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Abstract
The calculus of residue is applied to evaluate certain integrals in the range (-∞ to

∞) using the Maple symbolic code. These integrals are of the form
∫∞
−∞ cos(x)/[(x2 +

a2)(x2 + b2)(x2 + c2)]dx and similar extensions. The Maple code is also applied

to expressions in maximum likelihood estimator moments when sampling from the

negative binomial distribution. In general the Maple code approach to the integrals

gives correct answers to specified decimal places, but the symbolic result may be

extremely long and complex.

2000 Mathematics Subject Classification: 62E20.

Key words and phrases; alternant determinant, calculus residues, contour integration.

*Notice: This manuscript has been authored by UT-Battelle, LLC, under contract

DE-AC-05-00OR22725 with the U.S. Department of Energy. The United States Gov-

ernment retains and the publisher, by accepting the article for publication, acknowl-

edges that the United States Government retains a non-exclusive, paid-up, irrevoca-

ble, world-wide license to publish or reproduce the published form of this manuscript,

or allow others to do so, for United States Government purposes.

1



1 Introduction

Interest in the theory of complex integrations by reading Copson (1935), Shenton

wrote a note to Copson (in 1957) indicating that the statement of the fundamental

residue theorem seemed incomplete, at least to him. Out of interest, Copson’s letter

which came from Harvard University is given in an Appendix 1, Copson describes

the residue formed as being “very difficult”. The reader should note that Copson

basically agree with Shenton’s points.

Note, we have already used the Maple code in connection with the skewness for

maximum likelihood estimators of the negative binomial distribution.

Here we will consider definite integrals (range −∞ to ∞) mentioned by Copson

(1935, Chapter VI, The Calculus of Residues, pp.115-179, in perturbation pages 151

onwards). They will be generalized somewhat, to emphasize the power of the Maple

code. However, we also refer to an unusual example arising in statistical theory of

the negative binomial distribution.

2 Some Examples

2.1 Copson’s cases

Example 1 (Copson (1935, p129)

M1(a) =
∫ ∞

−∞

cos(x)dx

x2 + a2
(a > 0)

and from Maple

M1(a) = πe−a/a

As a check,

M1(a = 2) = 0.2125841654.

Example 2 (Copson (1935, p152)

M2(a) =
∫ ∞

−∞

cos(x)dx

(x2 + a2)(x2 + b2)
(a, b > 0, a 6= b)

and by Maple

M2(a) =
π(b sinh(a)− b cosh(a)− a sinh(b) + a cosh(b))

ab(a2 − b2)
=
π(ae−b − be−a)

ab(a2 − b2)

2



and a check,

M2(a = 2, b = 1) = 0.3143810613.

There is a generalization of examples 1 and 2. We consider the case

M(a, n) =
∫ ∞

−∞

cos(x)dx

(x2 + a2
1)(x

2 + a2
2) · · · (x2 + a2

n)
. (1)

a1, a2, · · · , an being real, positive, and distinct. The integral can be expressed in deter-

minantal form. Since each factor in the denominator is of the first power. In the con-

tour integral residues arise at a1i1, a2i2, · · · , anin. We find M(a, n) = πM(a, n)/∆(n)

where

M(a, n) = (−1)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

a2
1 a2

2 · · · a2
n

a4
1 a4

2 · · · a4
n

...
...

...
...

a2n−4
1 a2n−4

2 · · · a2n−4
n

e−a1

a1

e−a2

a2
· · · e−an

an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and

∆(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

a2
1 a2

2 · · · a2
n

a4
1 a4

2 · · · a4
n

...
...

...
...

a2n−4
1 a2n−4

2 · · · a2n−4
n

a2n−2
1 a2n−2

2 · · · a2n−2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
both determinants being of alternant form.

A similar case arises when the integral is x sin x, the last row in the M(a, n) being

replaced by e−a1 e−a2 · · · e−an . There will be many more cases of this alternant

type.

For a reference to alternants see Aiken (1946), Bowman and Shenton (2003, 2004).

A classical study of the subject of determinants is due to Sir Tomas Muir (1930).

Numerical examples are shown in Table 1.
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Table 1 Numerical examples of equation (1)

Numerator cos(x) x sin(x)

Case 1 2 1 2

n = 2 0.31438 518.86 0.24352 9.0170

n = 3 0.03529 5210.02 0.02372 51.5210

n = 4 0.002204 31042.44 0.00136 247.2823

n = 5 0.0 0.0 0.00005 860.2906

The case 1 represent a1 = 1, a2 = 2, a3 = 3 · · ·, and the case 2 represent a1 = 0.1,

a2 = 0.2, a3 = 0.3 · · ·.

Example 3 (Copson (1935), p152)

M3(a) =
∫ ∞

−∞

cos(x)dx

(x2 + a2)2
(a > 0)

and by Maple

M3(a) =
π(− sinh(a) + cosh(a) + a cosh(a)− a sinh(a))

2a3
=
π(a+ 1)

2a3ea

and a check

M3(a = 2) = 0.07971906203.

Example 4 (Copson (1935), p.130)

M4(a) =
∫ ∞

−∞

x sin(x)dx

(x2 + a2)
(a > 0)

and by Maple

M4(a) = π(cosh(a)− sinh(a)) = πe−a

and a check,

M4(a = 2) = 0.425168340.

Examples 1 through 4 agree with Copson’s answers.

2.2 Some new examples of integrals using Maple

Example 5

M5(a) =
∫ ∞

−∞

(cos(x))sdx

(x2 + a2)
(a > 0, s = 2, 3, 4)
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For s = 2 Maple gives

M5(a) =
π(−2 sinh(a) cosh(a) + 4 cosh(a)2 − sinh(2a))

4a

and by Maple

M5(a = 2) = 0.7997832335.

For s = 3 Maple gives

M5(a) = −π(4 sinh(a) cosh(a)2 + 5 sinh(a)− 8 cosh(a)3 + sinh(3a))

8a

and by Maple

M5(a = 2) = 0.1604115273.

For s = 4 Maple gives

M5(a) =
π(−8 sinh(a) cosh(a)3 − 4 sinh(a) cosh(a) + 16 cosh(a)4 − sinh(4a)− 4 sinh(2a))

16a

and by Maple

M5(a = 2) = 0.6034996741.

Example 6

M6(a) =
∫ ∞

−∞

cos(x)dx

(x2 + a2)2(x2 + b2)
(a > 0, b > o, a 6= b)

and by Maple

M6(a, b) =
π[e−b(a5(b+ 1)− a3b3 − 5a3b2) + e−a(a3b3 + 5a2b3 − b5(a+ 1))]

2(a2 − b2)3a3b3

and by Maple

M6(a = 2, b = 1) = 0.06740936539.

2.3 Examples derived using differentiation under the integral

operator

In all cases we have considered the limits of integration as parameters free. Assuming

validity we may therefore differentiate with respect to a parameter under the integral.

Example 8

We have using A = a2,∫ ∞

−∞

cos(x)dx

x2 + A
=
√
ae−

√
A/
√
A (A > 0)
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so that ∫ ∞

−∞

cos(x)dx

(x2 + A)2
=

d

dA

√
ae−

√
A

√
A

a,

and so on for further derivatives.

Example 9 ∫ ∞

−∞

(4 cos3(x)− 3 cos(x))dx

x2 + a2

Note that the numerator in the integral is cos(3x) so that there should be agreement

with ∫ ∞

−∞

cos(3x)dx

x2 + a2
= 3

∫ ∞

−∞

cos(x)dx

x2 + (3a)2
=
πe−3a

a
(a > 0)

Note the expression for cos(3x) is sometimes used in solving a cubic equation. Other

integrals with different denominators may come to mind.

2.4 Remarks on residue examples

All the examples we have studied are correctly assumed using the Maple code - a

simple check is to use straight forward integration. Note however that examples

chosen would appear to be capable of evaluation by residue calculus.

A general question concerns the impact of symbolic code on impact mathematics

and perhaps on contemporary classical mathematics. Can there be surprises?

2.5 A difficult example due to Copson

Perhaps the most difficult example given in Copson is on p.153, Miscellaneous exam-

ples 15. We quote “Prove that the residue of the function eniz/(z2 − 2zcosα + 1)2,

(n > 0, 0 < α < π), at the pole which lies in the upper half-plane is −iλenicosα where

λ =
e−n sin α(n sinα+ 1)

4 sin3 α
.

Hence show that ∫ ∞

0

x(x2 + 1) sinnxdx

(x4 − 2x2 cos 2α+ 1)2
=
πλ sin(n cosα)

4 cosα
.”

There is a single pole with the usual semicircular contour, the residue being simple;

but complication arises from the remaining terms in the function.

The Maple code gives a very extensive result with complex variables. For n = 1,

α = π/4, and yet the Maple result equals the Copson answer 0.4294659208.
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3 Maple code in application to the skewness esti-

mator for the negative binomial distribution

We consider the negative binomial distribution with probability generating function

g(t; k, p) = (p+ 1− pt)−k (p > 0, k > 0)

following the notation in Bowman and Shenton (2007). The maximum likelihood

estimators (p̂, k̂) are found from the equation

k̂p̂ = m′
1,

n0

k
+ n1

(
1

k
+

1

k + 1

)
+ n2

(
1

k
+

1

k + 1
+

1

k + 2

)
+ · · · = N ln

(
1 +

m′
1

m

)

for a random sample (n0, n1, · · ·). From Fisher (1922) the variance of the estimator k̂

is the series. From our paper (Bowman and Shenton p.100) an element in the impact

matrix Lkp is

ikk =
∞∑
0

1

qk

(
p

q

)x
Γ(k + 1)

Γ(k)
[ψ1(k)− ψ(k + x)] , (q = p+ 1)

ψ1 being the derivative of the Psi function ψ(x) = d
dx

ln Γ(x), then the term in Psi

functions is

ψ1(k)− ψ1(k + x) =
1

k2
+

1

(k + 1)2
+ · · ·+ 1

(k + r − 1)2

Fisher expands this in terms of r = p/(p+ 1) to obtain

ikk =
∞∑
0

rx

x

(r − 1)!Γ(k)

r(k + x)
. (2)

Using the Maple code and equation (2) we have checked out the coefficient of r10 in

(2). It turns out to be the correct coefficient (see Bowman and Shenton, 2007, pp106-

107). The Maple code succeeds in giving an expression in the term r = p/(p + 1)

for ∑
x

= 1∞
1

qk

rx

x!

Γ(k + x)

Γ(k)

(
1

ks
+

1

(k + 1)s
+ · · ·+ 1

(k + x− 1)s

)
(k, p > 0)

when s = 4. However it is extremely large in form and occupies several lines of

output.

In conclusion it appears that the Maple code succeeds in giving a correct result

parametrically, and this parametric series agrees for particular sets of (k, p, s).
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4 Conclusion

Symbolic language (Mathematika, Maple, Reduce) started to appear three or more

decades ago. Our main experience is with Maple code at Oak Ridge National Labo-

ratory. We use an example briefly (see bowman and Shenton, (2007)). There is the

.....

F (x) =
∞∑
1

(
p

q

)x
Γ(k + x)

Γ(k)

(
1

ks
+

1

(k + 1)s
+ · · ·+ 1

(k + r − 1)s

)m

where k > 0,s = 1, 2, · · · ;, m = 1, 2, · · ·, q = p+ 1, 0 < p < 1. For s = 1. m = 1, the

Maple code simplifies it. However for s = 2, m = 3 the Maple code result expression

will be extreme and difficult to interpret.

Appendix 1 Copson’s Letter

Harvard University, Cambridge, Mass.

Nov. 12. 1957

Dear Mr. Shenton,

When I wrote my Complex Variable book, I did not attempt to enunciate in the

greatest generality but only in a form sufficiently general for my purpose. The subject

is hard enough as it is. I therefore restricted myself to poles in the enunciation of

the residue theorem - that makes it slightly easier to prove - but I could have allowed

instead any form of isolated singularity as Valiron does. His result includes mine.

I didn’t know Thron’s book - but I think his enunciation is wrong. To take

Valiron’s form of the enunciation, if there were an infinite number of singular points in

D, they would have a limit which would be a non-isolated essential singularity and this

limit point would either belong to D or to its boundary. And a non-isolated essential

singularity upsets everything. The fact the Thron says “at most denumerable”doesn’t

help.

The residue theorem relates to a closed and within and on it there can be most a

finite number of isolated singular points.

Yours truly,

E. T. Copson
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