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Abstract
This paper explains a certain duality property occurring in the maximum like-
lihood covariance determinant. A special case of this determinant turns out to be
a dichotomized alternant, the dichotomy arising from derivatives and differences
involving the mixture components. Some errors in Bowman and Shenton (2003) are
corrected.
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1 Introduction

Continuing the study of Bowman and Shenton (2003) we consider the Poisson mixture

probability function

P(-T,Q,ﬂ) :Zﬂ-zp(x,ez) (.’1'20,1,) (1)
i=1
where for 1 =1,2,---,s
o) = 0 1 —1, 6,>0
p(ﬂ?, 1)_ 7z ) <mg <1 Zﬂ-i_ ) i > U,
8—9Z~p(x’ 0;) 0, p(z, 0;)
The maximum likelihood estimators are 01,9}, e 9; and 7y, 7o, - - -, Ts_1. Everett and

Hand (1981) have provided iterative schemes to determine the estimators associated
with a given appropriate data base.
Parseval type expansions are set up for log derivatives of the probability function

P(z,0, ). For example, for 3 components (5 parameters)

(ﬂ? ;101> p(@,01) ~ {Aoto(2) + Araa () + - -} Pz, 6, )

(x ;202> p(z,02) ~ {Bogo(z) + Bigi(x) +---} P(z,0, 7)

(a: ;303) p(x,03) ~ {Coqo(z) + Crqi(x) + - - -} P(z,0,7) 2)
{p(x,0)) — p(z,03)} ~ {Asqo(x) + Afqi(x) + - - -} P(z,0,7)

{p(z,0;) — p(x,05)} ~ {Bygo(z) + Biqu(z) +---} P(x,0, 7).

The upper segment of these equations refers to the 8’s, the lower segment to the 7’s.
We use the orthogonal system {g,.(z)} associated with probability function P(z,0, ),
so that

[e.e]

Z QT(x)QS(x)P(xa Qa E) = ¢1‘6'r,s (Ta s = Oa 17 o )

=0



In terms of the central moment () of the probability function (1)
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As shown in Bowman and Shenton (2003), a simplified version of the covariance

determinant arises when, for example, there are 5 parameters; in this case equations

(2) are truncated out the sixth term in the series, and we study the form
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Here ¢, = W /W,_;.
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We have demonstrated the following results for the approximate asymptotic vari-

ances to order n~!, n being the sample size. The 5 parameter case is

VCI/I“l (él) ~
Vam (ég) ~

VCLT‘l (ég) ~

W5/W4

TH{ (01 — 62) (61 — 03)}*
W5/W4

m5{ (02 — 01)(02 — 03) }*’
W5 /W,y

m3{(03 — 61) (05 — 62) }*’
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4(02 — 201 + 03)*(Ws /W)

{(61 — 62)(6: — 65)}°
4(0; — 205 + 03)2(W5/Wy)

{(62 — 6:)(02 — 05)}°

Here we shall explain the origin of the unexpected terms in Var(7;) and Var(s)

V(I,Tl (7?1) ~

Varl (7?2) ~

and the interesting forms for these asymptotic variances where there are up to 5
components (9 parameters); there is also a general conjecture incorrectly stated in
the 2003 paper.

The asymptotic variance may only be of moderate interest, but the associated
dichotomized alternants may be new displaying a remarkable duality between expres-
sions such as (20), (30),---, and 0; + 0o, 02 + 0,0, + 02, 03 + 620, + 0,02 + 63. Thus

the duality in general is expressed by

07 — 65
(re7™") — 07 40720, + -+ 05 = L2
01 — 0,
or
o — o
(—07) — —2L (j=23,--) (3)
6, — 0,

2 Stirling number and logarithmic derivatives

In Bowman and Shenton (2003) we showed that

X [z —0; e‘gin s
=3 () S )

z!

: T § r 0 1 2 s—1) ps—r
=§)(—1) ) (1) 8—91_{8§3r+8§3r0§+---+8§_r>9,. )

in terms of Stirling number of the second kind, and y} the mean of the mixture. We

can arrange the expression as

vy = H® + H(20,) + H (367) + - -+ H) (s6; 7))

where the H’s do not explicitly involve the #’s. Although this expression was cited in

the earlier paper, it was not used in the subsequent development. It is much simpler
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in form and makes determinant reductionism less obscure. Note that in view of (3),

we have
vi =Y {p(z,0) — p(z,03)} (z — )’
=0

2 _ p2 3 _ pn3 4 _ p4
:H15)+H25) <03 01) +H3S) (03 01) _{_Hf) (03 01) + ..

03 — 01 05 — 01 03 — 61
where H®) = 1,if r =5, H®) =0, if r > s.
Note that in the upper segment of the covariance determinant derivatives of the
probability function occur, whereas in the lower segment differences of probability

functions are found.

3 Variance of 7 and 4 components (7 parameters)

The basic determinant is

1 26 302 ... 788 (6)
1 206, 302 ... 768 (62)
1 265 303  --- 765 (65)
1 26, 307 .- 768 (64)
1 Si(1,4) Sy(1,4) -+ Sg(1,4) | 6; — 64, m
1 51(2,4) S5(2,4) - Sg(2,4) | 65— 04,7
1 S1(3,4) So(3,4) --- S5(3,4) | 03— 04,73

where S, (i,7) = (6;7'—607"")/(0;—0;), remembering that the factors (1 —0), (f2—0s),
and (03 — 6,) are omitted at this stage. The symbols in the 8th column indicate the

derivative or difference associated with the corresponding row. Using Maple, we have

W, /W
m{Il2 (6 = 6,)%}

which is readily generalized and proved for the case of 2 components up to 5 compo-

Var, (6;) ~ (i=1,2,3,4)

nents. Moreover
4(W7/We) F3(03; 61, 62, 64)
2165 — 6;)°

VCLT’l(ﬂcg) ~



where []; means a zero term is omitted, and

Fy(03) = 305 — 205(01 + 0y + 04) + 0,05 + 0,04 + 050,.

]
= 3g; {05 = 61)(8s = 6:) (65 — 6)}

For 3 components (5 parameters), Var(7) involves the factor

0

F1(91) = 291 - 92 - 93 = —(91 - 02)(91 - 93)
00,

and for Var,(m)

0

F1(02) = 202 - 01 - 03 = —(02 - 01)(02 - 03)
00,

For s components (él, O, - -+, Oy: 7, 7o, -+ -, 7s_1), the asymptotic variance Var (71)

has the factor

Fea0) = gy {TLO-00f. (523

8—01 r=2
Similarly Var,(72) has the factor
0
Fi5(02) = 7~ {(02 — 61)(02 — 05) - - - (02 — 0,) },
00,

with similar expressions for the remaining proportions. These formulas has been

verified up to and including 5 components.

4 Setting up identities
Related to Var;(73) and 7 parameters mixture we have proved

1 20 302 463 50 60
1 20, 302 463 504 603

D, = 1 20, 302 403 503 665 @
1 26, 302 403 504 663
1 51(1,4) Sy(1,4) Ss3(1,4) Si(1,4) Ss(1,4)

—_

Si(2,4) $a(2,4) S(24) Si(24) Ss(2.4) |



= 2F5(05) {(05 — 01) (05 — 02) (05 — 04) (61 — 02)* (B2 — 02)* (01 — 01)°}

where

Fy(03) = % {(05 — 02) (05 — 02) (0 — 0)}

Now it is clear that (4) could be expanded by elements in the third row since this
row is distinct because it is function of 5 only. Moreover the polynomial will be of
degree 5. But as far as differences are concerned 3 occurs only in (A3 — 6;)(63 —
6)(03 — 64) so that this leads to expect the appearance of a terms in A3 of degree
two; actually Fy(f3). Next the term (65 — 61)(05 — 62)(03 — 04) = 05 springs from the

8 is square root relating to 65

variance asymptotic term. 65 (Product of difference)
itself. Lastly the excluded differences are (0, — 0,)(62 — 04)(6; — 65); the first two
of these are related to the 5th and 6th rows of equation (4) for which (6; — 6,) and
(0 — 64) are excluded factors.

Now consider a general case; see expression (10) of Bowman and Shenton (2003)

which has an error. We have

1 26, 362 e (25 —2)0F73
1 20, 302 e (25— 2)0353
1 20, 362 <o (25 —2)9%73
D2572 -
1 51(1,8) 52(1,8) 825_3(1,8)
1 Sl (2, 8) 52(2, 8) s 523_3(2, 8)
1 Si(s—2,8) Sa(s—2,8) --- Sy 3(s—2,5) (25-2)x(252)

of order (2s — 2) by (2s — 2), and relating to a mixture of s components (2s — 1
parameters), and numerator determinant Dys o of Vary(75_1) .

In factorial form

D25—2 =



where

A@=TI TI 0.0,
By(0) = H (6,1 —6,),
@@:E@—@,

the result having been checked for s = 3, 4, and 5. (As an assist, the reader may

keep in mind that it is general case relates to Vary(7s_1)).

5 Further remarks

The approximate variances for the estimators 01, 9}, ..., MMy, 7o, - -+, at least suggest
a mathematical interpretation of the descriptive “closeness” of components, and also
suggest that the closeness factor affects the proportions (7,75, --) more than the
components (él, 9;, -+ -); singularities for the former being order six, for the latter of
order four. So much for the statistical context.

However the study introduces a new type of alternant determinant consisting
of two parts which depends on a duality phenomenon relating 2z to = + y, 322 to
22 + 2y + 32, 422 to 23 + 2%y + 2y? + y® and so on. There are identities for various
alternant forms, generally expressible as products of powers of differences such as
0, — 05, etc. However, there is one surprising exception relating to the first order

variance of a 7. Here the product form contains a factor such is

0
O {000~ 00, - 0)

which relates to the gradient of a polynomial form with real coefficients, so that
several stationary points will be involved resulting in an irregularity in the variance
of a proportion.

There is an extensive literature on alternants. According to Muir (1882), Alternat-

ing Functions were introduced by Cauchy (1812). About this time it was known that
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b2 —ac was the determinant of ax®+2bxy+cy?, and similar functions of higher degree.
Muir’s Historical and Bibliographical Summary of the History of determinants is well
worth a read. So, our claims to newness with respect to dichotomized determinant is
somewhat muted.

There is interest in testing out the Factor functions (Maple, Mathematika) to

implement a simplification of high order alternants.
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