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ABSTRACT
In a previous paper (Shenton and Bowman, 2001) we studied cumulants of the geometric dis-
tribution, showing that they lead to Eulerian numbers such as the sets (1,1), (1,4,1), (1,11,11,1).
These Eulerian numbers (of the first kind) relate to partitions of s from the factorial s! and as
discrete distributions which appear to be nearly the normal distribution when s is large.
Eulerian numbers of the second kind are from the central moments of the geometric distribution
and contain sets such as (1,7,1), (1,21,21,1). These are symmetric partitions of s!Es; where F refers

1

to the truncated series for the negative exponential e~ . The basic results spring from a finite

difference equation of the first order, this being solved by usage of the finite difference operator
(1-EN

As with Eulerian numbers of the first kind, there is the property of normality; actually the
Eulerian numbers of the second kind, viewed as discrete distribution, are asymptotically normally
distributed.
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likelihood estimator, power series distributions, recurrence relations.
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1. INTRODUCTION

In a previous paper (Shenton and Bowman, 2001) we studied the geometric distributions with
density
G(z; P) = P(1 - P)* (x=0,1,---;0< P < 1)

and its cumulants K(Q), @ =1 — P, and for example,

=Q/P*=1"(Q )/P2
Ks; = (Q+Q%)/P* =h?(Q)/P3,
Ki=(Q+4Q* + 623)/P4 = h3)(Q)/P*,

the coefficients of the polynomials being Eulerian numbers (see Riordan, 1958). A tabulation of
the cumulants up to Kjg is given in Table 3 of Shenton and Bowman (2001). There are several
approaches to set up the cumulants using recurrence schemes; one is stated in Eq. (3) of Shenton
and Bowman (2001), and another is described in Riordan (1958, p215). There is also the difference-

differential equation

S+1 Q QK (S:1a27aK1:1/P)

In general,

K, = (h§3—1)Q + hgs_l)Q2 +- (5 1)Qs 1)/Ps (1)

hgs) being Eulerian numbers. Since we are going to introduce another similar set, we may refer to
(h{")) as Eulerian number of the First Kind.

In this note we study numbers associated with the central moments p,(Q) of the geometric
distribution.

We note at the outset the following simple properties of the discrete Eulerian number distribu-

tions, this being defined by the generating function
s—1
(Q+hIQ* + -+ h,Q N/ YA,
r=1

« LT =
e The polynomial in Eq. (1) is symmetric, with mean s/2.

e The skewness is zero and the kurtosis (measure of “peakedness”) is 2 55 2) /($5)? which — 3

as s — oo. This provides a link with normality for which the kurt081s is 3.

Here we study the central moments of the geometric distribution and set up properties of the

associated Eulerian numbers of the Second kind which appear.



2. THE CENTRAL MOMENTS
OF THE GEOMETRIC DENSITIES

The moment cumulant relation, subject to existence is

> K > ol
€Xp <Z 1 = Z gl
s=0 )

5—2 S!

(ho = 1,41 = 0) (2)

For example,

125) :K27
M3 :K?n
py = Ky +3K2,

pus = K5 + 10K3 K>,
e = Ko + 156K, Ky + 10K3 + 15K3.

Kendall (1943, p63) gives a list up to Ki9. A general formula involving partitions is available;
differentiation of expression Eq. (2) with respect to a produces a useful recurrence formula. We
find

p2(Q) = p2 = Q/P*=J3(Q)/P?, (Q=1-P)
ps=(Q+Q%/P* =J%(Q)/P?,
p=(Q+7Q°+ Q%) /P = JN(Q)/P*.

In general define the sth central moment as

s—1
ps(Q) = ps = > Q" /P*, (0<P<1;5=2,3,--")
r=1
where (jﬁs)) are Eulerian numbers of the Second Kind. A list of (j,(as)) is given in Table 1.
Deriving the Eulerian numbers by this approach becomes complicated, so an approach by gen-

erating function is used.



Table 1.( ;Eulerian Nl(n)nber of the (S)econd Kind (

S j§s) jés) jgs) J4 Js Js J7 ) jz(ss) >
2 1 1
3 1 1 2
4 1 7 1 9
5 1 21 21 1
6 1 51 161 51 1
7 1 113 813 813 113 1
8 1 239 3361 7631 3361 239 1
9 1 493 12421 53833 53833 12421 493 1
10 1 1003 42865 320107 607009 320107 42865 1003 1
11 1 2025 141549 1704693 5494017 5494017 1704693 141549
12 1 4071 453905 8422679 42924113 72605303 42924113 8422679
13 1 8165 1426803 3947374 302461121 802022261 802022261 302461121
14 1 16355 4423277 178063991 1977056433 7789874691 12172195881 7789874691 s
15 1 32737 13580674 780900357 12218437871 68767626970 158751895747 158751895747 s 481066581676
16 1 65503 41413201 3353014767 72351539361 564446340287 1847023983361 2722620497023 s 7697065306817

(The last column gives J () = Zj;% j,gs). In the interest of space, only half the entries are given
with s > 10.)

3. A FORMULA FOR THE ELEMENTS IN j®,
EULERIAN NUMBERS OF THE SECOND KIND

3.1 THE GENERATING FUNCTION FOR CENTRAL MOMENTS OF THE
GEOMETRIC DISTRIBUTION

The probability generating function of G(x; P) is
E(t*) = P/(1 - Qt),

so that the central moment generating function, using ¢t = e, is

Pe—2Q/P . N2a2 N N30‘3 o
1— Qe 2! 3! ’
or 9 9
—Qa/P _ ma | ppot _Qa Qo
Pe _<1+ T T P=r 3 ’

where pg = 1, u1 = 0. Equating coefficients of o /r!, we have
s s s
P = (3) @mrrt (3) @bt () @k (090 (528005 = 1@ P
But from Eq. (2) ps = J®(Q)/P?, so

TE(Q) = @ QIEV(Q) + (;) QPIC(Q) + -+ (j) QPIIOQ) + (-1)°Q°,  (3)



where s =2,3,---, JO(Q) =1, JM(Q) =0, JP(Q) = Q. For example,

JQ) = 3QJP(Q) +3QPIV(Q) + QP? - @* = 3Q(Q) + QP? - @° = Q(1 + Q).

The mean value of J(s), JQ(S) J( %) is s/2.

3.2 SYMMETRY OF THE EULERIAN POLYNOMIALS

Table 1 displays the symmetry up to J(6)(Q). We indicate a mathematical proof which depends
on the symmetry of the case of hs(Q) (Shenton and Bowman, 2001, pp.125-6), Eulerian polynomials
of the first kind. In §2 we show the relation between p, = J®)(Q)/P*, and K, = h,_1(Q)/P?,

central moment and cumulants. For example, for moments in general (Kendall, 1943, p70),

wr = K7 +21K5Ko + 35K, K3 + 105K3K22,

and .
K, 1 Ky 2 K, wm r!
w=X 200 G Gl e
m=0 b1 b2 Pm M7 == T2
summed over Y 1" psms = r for the second summation; my, 79, - - -, are non-negative integers.

We know that P*K(Q) is symmetric and that the coefficients are positive (Shenton and
Bowman, 2001, 4.3). It follows from the expression for p,, the coefficient of J)(Q) is positive.
Symmetry depends on the symmetry of products such as h,(Q)hs(Q). If h,hs is symmetric, then

all such products are symmetric. Consider the even case. Then
has(Q) = QP /2 (vge_y + Clgs)ws—s + 058)023—5 +-+ aéi)_gm) (s=1,2,--+)

where v, = Q%2+ Q%/2, s =0,1,2,---, and vy =0 if s < 1.
But v,v, is clearly symmetric, r = 0,1,---. A similar treatment applies to the odd case. Hence
returning to p,P", the Eulerian polynomials of the second kind have positive integer coefficients

and are symmetric. Hence all odd moments referred to the mean are 0, the mean for J)(Q) = s/2.
3.3 THE SUM Y5 3j®, (r=2,3,--")
Insert @ =1, P =0, in Eq. (3). Then
JO(1) = sJC7V1) + (-1)°. (s=2,3,-) (4)

Now let J(¥)(1) = s!H®)(1). Then

leading to




which we define as s!E; or J(®)(1) where Eg =1, Ey =0, Ey=1/2, E3=1/3, E;=9/24, etc.
Examples of this sum, J(*)(1), are given in Table 1. Eq. (4) readily sets up whatever values are
required.

Eulerian discrete distributions are now derived, and from J*)(0), the probabilities are

IO, 350 I D 1IO), G2 TO0) (s =2,3,00).

Using factorial moments in this case involves heavy algebra so specialized that MAPLE and
other languages are of little help. Factorial moment methods are more efficient in the discrete
case than central moments; note the cases of the binomial, and Poisson for which the factorial
moment generating functions are (1 + pa)™ and exp(fa) respectively. However, the advantage
fails somewhat when sampling moments are concerned. We therefore turned to the use of central

moment generating functions.

4. CENTRAL MOMENT GENERATING FUNCTION
4.1 THE FORMULAS

The basic result follows from the modification of equation Eq. (3); here set Q@ = €%, P =1—e“,

noting that the mean of the associated random variable for the sth case if s/2. Let

CO)(a) = e 2T0NQ)/(s!Ey).  (Q =)

For example,

s=2: C(a)=e"? (2B, =1)

s = COa) = (e +e%)/2 (3E;=2)

s = CH(a)= (e ®+T7+€e%)/9 (4B, =9)

s=5: CO(a)=(e3%2 4 21e7 4 21e® + ¥/?)/44.  (5!E5 = 44)

Note that in the numerators, when o = 0, the sum is s!FE;.
From Eq. (3) we derive the finite difference equation for the moment generating function,

namely

—a /2 2
C(s)(a) _ ea/?g(sfl)(a)E‘s’*l + (1 —€ )C(s 2)(a)E572 + e/ (1 — ea) 0(573)(Q)E5*3

E, 2! E, 3! Es
—(s—2)a/2(1 _ a)s—l E (_1)5 sa /2
ooy © © OO0 4 2 ¢ —92.3 ...
+ -+ ol C%(«) z, + SE, (s=2,3,--+)

leading to

. —a/2(1 _ ,o)\2
E.00)(a) = 2B, ,06(a) + L= g ,06-D(a) + T L= g 06-3)(g)

2 3!

—(s—2)a/2(1 _ La\s—
¢ (1= e) (5=2,3,--). (5)

(_1)sesa/2

EOC(O) (a) +

s! s!



4.2 ELEMENTARY ALGEBRA OF E,

First of all,

B Fe= )
and
— —1)° S 1 1 1 —1)°
-5 — -y {E‘<s_1)!+<s—2)!+”'+(0!) }=B.

There is the fundamental identity
sE, = (S — 1)E5_1 + FEs_o (S =23, )
or
(8 - l)Es_l = SES - Es_g. (6)

Summation

S B = (1- BB, = (s 4 2) By, ™)
r=0

4.3 THE VARIANCE OF THE DISCRETE EULERIAN RANDOM
VARIATES

Differentiating Eq. (5) twice with respect to «, and setting o = 0, we have for the variance

Cgs) the difference equation

(s) _ (s—1) FEy_q . Es_o  FEs_ 3 (_1)8 { 1 1 }
BCy' = BaCy” 4 = 2 T3 T2 =2 -1

and the last term on the right-hand side is (ES‘ZES‘?’) — (ES‘IZES‘z). Here,

Esf3
12 °

E,CY = B, .05V +
Replace s by r and sum over r = 1,2, ¢ - s, yielding from Eq. (7)

E,CS) =[(s — 2)Ey_s + Ey_4]/12 = [(s — 3)Es_3 + Es_3 + Ey_4]/12
= (s — 1)E,s_1/12 = [sE, — Es_]/12.

Hence,
(s) _ sEs— Ey o - (5 - 1)Es—1 —9.3 ...
C2'=—Dm  ~ 1B, (5=2,3,-)
with asymptotic
NO) N s—1
5 DI (s = o0)
Note that (1) /1 )
As) _(s) | \T - _
R 12 (s! (3—1)!>' (5 = o0)

8



In general, when power series are involved, we would expect an asymptote of the form

(5) S 1 o p
g 5 2 2 P
2 12 12 s &2

for example.

4.4 THE FOURTH CENTRAL MOMENTS 7"

7(1 |07) §— C( ) + 3( ) 8(1) S( )’

where

Ws(2) = w572/8 - w573/4 + w574/67
Es—l Es—2 5E5—3 _ Es—4 Es—5

W) ==~ 6 2 5
(=15t (-8 1 7 6 1
(0 ="T6a =15 {(3—1)!+(s—2)!+(s—3)!+(s—4)z}'

Using Eq. (6) Ws(2) may be simplified. Thus

Ws(2) = ws—2/8 — ws—3/4 + (ws—3 — Es_5)/6  (ws = sEj)
= ws_9/8 —ws_3/12 — Es_5/6
= wy_3/24+ Ey_4/12 — E;s_3/6
— wy_1/24 — Es_3/24 + E;_4/12 — E,_5/6
— ws/24 — By_5/24 — Ey_3/24 + Es_4/12 — E;_5/6.

For the sum

s(s+1)Es sEs (s—1)Es—1  (s—2)Es_2 (s—3)Es;_3

—1y-1
— (2) = — 2% — —
(1= E7)"Ws(2) 48 24 24 + 12 6
5(5 + 1)E5 E, , sk E, » E, 3 E, 4
= - - . 8
48 48 6 8 12 6 ®)
Similarly,
—1\— + 1)E 1 sE 8sKE 8E -2 3E -3 E5,4
1 — By w1y = EE DB B A 53 _ 9
( =) WD) 16 2 15 5 10 5 7 ©)
and
(1—-E;YH)™'W,(0) = (—Es_ 1 + TE, o — 6E, 3+ Es 4)/16. (10)



Collecting terms in Eqgs.(8-10) yields the final exact fourth central moment of the Eulerian
discrete distribution.

V(s) _ s? $ 1 {ES—2 Es 3  TEs 4

_2 2 4= —923....
TR 20 E, 120+120+240} (5=2,3,)

and the asymptotic

2
()80 s 11
=g wtag 7
with error
(s) sy 11 (Es2 Es 3 7Es4) z
I VT 120 " 120 T 210 ) /P
Es - E5—2 Es - E5—3 7(Es - E5—4)
— —3.4. ...
120 7 120 T 240 (5=3,4,--)
and

Es —E; 5= (-1)° (l - #> ’

st (s=1)!
s 1 1 1
Ey—Es 3=(-1) (g_ (s —1)! +(3—2)!>’
s (1 1 1 1
Es— Es—q=(-1) (;_ (s—1)!  (s—2)! B (3—3)!)

5. ASYMPTOTIC NORMALITY

We proceed by induction. Assume

U =[1-3-5---(2r —1)]s"/12" (s = o0).

Differentiate Eq. (3) 2r + 2 times and set & = 0. Then

N YR i
2r D) 4 2 3

(r+1)(2r+1) (1-3-5---(2r —1)s"

- 12 { 127 }
1-3-5---(2r +1)s"

:{ 12r(+1 i }(r—l—l).

Hence summing, the result is universally true, and the distribution of Eulerian numbers of the
second kind is asymptotically normal.

A tabulation of means and higher moments is given in Table 2.

10



Table 2. Mean, Variance, Kurtosis for the

Eulerian Second Kind Discrete Distribution

s Mean Variance 4 Kurtosis

4 2 2/9 0.222222222 2/9 9/2

5 5/2 15/44 0.340909091 51/176 187/75

6 3 110/265 0.415094340 0.505660377 2.934710742
7T 7/2 927.5/1854 0.500269687 0.714064186 2.853178050
8 4 8652/14833 0.583294007 0.979707409 2.879528388
9 9/2 88998/133496 0.666671661 1.283240696 2.887248310

10 5 1001220/1334961  0.749999438 1.629180178 2.896324656

11 11/2 0.833333390 2.016664950 2.903997132
12 6 0.916666662 2.445833527 2.910744065
13 13/2 1.000000000 2.916666647 2.916666647
14 7 1.083333333  3.429166668 2.921893495
15 15/2 1.166666667 3.983333333 2.926530610
16 8 1.250000000 4.579166667 2.930666667
18 9 1.416666667 5.895833333 2.937716262
20 10 1.5683333333 7.379166667 2.943490307
mean = s/2, variance = (s — 1)E;_1 /(12Ey),
p3 =0,

pa = 11/240 — 5/20 + 52 /48 + (Es_2/120 + E;_3/120 + TE,_4/240)/E;,
36 33 6/5_ 6/5 18/5 6  42/5 51/5 198/5

—3-2 4+ 2y 1-s)2=3-L2
B = 5s+532)/( 5) s + 52 + 53 st s° s8 s7

6. MONTAGE OF e’S

6.1 CONTINUED FRACTIONS

The exponentials e and e~! have attracted considerable interest historically, the chief contribu-
tors being Euler and Gauss; the series aspect is considered and transformation into rational function
sequences set up. A pivotal result is due to Gauss and the hypergeometric series (in various forms)

1+ % + % -+ +. For the usual ladder form, see Wall (1948). We use notation

11



We offer some results.

T 1X 1% 2% 3% 2% By 94 11, 1948;
1+ 14+ 2+ 3+ 2+ 5+ 2+ (Wall, 1948; Gauss)

_(—l)s{i 1 1 s+1 2 s+3 3 }
1+ s+1- s4+24 s4+3— s+44+ s+5— s+ 6+

= (_1)s¢(1, s+1,-1),

where

—
N
~

w

bz bb+1)22 bb+1)(b+2)2
(b,c,2) =1+ 2 IS A SR 11,194
be2) =1+ T+ oo a T aer sz T (Wall 1948 Gauss)

2 1 1 1 1
el=1-- - _— —_ - (H.M.F., 4.2.40, (1964))

1 1 2 3 4
e=2+——— — —.-- (Perron; Euler, pl19)

Es  s+1 s s—1 §
Esi s+ s—14+4 s—2+4---4 2

6.2 A DISTRIBUTION ASSOCIATED WITH E; AND ASYMPTOTIC
UNIFORMITY

We consider the random variable 7 with probability function
Pr(i=r) = By /(s + 2)Eyya]. (s =2,3,--)
Then using the identities

S rVE =[(s+ )MIE + (1) Byxal/(s+1)  (s=A+1L,A+2,-53=0,1,2,--+)
r=0

the factorial moments of # may be set up. For an example,

— l)E -1 S 1
Mean: o0 =2 4= DF s 1
ean I 5+ 65 E. 5 T 6 (s = o)
. ~(8) 4A§
Variance : 0y’ = As+ "l (As = (s —1)Es_1/(12E}))
s s BX2 12 1623 B
Skewness : Uy _ﬂ_T_E+§f(Es)+ 3 (s=2,3,---)

and

Es—2 Es—S 7Es—4
{120 + 120 + 240 }/ES'

12



Omitting details we find when s is large that the mth non-central moment is s /(m +1). Thus

for the variance, 02 = s? (% — i) = %,
. 1 31 2
Skewness : 4 ~ §3 (Z -55+ §) =0
1 4-1 6-1 3
is RO _ 2 2 2 _
Kurtosis: [z ~ s (5 2-4+4‘3 16> /(s%/12) 1.8

Here, as far as the moments are concerned, the random variable #/s is distributed as a uniform
density U(0,1).

7. SOME CONCLUDING REMARKS

The Eulerian polynomials (hs(Q)) of the first kind relate to partitions of size s from s!.
An unusual recurrence appears from the cumulants of the geometric distribution, and In(1/Q)
plays a significant role. Strangely enough, the geometric distribution has probability function
(1—q)exp(xzIng). For Eulerian polynomials of the second kind, the link is with the truncated neg-
ative exponential e . E; is used to denote a truncated form. Here the associated central moment
generating function is recursively defined, and moments arise from derivatives; the finite difference

operator E plays a fundamental role in the solution used as (1 — E;!

1)~ Properties of E; are

given.

In our study of Eulerian discrete distributions, asymptotic normality seems to be a character-
istic. We have also looked at convolutions of these distributions and also derivative sets of distri-
butions with moment generating functions % {%esa/ 2C'(“”)(oz)}. This family is also asymptotically
normally distributed from a moment point of view.

An introduction to the interface between finite difference calculus and probability is given in
Riodan (1958).
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