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Abstract

A recurrence relation is given for the cumulants, this being linear in the cumulants. The
cumulants involve Eulerian numbers this also being true for the cumulants of the binomial
and Fisher’s logarithmic series distributions. An approximation to the cumulants of the
geometric distribution involves a logarithmic function which in turn leads to approximants
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derived and compared with our previous studies (Bowman and Shenton, 1998, 1999). Exact
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variate.
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1 Introduction
The geometric distribution is defined by the probability function
G(z,P)=P(1-P)*. (z=0,1,2,---;0<P<1) (1)

The study was motivated by the need to find simple non-trivial cases of maximum likelihood
estimation for which exact moments (bias and first order bias, variance and 2nd order
variance, dominant skewness and dominant kurtosis, the latter being measured by moment
ratios) were known. Obvious examples relate to the binomial, normal and one form of the
gamma distribution. We needed further examples in order to verify our asymptotic formulas
for low order moments (means, variances, etc.) in the simultaneous estimate of one or more
parameters (Bowman and Shenton, 1998, 1999, 2000, 2001; Bowman and Williams, 2000).

It was pure-serendipity that we looked at (1), the geometric distribution involving one
parameter. Our general formulae for moments of maximum likelihood estimators are quite
complicated, but the one parameter case is more user friendly. Now the maximum likelihood

estimator P of P is given by

- 1
P = 2
1+z )
or
P—P=—P%/(1+ Py)
where for a random sample (z1,Z2,-+,zy) the mean is Z, and y = Z — p!(z) =7 — Q/P.

If we know the moments of the mean z, then from (2) we can set up low-order moments of

A

P, using correction formulas such as

Var(P) = E(P — P)?

[E(P - P)P%,
p3(P) = E(P - P)? P

— 3[E(P — P)’|E(P - P) +2[E(P - P)]°.

It seemed to us that setting up cumulants for the geometric distribution random variable
might be the most promising choice, for from these, cumulants of the mean are readily
derived; for Ks(z) = Ks(z)/N*~!. We found a recursive formula for K(z), from which an
approximation scheme readily followed. These results were of a different kind from those
given by Johnson, Kotz, and Kemp (1993, p.108) namely

0K,
20" (r>1)

In the new results the pivotal entity is In(1/Q).

Kr+1 = Q

Now, we have defined the polynomials hs(Q) as

PS+1KS+1 = hS(Q)



where h4(Q) turns out to be of degree s, each coefficient being a positive integer and the set
of coefficients being a partition of s from s!. Approximations to [In(1 — z)]/z are derived
and also the structure of the components in hs(Q).
In the interests of space, we shall merely quote results indicating appropriate references.
This paper may be regarded as a Binomial montage from (1 + z)", n a positive integer,
n negative, to (pt + ¢)" and finally (1 4+ P — Pt)~*, and in the latter k£ > 0, P > 0.

2 Low Order Moments

It is assumed throughout that 0 < P < 1, that P+ @ = 1, and that the symbol ~ represents

an asymptotic result for which in general N, the sample size, tends to oc.

2.1 Moments of the Geometric Random Variate

(@) = Q/P, pa(z) = Var(z) = Q/P?,
ns(z) = QQ+ /P, \/Bile) = (Q+1)/VQ,
na(@) = 3[ua (@) + (Q/PH)(Q? +4Q +1),

Ba(w) = palw) /3 () = 3+ (Q* +4Q + 1)/Q.

Comments: The skewness, measured by a moment ratio v/f; is large if Q(> 0) is small.

2.2 Asymptotic Moments of the Maximum Likelihood Estimator Pof P

Mean:

E(P) ~ P+ PQ/N + PQ(2Q —1)/N* + PQ(6Q° — 6Q + 1)/N°
Variance:

p2(P) ~ QP?/N + QP*(6Q — 2)/N* + QP*(34Q* — 26Q + 3)/N°

p3(P) ~ QP*(5Q — 1)/N? + QP*(68Q” — 39Q + 3)/N*
Skewness:
VBi(P) ~ (5Q —1)//NQ.

Kurtosis

pa(P) ~ 3Q*P*/N? + QP*(85Q2 — 32Q + 1) /N3,

Bo(P) ~ (pa2/N? + puas/N®) [ (n21 /N + pioa/N?)?
1
~3 (é —20+49Q> /N.
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Comment: The series may diverge. The results for the mean to the N~2 term, vari-
ance to the N™2 term, skewness to the N™1/2 term and dominant kurtosis 1/Q — 20 +
49Q agree with those described in Shenton and Bowman (1977), Bowman and Shenton
(1998,1999). The verification for the formulas in the case of the two parameter gamma
density e */%(z/a)? /aT(p) is given in Bowman and Shenton (1999, p2502).

3 Exact Moments of the Maximum Likelihood Estimator of
Py

3.1 Integrals of Py
For the geometric random variables, the probability generating function is
Et* = P/(1 - Q1) (3)

so that for s(N) = Nz,
Et™N) = pN /1 — Qt)N

and by integrating the expression t*¥)*N¥=1(In¢)"~! we have

& NTPN /1tN_1[ln(1/t)]’"_1dt
0

E(PN)T_(T_1)| (1—Qt)N (T:]'?Q’) (4')

A A

and pe(Py), us(Pn), etc. may be evaluated using the usual correction formulas, such as
pa(P) = Var(P) = piy(P) — [y (P)]* = E(P?) — [B(P)P,
us(P) = E(P*) - 3[E(P)*| E(P) + 2[E(P)P°.

The formula in (4) for E(Py)" reduces to a case for which the integrand may have for

numerator the component
-1 -Q /!

leading to the formula

» N 2 3 N-1
E(;N) _ (LN (g) {1n(1 N Q/P)_Q{P +(62/213) _ (Q/?)P) o +(_1)N_1(Q]/VP_)1 |
(5)

for N =2,3,---,0< P <1, P+ Q = 1. Clearly the term on the right is in the form of a
residue. For N =1,

E(P) = (P/Q)In(1+Q/P).



3.2 Infinite Series and E(P")

From the probability generating function in (1) and P = N/[N + s(N)] we have the series

® (N +s)PNQ*

E(PT) = N" ZO TNV F oy el (r=1,2,---)

Setting a stopping rule for the series, non-central moment of P may be set up and converted

to central moments.

A

3.3 Rational Fraction (Padé) Sequences for E(P)
3.3.1 The Mean Value of P and Stiltjies

A special case is

F(z)=

/000 do(t) Ni (N + s)PVNQ® (R(z) > 0)

24t = T(N)(z+s)s!
where o(+) is a step function, bounded, and with infinitely many points of increase (Shohat
and Tamarkin (1943), Wall (1948), Bowman and Shenton (1989) and Brezinski (1978, 1980a,
1980b)).

In a number of cases, the corresponding continued fraction may be set up quickly if we
knew the orthogonal system associated with o(-)). In the present case these orthogonal
polynomials have been described by Aitken and Gonin (1934). First of all we set up a

J-fraction of the form
bo b1 by

z+a1— z+ax— z+az—
and if the odd part exists go to the form

g fi a1 fo o

z4+ 14+ 2+ 14+ 2+
Stiltjies often used the transformed expression,
ag 1 1 1
a1z+ o+ azzt+ ast

with linkage to the Stiltjies moment problem which yields a unique solution provided az > 0
and in addition Y ay; = oc.

Omitting details we find for the mean, with N =1,2,---
N NQ/P 1/P (N+1)Q/P 2/P (N+2)Q/P
N+ 1+ N+ 1+ N+ 1+

E(Py) = (6)

which converges to E(pN), the odd convergents forming a monotonic decreasing system of
bounds, the even convergents forming a monotonic increasing system of bounds. Note that
fors>1, f=(N+s—1)Q/P, gs = s/P.

Example 1. n =10, P=Q = 1/2.



S Xs Ws Approx
1 1 1 1.0

2 1 2 0.5

3 12 22 0.5455
4 23 44 0.5227
5

6

7

278 528 0.5265
554 1056  0.5246
7208 13728 0.5251

(Correct value is 0.524877).
Example 2.
From (6) with P = @Q = 1/2, n = 1, we have the interesting result

Comments: Table 1 is an excerpt from a larger study in which P = 0.1(0.1)0.9, N =
1(1)5(5)25.



Table 1 Moments and moment ratios of the maximum likelihood

estimator Py of P for the geometric distribution

P N 1 o VB1 B2
0.2 1 0.40235948 0.32681111  0.96230881 2.47111638
2 0.29882026 0.21063542 1.67336417 5.76548538

3 0.26294240 0.15415406  1.79743388 7.33334688

4 0.24568587 0.12333648  1.72046403 7.53208684

5 0.23572317 0.10433004  1.59713176 7.19127205

10 0.21695652 0.06496800  1.13691441 5.33096651

15 0.21109334 0.05068584  0.91266049 4.51833760

20 0.20824021 0.04289374  0.78156998 4.11551117

25 0.20655377 0.03783510  0.69387369 3.87934404

0.5 1 0.69314718 0.31904155 -0.23010833 1.34525868
2 0.61370564 0.25882814  0.33079339 1.87684585

3 0.57944154 0.21662248  0.52940992 2.45587271

4 0.56074461 0.18806299 0.60293137 2.82600334

5 0.54906924 0.16769163  0.62520331 3.04318901

10 0.52487740 0.11631758  0.56789458 3.30269177

15 0.51662995 0.09394836  0.49545323 3.28006679

20 0.51248445 0.08085016  0.44180946 3.24001809

25 0.50999203 0.07202105 0.40163483 3.20628352

0.8 1 0.89257421 0.21754629 -1.60591183 3.80132218
2 0.85940636 0.19587335 -0.88762215 2.29375668

3 0.84356185 0.17478478 -0.58709260 2.09482289

4 0.83433679 0.15830117 -0.42446722 2.12274659

5 0.82831606 0.14539716 -0.32465265 2.19731975

10 0.81505405 0.10818181 -0.13115389 2.50579685

15 0.81024349 0.08974115 -0.07444960 2.65651315

20 0.80776132 0.07831247 -0.04932740 2.73901169

25 0.80624702 0.07035781 -0.03570286 2.79020452

3.3.2 Tabulations of the Moments of the Geometric Distribution’s Maximum

Likelihood Estimator ]5N of P

Table 1 gives a brief account of the low order moments of PN including the moment ratios

V1 = skewness = u3/ug/2 and 2 = kurtosis = u4/p3.

The entries have all been evaluated by the series approach, in some cases some 200

terms were required to meet the accuracy of one digit in the seventh decimal place. The



mean was checked using the continued fraction in (6), for which only 50 convergents were
needed. For () (> 0) small and a small sample, there is a large negative skewness and large
kurtosis; these extremes are moderated when the sample size increases to around 50. For
(2 near to unity but less than one, both the skewness and the kurtosis reach rather extreme
values, these only moderated slightly as N approaches 50. For P = Q = 1/2, both skewness
and kurtosis increase as N increases to 10, thereafter decreasing to zero for skewness and
3 for kurtosis. Note that for the geometric distribution () small means the mean is small,

whereas () near to unity means that the mean of the random variate is large.

3.3.3 The Variance of P and a Second Order Continued Fraction

We use the integral in (4) with 7 = 2, this being of the form

[ do(t)
F2(z)_/o (z + 1)

and from Shenton (1956, pl81; equations 48 & 49, and Table on pl89) we may set up

convergent sequences j*/js. The basic entities are:

Qg = bs(2N +bs1+bs + bs—l)
Bs = bsbs_s0ts_1, 05 = bsbs_1b5_2bs_3bs_g;

andjék:lajik:j;:blaj:<0’S<Oaj0:]-aj1:NQaj2:N2+b2(2N+b2+b3)'

The partial numerators of the basic continued fraction are
bQSZ(N—I—S—l)Q/P, b25+1:5/P (321,2,"')
by =1.
The convergents, j; and js follow the recurrence scheme.

Wos—1 = Z122W2s—2 + Q25 1Wos_3 — Pos_1W2s—5 — 2122Y25—1W2s—6 + 025 1W25—7,

Wos = Wos—1 + QosWos—2 — PasWas—4 — Yoswas—5 + O2swos—6. (21 =22 = N)

Note that Shenton (1956) proves that the odd convergents j5 ., |/j25—1 form a monotonic
decreasing sequence of bounds, whereas j3,/j2s form monotonic increasing bounds.
Table 2 gives a set of results for P = 0.1(0.2)0.9 and N = 1,5, 10, 25, 50.



Table 2. Upper and Lower Bound for E(P?),

A~

o(P), using 2nd order continued fraction

P n EMP)U EMP’)L o(P? o by series
0.923560 0.923560 0.156180  0.156180

5 0.850276 0.850276 0.110616  0.110616

0.9 10 0.832082 0.832082 0.083870  0.083870
25 0.819352 0.819352 0.055341  0.055341

50 0.814767 0.814767 0.039688  0.039688
0.760969 0.760969 0.261425  0.261425

5 0.571927 0.571927 0.163420  0.163420

0.7 10 0.532752 0.532752 0.119088  0.119088
25 0.507453 0.507453 0.076272  0.076272

50 0.498776 0.498776 0.054095  0.054095
0.582251 0.582126 0.319059  0.319042

5 0.329598 0.329597 0.167692  0.167692

0.5 10 0.289026 0.289026 0.116318 0.116318
25 0.265279 0.265279 0.072021  0.072021

50 0.257572 0.257572 0.050482  0.050482
0.382439 0.373580 0.340824  0.338995

5 0.137202 0.137186 0.135481  0.135450

0.3 10 0.111286 0.111286 0.088024  0.088023
25 0.097938 0.097938 0.052412  0.052412

50 0.093874 0.093874 0.036279  0.036279
0.179422 0.088586 0.334722  0.280993

5 0.018553 0.018320 0.062188  0.060677

0.1 10 0.013329 0.013327 0.035798  0.035775
25 0.011171 0.011171 0.020330  0.031976

50 0.010562 0.010562 0.013884  0.013884

Comments: Thirty terms of the continued fraction were used. Agreement with a(p) com-
puted by series is excellent for () small but deteriorate for () near to unity, especially for

small sample sizes.



4 Cumulants for the Geometric Distribution

4.1 A Recursion

We have for the cumulants

so that

2 3 —aQ/P
a_Kg...} Pe

«

(1 — Qe®)eK(®) = pe=aQ/P

Differentiating with respect to a, we have

(1-@en B _ 9 o)

and equating coefficient of " /r! we have the recurrence

Kpp1 = Q{Krs1 + (’") K, + <T> Koyt + ( " ) Ko+ =} (7)
1 2 r—1 P
where r = 1,2, - .-, with Ky = Q/P2%. We find that
K, =h,_1(Q)/P".
Tabulation of h,_1(Q) is given in Table 3.
Table 3. Cumulant Components for the Geometric Random Variable
Ks Q QZ Q3 Q4 Q5 Q6 Q? Q8 QQ QIO Qll
2 1
3 1 1
4 1 4 1
5 1 11 11 1
6 1 26 66 26 1
7 1 57 302 302 57 1
8 1 120 1191 2416 1191 120 1
9 1 247 4293 15619 15619 4293 247 1
10 1 502 14608 88234 156190 88234 146008 502 1
11 1 1013 47840 455192 1310354 1310354 455192 47840 1013 1
121 2036 152637 2203488 9738114 15724248 9738114 2203488 152637 2036 1

It will be seen that the elements of h,_; are positive integers and that they are sym-

metric. For example,

hQ(Q) = Q + Q2,
h3(Q) = Q +4Q* + Q°.

10



If we consider limp_,o P"T1 K, 1(Q) it follows that
h.(1) =rl (r=1,2,--+)
Defining

he(Q) =Y R Q*
s=1

we see that the components h

T . . .
The components hg ) are Eulerian numbers. We encounter them in our book on maxi-

gr), hg), RN h,@ represent a partition of r parts from r!.

mum likelihood estimators (Shenton and Bowman, 1977) in connection with Fisher’s loga-

rithmic distribution which has the probability function
Pr(X =z)ab”/z (x=1,2,--)
and o~ =1n[1/(1 — 0)], 0 < 0 < 1. For the central moments

1 S
= (=) u"Ts—+(0),
Ty r=0

11

where

0
1-6)In(1-6)

It is shown (Shenton and Bowman, 1977, chapter 5) that in terms of Eulerian numbers,

To@) =o', u=E@)=-

(1-0)3T30) =0+62, (1 —0)"Ty(0) = 6 +46% + 63,
and in general
(1 - G)STS(G) = hsfl(e)'
Eulerian numbers are studied in Riordan (1958, p215), Comtet (1974, p243). A tabula-

tion is given in David, Kendall and Barton (1966). For references associated with “Power
Series” distributions, see Patil (1986), and Douglas (1980).

We shall give some properties of Eulerian numbers in the sequel.

4.2 An Approximate Solution for the rth Cumulant K, Associated with
the Geometric Distribution
The binomial coefficients in the recurrence (7) suggest a possible solution of the form
Ki=MNQI(r-1. (r=2,3,-)

Substitution leads to

Nl =Q {”“r! + AT + rINTTL 2 rIX? 1 }

1! T TR o NI =

11



so that
ot

Ly
A1l

1
4.

1

3291 T X331

suggesting for large r the solution

and the approximation

K7 = MQ) (r — 1)L

1
ot )\SS!P} ’

Table 4. Approximants K to K, and its Errors.

Q=02 Q=05 Q=08
s K, K, — K? K, K, — K? K, K, — K?
2 0.3125 0.7356 0.8137¢-1 20 0.8313e-1
3 0.4688 0.1099e-1 0.5561e-2 180 0.1852¢-2
4 0.8984 0.4197e-2 26 0.7419e-2 2420 0.8235¢-2
5 2.2266  0.4071e-2 150 0.2529e-2 43380 0.8778¢-3
6 6.9043 0.2611e-3 1082  0.3037e-2 972020  0.3865¢-2
7 25.7373  0.2954e-2 9366 0.2495¢-2 26136180 0.9158¢-3
8 111.9519  0.1349e-2 94586  0.2537¢-2 819890420  0.3980e-2
9 556.4868  0.3080e-2 1091670  0.4185¢-2 29394187380  0.1652¢-2
10 3111.8695 0.4436e-2 14174522  0.3246¢-2 1185549324020  0.7059¢-2
11 19335.1016 0.3181e-2 204495126  0.1054e-1 53129445912180  0.4554e-2
12 132149.3226 0.1428e-1 3245265146  0.4900e-2  26190490452984 20  0.1906e-1

Table 4 illustrates a surprising accuracy of K for 1 > @ > 1/2. Note that the approxi-
mation K satisfies the difference-differential equation for K.

4.3 The Components of /. (Q)

In the difference-differential equation for K, set () = e*. Then

_ OK.(e?)

o 0
Kra(e%) = —5,—

~(58) ey
Kri1(e”) = (a%)r 1 _16(1'

o\" 1
1— a\r+1 (_) .
( ) Ja) 1—e>

or

Hence

hr(e*)

12



This type of equation has a long history, going back three centuries ago, when Euler,

according to an account in Hardy (1949), gives the equation

1me™¥ —2Me™2 4 3Me™3 — ... = (—1)™ (i)m L
dy evy+1

Equating powers of e* in (8) we find that with o < 0

he(z) = bz + B 22 + o 4 Bg7,

and in general

st r+1

hg’r) = Z(_l)u ( ) (s_u)r '(3:152a"'3T) (9)
u=0 u

When 7 is odd, say r = 2R — 1, the entries in Table 3 suggest a maximum value for thR_l)

when s = R, the polynomial being symmetric. Similarly when r is even, say 2R, hg2R)

reaches maximums at s = R and s = R + 1, the polynomials also being symmetric. These

properties are not obvious to follow from (9).

Consider the first case, ie. 7 = 2R — 1. Then for e B®hyp_; we have

0 1
_ —R 2R
Tr(a) = e=Ra(1 — ) (%) —
should be an even function. But
o 2R—1 1
_ (o—a/2 _ a/2\2R [ 9
Ta(e) = (o0 —exypr (JL)
and
9 \2R-1 . 9 \2R-1 1
o) = _(p—/2 _ a2R ([ Y — (p—/2 _ ,a\2R [~ — )
Tr(=a) (e %) (804) e*—1 (e ¢ (8(1) 1—e® Tr(e)

A similar proof applies to e #*hyp. That the components hgr) increase as positive integers

up to the maximum may be demonstrated as follows. We have for the difference-differential

equation for K,

hy = Q(l - Q)%hr—l +rQhy_1, (hr = hr(Q);r =2,3,-- )

13



so that for the coefficient of @)%,
A = shr=D 4 (r — s+ 1)h§’"_}1). (r=2,3,---;8=23,---.)

Hence
B = (b0 = BIY) + (r+ DAY,

8§

W = 2 = s = BD) = s = DO = D)+ 4 DAY =+ D)

] s—1 —

= s(h{ D — 27D + BT + (Y — D) + (4 1 (RETY — BT,

§— S

(r)

Now there is evidence in Table 3 that the first and second differences of hg ’ are positive

on either side of the mean (or maximum value). Hence induction now proves this for the

general case.

4.4 Approximants to the Logarithmic Function

Let
L(P) = —[In(1 — P)]/P (0<P<.

Then cumulants associated with the geometric distribution, lead to the approximants

1/r
aquw—mmwmw%{—gigm] (r=1,2;0<Q<1,Q+P=1)
s=1 S

and h{") is defined in (9).
It is more informative to express the denominator in powers of the parameter P. For

example,
3p P?
Bl Wl = (3) ps
(1) L3(P) = (1 2 + 2) SE:OIS P

and

6(r + Ulﬁ?l =3(3r + 1)17(.3) —(3r— 1)[53_)1 (l(()?’) =1)

=173, 19 =174, 1) =29/144.

2 3 1/4 00
(2) Ly(P) = <1 — 2P + (i P_> — Zlg@PS
0 6 s=0
7 1

W =172, 1§V =1/3, zg4 =1/4, 19 =1/5, 1Y =115/576.

14



2 3 4 5\ /6 oo
13P? 3P%  31P' P® S o
4 2 120 120 = s

(3) Lg(P) = (1 — 3P+

© _1 <6>_<&_E> (6) (3_7‘_2_7) (6) _(£_£> (6) (L_E) (6)
(Dl = 5 Or+ VBT =5 )t 5~ 1) =2 (330 ~ 360 2 \120 ~ 720 ) s

18 =1/(s+1), s=0,1,---,5 1 =3703/25920.

S

From an extended study of L,(P) for r = 2 to 12, we have found that Lo, (P) and
Loy41(P), term, by term, agree with the terms in L,(P) up to P"/(r + 1). Table 5 gives

two examples, 7 = 6 and r = 10. Let

t
LT(P) = Zlg"‘)PS 4 l»fv,’_‘elPT_Fl + l,'(,:zQPT—i—Q 4. ’
s=0

with l(()r) =1 and ¢ a known positive integer. Thus the first ¢t + 1 terms agree with these of
L(P). Table 5 gives an example showing that the discrepancies between unity and lg:_)Q (t+2),
and lg:_)3(t + 3) up to a dozen or so terms are remarkably small. Table 6 gives some idea of

the accuracy of the logarithmic approximation when P = Q = 1/2.

15



Table 5 Coeflicients lgr), r = 6,10

r==6
s i App 17/ App
1 1/2 1/2 1
2 1/3 1/3 1
3 1/4 1/4 1
4 1/5 1/5 1
5 1/6 1/6 1
6 3703/25920 25921/25920  1.000038580
7 6481 /51840 6481/6480  1.000154321
8 345721/3110400 345721/345600  1.000350116
9 69161/691200 69161/69120  1.000593171
10 565997/6220800 6225967/6220800  1.000830601
11 518921 /6220800 518921/518400  1.001005015
12 517355267/6718464000 6725618471/6718464000  1.001064897
13 960711311 ,/13436928000 6724979177 /6718464000  1.000969742
14 5378488001 /80621568000 5378488001/5374771200  1.000691527
15 671990191 /10749542400 671990191 /671846400  1.000214024
16 379217709029 /6449725440000 6446701053493/6449725440000  0.9995310829
17 238554941351 /4299816960000 238554941351 /238878720000  0.9986445898
18 27420174965939/522427760640000  521154324352841/522427760640000 0.9975624644
19 104098631581621/2089711042560000  104098631581621/104485552128000 0.9962968991
20 1146734289121949/25076532510720000 8027140023853643 /8358844170240000 0.9603169841
r=10
1 1/2 1/2 1
2 1/3 1/3 1
3 1/4 1/4 1
4 1/5 1/5 1
5 1/6 1/6 1
6 1/7 1/7 1
7 1/8 1/8 1
8 1/9 1/9 1
9 1/10 1/10 1
10 3058691 /43545600 43545601 /43545600 1.000000023
1 7257601 /87091200 7257601/7257600  1.000000138
12 703429229/9144576000 9144579977/9144576000  1.000000435
13 1306369247 /18289152000 1306369247/1306368000  1.000000955
14 2438557511 /36578304000 2438557511/2438553600  1.000001604
15 914459519/14631321600 014459519/914457600  1.000002099
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Table 6 Approximations to —In(1 — P) when P =Q =1/2

r

App={(r — 1)}/ K, }/"

In(2)-App

© 00 N O O i W N

[ S S S S T
w N = O

0.70710678118654752440
0.69336127435063470487
0.69309772861787781251
0.69314484315514639287
0.69314750482185122325
0.69314720693303394244
0.69314717823564334670
0.69314718026469516584
0.69314718057581756174
0.69314718056319376018
0.69314718055985809640
0.69314718055991033311

0.01395960062660221498
0.00021409379068939545
-0.00004945194206749691
-0.00000233740479891655
0.00000032426190591383
0.00000002637308863302
-0.00000000232430196272
-0.00000000029525014358
0.00000000001587225232
0.00000000000324845076
-0.00000000000008721302
-0.00000000000003497631

In(2) = 0.69314718055994530942

5 The Central Moments of the Cumulant Components

We have

1 & N TN
FZ (hg)_ 9 > :,U'm(h)
T s=0

so that the generating function is

I _ o a\T d\’ 1
Gr(aa h) = Ee (r+1) /2(1 —€ ) i (%) 1 — e

and setting a/2 = 3, this becomes

%(sinh;@)r+1 (_i)T cothp (r=1,2,--+)

dp
in terms of hyperbolic function. Note that it may be useful to recall that
1 /6 53 255 22mBle32m—1
th=-+--"—4+—+4---+ ———— <
cothf=gt+ s - o " (2m)! (181 <)
in terms of Bernoulli numbers, with
1 1 1
By=1, By=—-, By==, By=——.
0 ; 1 92’ 2 6’ 4 30

For examples of the moments we have

Mll(hs—l) = 3/27
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,LLQ(hs_l) = 3/127
,LL3(h5_1) = 07
pa(hs—1) = s(bs — 2)/240, (s > 4)
/1,5(,7,5_1) =0,
5s3 s? S
pie(hs—1) = @z~ 9% t ey (5>6)
6
P2 =3 — ot

If s = 50, then By = 2.976 approximately. A set of values are given in Table 7. Consid-
ering /(1 and (o it appears that the distribution is near to the normal.

Table 7. The Central Moments Associated with K

s Mean Variance 4 16 B2
3 3/2 1/4

4 2 1/3

5 23 5/12 23/48  0.48 2.76
6 3 1/2 7/10  0.70 2.80
7 3% 7/12 77/80  0.96  479/192 249 2.83
8 4 2/3 19/15  1.27 80/21 3.81 2.85
9 43 3/4 129/80 1.61  2473/448 552 2.87
10 5 5/6 2 2.00  215/28 7.68 2.88
11 53 11/12  583/240 2.43  4631/448 10.34 2.89
12 6 1 29/10 2.90  569/42  13.55 2.90
13 65 13/12  273/80 3.41 23335/1344 17.36 2.91
14 7 7/6 119/30  3.97 131/6 21.83 2091
15 7k 5/4 73/16  4.56 36305/1344 27.01 2.92

6 Conclusion

The cumulants may be set up using K41 = Q OK: with K, = Q /Por by using the recurrence
given in §4.2; the latter is more complicated.

r)

The cumulant components hg

B =shD 4 (r—s+ )R, (r=2,3,--)

may be set up from using

with by = Q, KV =1, n{Y = 0.
There is the approximate formula,

Q") c-n "
]_—Q N{Z h,TlQ} ’ (T_2a37"'70<Q<1)
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u=0

_ 1
where B Y = sTL(—1)v (r + > (s —u)".
u

Notice the difference-differential equations,

with solution y, = h, = h(Q).
With respect to the “positive” binomial, probability generating function being (pt+¢q)",

its cumulants K, are given by
KT = _nqr+1hr(_p/Q), (’l" = 1’25"')

using P = 1/q, Q@ = —p/q. In this case the approximate formula K} = A*(r — 1)! is not
valid, but K, does involve Eulerian numbers.

There would be interest in setting up an asymptotic expression for the error L(P) —
L,(P), r — oo. Another possibility less in the direction of the statistical properties of

partitions of the factorial.
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