Varl (7f4) ~ 4(W9/W8)F92(A)

{4 = A1) (A = A2) (A — A3) (A1 — A5)}°
where
Fo(A) =403 =3\ (A1 + Xo 4+ Az + Xs)
+ 2)\4()\1>\2 4+ AA3 + A1 A5 + Aadg + o5 + )\3)\5)

— (/\1/\2)\3 4+ A A5 + A1 A3A5 + )\2)\3)\5)

From this Vary(7;) (¢ = 1,2,3) may be obtained by interchanges, such as A3 for A1, \4 for
A3-
Identities

~

From Vary(61)

1£02), £ (), £ ), £ s), 8(1,5),8(2,5), 8(3,5), 8(4,5)]

= (A1 = A2)2( A1 = A3)2(A1 = A1)2(M1 = As) (A2 — A3)*(Aa — Aa)* x
(A2 = A5)% (A3 — A1) (A3 = X5)*(Aa = X5)%,

where

F(8) = [1.2X,3X2, 423,501, 6)°,7A5, 8)7],

S(Zaj) = [1781(iaj),82(i5j), e ,87(iaj)]

and 8, (7, ) is defined in §4.
From Var(74)

7). £ 2, F), f (M), £(2s), 8(1,5), 8(2,5), 8(3, 5)]

15



=201 — A1) — X2) (A1 — A3)(Aa — As) (A1 — X2) (M1 — A3) (N2 — A3)* x
(M= 25)2(A2 — 25)3 (A3 — A5)3 Fo(Q)

7 Miscellaneous simple cases

7.1 Some identities

1 2\ 32 403
1 2 323 423
1 2 303 423
T M4+ A+ A+A3 A3+ 2+ M3+ A3

= (A1 — 22)3(A1 — A3) (A2 — A3)(2X1 + 20y — 4)3)
12X 32
1 2 3% = (A3 — A2)(A1 — A2)(2A1 + A2 — 3X3)
T A+ A2+ XM+ A3

1 2) 32
1 2 372 = (M —N)?
1 A+ X )\% + A9 +>\%

7.2 Case of 4pP, 91, 0}, ég, 71, ™ known

¢4(A1 — )\2)4()\2 — A3)2(2)\1 + Ao — 3)\3)2
’/T%()\l — )\2)8()\2 — )\3)2()\1 — )\3)2(2>\1 + 2Xo — 4)\3)2
B (W4/W3)(2A1 + Ao — 3)\3)2
CAmE (A = A2) (A1 — A3)2(A1 + A2 — 2X3)2

Vari(6,) ~

Similarly interchange subscripts 1 and 2 for Var(6s).

) (W4/Ws3)
Var(6s) Am3 (A3 — A1) (A — A2) (A1 + A2 — 2X3)%

16



7.3 Conjecture

We conjecture the following

1 2\ 32 s (28 —2)A33

1 20 3\3 e (25 —2)A353

1 2), 32 e (25 —2)A253 244\ Fas_1(N)

T B)G(A (10

1 81(1,5) 82(1, 5) Sas—3(1, ) 2(A)Cs(A)

1 81(2,3) 82(2,8) tee 823_3(2,8)

1 81(s—2,8) 8a(s—2,8) -+ 8a5-3(s—2,3)

where
s—1 s 8 S¥
AN =11 II 6- -6, Fosr(d) = 50 11 (625—1 — 6:).

r=1t=r+1 s—1,29

(* in the product, the zero component is omitted).

S%

The formula is correct for s = 2, 3,4, 5. Interchanges of subscripts is valid provided the
same procedure is valid for the basic determinant.
Also let AS,_5(A) be the determnant derived from (10) by delating the first row and

adding a new last row [1,81(s — 1,5),82(s — 1,8),--+,825-3(s — 1, s)]. Then

s—1 s 4
{ r:lHt:r—H(HT_et)}
{1721 (01 — 6,) Y TIZ1(6r — 65)

Azs—2(d) =

s=3

(01 — 02)4(61 — 03)* (6> — 63)*

Ai(A) = {(6, — 65) (61 — 93)}2 (61 — 63)(62 — 63)

= (61 — 02)(61 — 03) (02 — 03)°

17



8 Binomial mixture
For briefly we consider one case involving 5 parameters, namely
3
P(.’E,n,}_?) = Zﬂ-zpf(l _pz)n_a; (.’L‘ = 071"" ;N = 172a"' aO < < ]-aO <p;i < 1)
i=1

when n is known. Maximum likelihood estimators are np;, 7;, for which

n

(z — ph)’ pi(L—pi)" % ~ Ajgdo + A1 + -+, (1=1,2,3)
x=0 Bnpi X
and
- (i.9) (i.9)
S T n—x T n—x 5 2,
> (z—uh) pf(1—pi) pi(1—pj) ~ Ay o+ AT i+
=0 T T

where p| = minp; + monps + m3nps, and the expansions refer to orthogonal polynomials
with respect to the weight function P(z,n,p).

The denominator of the associated covariance determinant is

1 2n—1)p  3n—-1)®rp?  4(n-1)®p} 5(n —1)Wpt
1 2n—1py  3n—-1)®rm3  4(n—1)®p} 5(n — 1) pj
As=Fki|1 2(n—1)p; 3(n — 1)@ rp3 4(n — 1)3)p3 5(n — 1)®p}

1 (n—18:(1,3) (n—1)38(1,3) (n—1)®83(1,3) (n—1)M84(1,3)

1 (n—1)81(2,3) (n—1)P85(2,3) (n—1)383(2,3) (n—1)*84(2,3)
where

ki = —(mimans)?(np1 — nps)?(npa — np3)?, n > 4.

Note that there are common factors (n—1), (n—1)®), -, in the columns of the determnant.

For the numerator associated with Vari(np1) in the covariance determinant we have

2
1 2po 3p3 4p3

1 2p; 3p} 4p3
1 81(1,3) 85(1,3) 83(1,3)
1 81(2,3) 82(2,3) 83(2,3)
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where
ko = (moms3)? {(n —1)(n— 1)(2) (n— 1)(3) }2 (np1 — np3)?(npz — nps)?.

Hence

Ws /W,
m3[(n — 1)®]2(p1 — p2)*(p1 — p3)*

which when n — oo, p; — 0. np; = 6;, reduces to

Vari(npy) ~ (n>4)

Wy /Wy

;) ~

as expected. Note that W, and Wj are defined in terms of moments of the binomial mixture
random variate; also the form given for Var;(np;) has the factor (n — 1) appearing, not
n* as might be surmized.

Proceeding in a similar way, we find

4(p1 — 2pa + p3)* W5/ Wy
n?[(n — 1) ]2(p2 — p1)%(p2 — p3)®’

Again note the term (n — 1)®*) not n*.

Vary(rg) ~ (n > 4)

Other binomial mixture, such as 7pB, 9pB, could be considered, doubtless involving

canonical alternants.

9 Further remarks

We have studied the asymptotic variances of maximum likelihood estimators for the (2s—1)
parameters of the s-component Poisson mixture; there are s é, and s — 1 proportions.
Approximations, using a linked orthogonal systems are set up, these including the form of
the asymptotic variances which focuses on the f-parameters and to a less extent on the
proportions.

Since the central moments of the mixture, in the general case, are complicated, an
initial attempt at a solution is also complicated, but linear reductionism of determinants
involved produces canonical dichotomized alternants. Some interesting identities arise. The
factorization program associated with MAPLE (or Mathematika) turns out to be a powerful
tool. We are indebted to Robert Byers (Center for Disease Control) for assistance on this

direction.
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Historically, Thomas Muir, starting out as “Mathematical master in the high school of
Glasgow” (around 1882), because Superintendent-General of Education in Cape Colony,
and over the course of several years produced five volumes on the History of Determinants
for the years 1800 to 1920. There is also a short text book on the subject (A treatise on

the theory of Determinants, 1882). Here in §11.4 on alternants he gives the case

sinx cosz 1
siny cosy 1 |,

sinz cosz 1

and on p.179 the example,

1 294+ x3 2913
1 z3+z w311 | < ((T12273)

1 z214+29 x129

With the onset of digital computers the traditional interest in the theory of determinants
as mathematical tools slowly waned.

The reader may refer to “Contributions” to the History of Determinants, Sir Thomas
Muir (1920).

An outstanding problem, is the reduction of the component determinants in the max-
imum likelihood covariance form to canonical dichotomized alternants, the general case
being considered. Similarly there is a problem in the simplification of Wy/W;_; involving
central moments, of the mixture random variable to order 2s. Again zero-sum expressions
seem to occur such as (2A; +3X2 — 5A3) and 322 — 2XA3(A1 + Ao + Aa) + A de + At + Ao

A cautionary note is needed on sample size, n keeping in mind that Vari(0) refers
to the n~! asymptote. Our approximants at least provide the basic structure of variance
singularities, throwing quantitative light on the vague notion of “closeness”. For example
it has been said that if the parameters of the Poisson mixture are close, then large samples
may be needed if inferences are required. We have shown that variances of the 8’s are
inversely related to the square of the corresponding proportions, and to the forth power of
the products of the differences |0; — 0;|; for the proportions a sixth power of the products

of the differences is involved. The tabulations provide a guide at least for the 3pP and 5pP.
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