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Abstract

For an orthogonal set of polynomials pr(z) relating to a kernel weight function, we

consider the zeros of pr(z), focusing attention on the largest. Systems such as binomial in

its three forms (Poisson, binomial, negative binomial), the normal, and the approach using

a Maple code for zeros of functions expressed in factorial form is described. In some cases

a nearly linear form for largest zero is zr = A + B
√

r + Cr. Particular attention is given to

the third degree zeros relating to the general case.
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1 Introduction

We have from Wall (1948)

ln Γ(z) =

(

z − 1

2

)

ln z − z +
1

2
ln(2π) + J(z) (<(z) > 0)

where the last term is the continued fraction J(z) = a1

z+
a2

z+
a3

z+ · · · and a1, a2, · · ·, a40 are

given in Char (1980).

The associated set of orthogonal polynomials pr(z) follow the recursion

pr(z) = zpr−1(z) − arpr−2(z), (r = 1, 2, · · ·)

with p0 = 1, p1 = z, ps = 0 if s < 0. The first few cases of pr(z) are given in Table 1.

Table 1. The orthogonal polynomial pr(z)

r pr(z)

1 z

2 z2 − a2

3 z3 − z(a2 + a3)

4 z4 − z2(a2 + a3 + a4) + a4a2

5 z5 − z3(a2 + a3 + a4 + a5) + z(a4a2 + a5a2 + a5a3)

A graphical representation is shown in Figure 1.

It is well known that the zeros of pr(z) are real, distinct, and between a consecutive pair

pr−1, pr there is a zero of pr+1(z). What is the form of the largest zero in pr(z); can it be

approximated?

2 The zeros of pr(z), and J(z)

Using the Maple symbolic code we have the zeros (zr)

z1 = 0.0833333333, z2 = 0.0333333333, z3 = 0.2523809524,

z4 = 0.5256064590, z5 = 1.0115230681, z6 = 1.5174736492,

z7 = 2.2694889742, z8 = 3.0099173833, z9 = 4.0268871923,

z10 = 5.002768081.

The orthogonal polynomials are:

p1(z) = z,

p2(z) = z2 − 0.033333,
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Figure 1: Orthogonal polynomials p1, p2, and p3

p3(z) = z3 − 0.285714z,

p4(4) = z4 − 0.811321z2 + 0.017520,

p5(z) = z5 − 1.822844z3 + 0.306527z,

p6(z) = z6 − 3.340317z4 + 1.537685z2 − 0.026586,

p7(z) = z7 − 5.609806z5 + 5.674609z3 − 0.722246z,

p8(z) = z8 − 8.619724z6 + 15.728688z4 − 5.350549z2 + 0.080023,

p9(z) = z9 − 12.646611z7 + 38.318746z5 − 28.201558z3 + 2.988425z,

p10(z) = z10 − 17.649379z8 + 81.441225z6 − 106.888537z4 + 29.755983z2 − 0.400337.
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The solutions to pr(z) = 0 are

Table 2. Zeros of pr(z)

r zeros

3 0, ±0.5345224838

4 ±0.8883234111, ±0.1490042347

5 0, ±1.278832666, ±0.4329328185

6 ±0.1341235375, ±0.7273992128, ±1.671292531

7 0, ±0.3853571018, ±1.058497207, ±2.083480262

8 ±0.1251872687, ±0.6481101603, ±1.396413273, ±2.496804990

9 0, ±0.3563135901, ±0.9453299115, ±0.755931799, ±2.922790877

10 ±0.1190261337, ±0.5985892571, ±1.250580285, ±2.120209256, ±3.349278196

Now set up the zeros when we take the Stieltjes approximation (see Char (1980)) a∗

s =

s2/16 ( Stieltjes, letter 173, p354, 1905) and also see Stieltjes (1918).

There should be a very close set of zeros corresponding to using the correct values of as

Table 3. Comparison of largest zeros for ar and a∗r.

r 11 12 13 14 15 16

ar 4.22 4.66 5.11 5.55 6.00 6.46

a∗r 4.22 4.67 5.11 5.56 6.01 6.46

Table 3 indicates the largest zeros are practically the same for the partial numerators relating

to the Stieltjes continued fraction form and the Stieltjes conjecture (ar ∼ r2/16).

zr is linear with a small gradient. This suggests the model

zr = A + B
√

r + Cr

which we fitted using a least square Maple program, the second term in zr could be Brλ

where 0 < λ ≤ 1.

Note that for higher curvature a possible model for zeros might be

zr = A + B
√

r + Cr + Dr2

where A, B, C, D are constants.

3 The Normal density and the well known Laplace continued

fraction

Laplace continued fraction:

f(z) =
1

z+

1

z+

2

z+

3

z+
· · · <(z) > 0
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The orthogonal set pr(z)

p0(z) = 1,

p1(z) = z,

p2(z) = z2 − 1,

p3(z) = z3 − 3z,

p4(z) = z4 − 6z2 + 3,

pr(z) = zpr−1(z) − (r − 1)pr−2(z)

and so on. The linear form with slight slope is an approximant to zr.

4 Zeros of orthogonal polynomials related to the binomial

distribution

4.1 The Poisson case

Using finite difference expressions, such as

x(r) = x(x − 1) · · · (x − r + 1), (r = 1, 2, · · ·)
∆x(r) = x(r+1) − x(r) = rx(r−1),

consider the orthogonal system related to the Poisson case pr(x) for which

pr(x) = e−θ∆x(r). (r = 1, 2, · · · , θ > 0)

= (1 − θ∆ +
θ2

2!
∆2 − θ3

3!
∆3 · · ·)x(r)

=

(

∞
∑

s=0

(−θ)s∆s

s!

)

x(r).

Thus

pr(x) = x(r) −
(

r

1

)

θx(r−1) +

(

r

2

)

θ2x(r−2) −
(

r

3

)

θ3x(r−3) · · · (r = 1, 2, · · · , θ > 0).

4.2 The binomial case

The generating function of the binomial being (pt+q)n, 0 < p ≤ 1, p+q = 1 and n = 1, 2, · · ·.
The orthogonal set [Gr(x)] is defined as

Gr(x) = (1 + p∆)−(n−r+1)x(r)
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and we consider the cases r = 1, 2, · · · , n − 1. See Aitken and Gonin, (1935), expression

(11); expanding

Gr(x) = x(r)−
(

r

1

)

(n−r+1)px(r−1)+

(

r

2

)

(n−r+2)(2)p2x(r−2)−
(

r

3

)

(n−r+3)(3)p3x(r−3) · · · .

The negative binomial is set up for its orthogonal system by setting p = −p, and n = −k,

where p > 0, and k > 0.

There are problems involved in the binomial case since the orthogonal set is finite -

hence only approximations are available.

4.3 The negative binomial distribution and largest zeros

The orthogonal set {Hr(x)} is given by

Hr(x) = (1 − p∆)k+r−1x(r) (p > 0, k > 0)

= x(r) −
(

k + r − 1

1

)

prx(r−1) +

(

k + r − 1

2

)

p2r(2)x(r−2) −
(

k + r − 1

3

)

p3r(3)x(r−3) + · · · .

When k = 1, the negative binomial distribution reduces to the geometric distribution, the

form essentially being A + (AB)t + (AB2)t · · · for its probability generating function with

0 < A ≤ 1, A + B = 1. The corresponding negative binomial is

H∗

r (x) = (1 − p∆)rx(r)

= x(r) +

(

r

1

)

prx(r−1) +

(

r

2

)

p2r(2)x(r−2) + · · · .

4.4 The Stieltjes continued fraction form under equivalence transforma-

tions

The continued fraction
p1

z+

q1

1+

p2

z+

q2

1+

p3

z+

q3

1+
· · ·

(p’s and q’s are positive and real) may be expressed as

1

α1z+

1

α2+

1

α3z+

1

α4+
· · · .

The parameters α1, α2, · · ·, being given by Stieltjes ( letter 177, p365, 1905). A first

condition for the moment problem to have a solution is for the α’s to be positive. Using

successive equivalence transformations we have

Standard terms: 1
p1

, q1

p1p2
, q1q2

p1p2p3
for α1, α3, α5,
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New terms: p1

q1
, p1p2

q1q2
, p1p2p3

q1q2q3
for α2, α4, α6, The pattern is clear, and

α2s+1 =
q1q2 · · · qs

p1p2 · · · ps+1
(s = 0, · · · ; q0 = 1)

and

α2s =
p1p2 · · · ps

q1q2 · · · qs

(s = 1, 2, · · ·).

4.5 Examples

Example 1: The ps = qs, s = 1, 2, · · ·, then α2s = 1, α2s+1 = 1/ps+1 so
∑

αs = ∞ satisfying

the 2nd condition for the existence of a solution to the moment problem.

Example 2:

pr = (2r − 1)3, qr = (2r)3,

α2r+1 =

{

(1 + 1)

(

1 +
1

3

)(

1 +
1

5

)

· · ·
(

1 +
1

2r − 1

)(

1 +
1

2r + 1

)}3

α2r =

{(

1 − 1

2

)(

1 − 1

4

)

· · ·
(

1 − 1

2r

)}3

(r = 1, 2, · · ·)

Finite and infinite products are needed to come up with satisfactory bounds (see J.I’A.

Bromwich, 1926, Chapter VI).

5 The zeros of the Poisson case (θ = 1)

We have always pointed out that the largest zeros for a Poisson system are approximately

linear. This property also holds for the complete set of zeros for pr(x), r being fixed (i.e., the

internal zeros are nearly linear deviating somewhat in the vicinity of the largest). Evidence

of this is clear from the listing below.

Complete list of zeros for Poisson (θ = 1)

(2) = 0.3820, 2.6180,

(3) = 0.1392, 1.7459, 4.1149,

(4) = 0.0440, 1.3320, 3.0797, 5.5443,

(5) = 0.0114, 1.1307, 2.5406, 4.3884, 6.9288,

(6) = 0.0024, 1.0429, 2.2457, 3.7514, 5.6768, 8.2807,

(7) = 0.0004, 1.0114, 2.0956, 3.3771, 4.9597, 6.9485, 9.6073,

(8) = 0.0001, 1.0024, 2.0304, 3.1662, 4.5174, 6.1636, 8.2063, 10.9137,

(9) = 0.0000, 1.0004, 2.0077, 3.0612, 4.2504, 5.6623, 7.3625, 9.4521, 12.2033,

(10) = 0.0000, 1.0001, 2.0016, 3.0181, 4.1036, 5.3445, 6.8093, 8.5564, 10.6877, 13.4787,
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Figure 2: Largest zeros for Poisson with θ = 0.5, 1.0, and 5.0

(11) = 0.0000, 1.0000, 2.0003, 3.0043, 4.0350, 5.1564, 6.4455, 7.9569, 9.7454, 11.9143, 14.7419,

(12) = 0.0000, 1.0000, 2.0000, 3.0008, 4.0095, 5.0592, 6.2181, 7.5513, 9.1040, 10.9297, 13.1329,

15.9945,

(13) = 0.0000, 1.0000, 2.0000, 3.0001, 4.0021, 5.0181, 6.0907, 7.2869, 8.6603, 10.2502, 12.1096,

14.3443, 17.2376,

(14) = 0.0000, 1.0000, 2.0000, 3.0000, 4.0004, 5.0044, 6.0308, 7.1292, 8.3615, 9.7715, 11.3951,

13.2853, 15.5493, 18.4724,

(15) = 0.0000, 1.0000, 2.0000, 3.0000, 4.0001, 5.0009, 6.0084, 7.0483, 8.1741, 9.4405, 10.8841,

12.5384, 14.4572, 16.7485, 19.6996,

(16) = 0.0000, 1.0000, 2.0000, 3.0000, 4.0000, 5.0001, 6.0018, 7.0145, 8.0706, 9.2245, 10.5231,

11.9975, 13.6802, 15.6254, 17.9423, 20.9201,

(17) = 0.0000, 1.0000, 2.0000, 3.0000, 4.0000, 5.0000, 6.0003, 7.0035, 8.0233, 9.0979, 10.2797,

11.6084, 13.1112, 14.8202, 16.7901, 19.1312, 22.1342,

(18) = 0.0000, 1.0000, 2.0000, 3.0000, 4.0000, 5.0000, 6.0001, 7.0007, 8.0062, 9.0351, 10.1299,
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11.3389, 12.6958, 14.2249, 15.9585, 17.9517, 20.3156, 23.3427,

(19) = 0.0000, 1.0000, 2.0000, 3.0000, 4.0000, 5.0000, 6.0000, 7.0001, 8.0013, 9.0102, 10.0503,

11.1662, 12.4016, 13.7848, 15.3385, 17.0950, 19.1102, 21.4958, 24.5459,

(20) = 0.0000, 1.0000, 2.0000, 3.0000, 4.0000, 5.0000, 6.0000, 7.0000, 8.0002, 9.0024, 10.0158,

11.0690, 12.2066, 13.4672, 14.8750, 16.4518, 18.2299, 20.2658, 22.6721, 25.7443,

As r increases, roots become 0, 1, 2, 3, · · ·. In the three cases the largest zeros are

approximately linear, see Figure 2. Note that the zeros are found using Maple code for

polynomials with terms x, x(2), x(3), etc. Moreover we expect the zeros to be real.

The solving of the cubic equation is described by Nickalls, (1993) in details. We have

p3(x) = ax3 + bx2 + c + d, (1)

and in our case, a = 1, and the relation

xN = − b

3
, δ =

√

b2 − 3c/3, h = 2δ3,

produce yN by replacing x in (1) by xN , followed by

cos(3φ) = −yN/h, and φ = arccos(−yN/h)/3,

and

x1 = xN + 2δ cos φ,

x2 = xN + 2δ cos(2π/3 + φ),

x3 = xN + 2δ cos(4π/3 + φ).

For the Poisson case the orthogonal polynomial for the cubic is

p3(x) = x3 − 3x2(1 + θ) + x(2 + 3θ + 3θ2) − θ3,

and solutions are

x = 1 + θ + 2

√

1 + 3θ

3
cos

(

φ +
2πk

3

)

(k = −1, 0, 1)

where

φ =
1

3
arccos





θ

2
√

(1+3θ)3

27



 (θ > 0).

For the case of θ = 1, three roots are 4.1149, 0.1392 and 1.7459 as expected.

9



The essence of the solution to the trigonometrical cubic lies in the equivalence of the

two equations

z3 = Az + B and 4 cos3 φ = 3 cos φ + cos(3φ);

i.e.,
z3

4 cos3 φ
=

Az

3 cos φ
=

B

cos(3φ)
.

6 Concluding remarks

For a classical account of the general properties of zeros of functions see Szegö (1939).

Simple formulas for zeros in general are rare: however, some progress is possible using

symbolic programs, such as Maple, Mathematica, etc. Our study includes equations of

zeros, the equations being of order 40 to 50.

An unusual model emerges, as

zr ∼ A + B
√

r + Cr,

and in some cases this appears to be a linear form. Generalizations of this suggest new

problems in elementary geometry.
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