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1 Introduction

We consider a mixture of discrete distributions defined by s components, namely

Pr(X = x) = π1C1(x; p1
) + π2C2(x; p2

) + · · · + πsCs(x; ps
)

where p
λ

defines the related parameter space. Each component consists of a denumerable set

of point masses with support from the set of non-negative integers 0, 1, · · ·. If the components

relate to the same structures, then we call the mixture homogeneous (all binomial for

example). The mean of the mixture is

∞
∑

x=0

xPr(X = x) = π1C11 + π2C21 + · · · + πsCs1 = µ′1.

In a previous paper (Bowman and Shenton, 2007) we have studied the Psi-function test

statistic T1(n;λ) when there is one component.

Upper and lower bounds are set up for the S1’s random variable distribution. Since

means are involved there is little surprise in the appearance of near normality, measured by√
β1 = µ3/σ

3, and β2 measured by µ4/σ
4 these being moment ratio. Moments are supposed

to exist.

The distribution of the Psi-test statistic T1(n;λ) is adumbrated in the bounds; more

specific information is available from Pearson percentage points based on the assumption

that a Pearson curve (Pearson, 1902) provides a reasonable approximation. The Pearson

percentage point approach uses the first four central moments, and the paper by Bowman

and Shenton (1979a, 1979b) provide an error assessment. It is readily set up for computing.

For the bounds algebraic forms as series are stated.

Our main objective is to test the hypothesis that a given random sample stems from a

defined mixture distribution. The basic distribution is discrete, moments assumed to exist,

there being support from the class of non-negative integers. The test statistic is a vector

of 2s − 1 parameters and is based on the Psi functions. A sample realization of the test

function turns out to be a sample mean, which gives equal weight to all values of the vectors.

It is a new goodness of fit without a problem relating to outliers.

2 Bounds for S1 variables

2.1 Two component Poisson model

The S1 functions are:

S1(x; θ1) = ψ(x+ θ1) − ψ(θ1)

=
1

θ1
+

1

θ1 + 1
+ · · · + 1

θ1 + x− 1
, (θ1 > 0, x = 0, 1, · · ·)
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S1(x; θ2) =
1

θ2
+

1

θ2 + 1
+ · · · + 1

θ2 + x− 1
, (θ2 > 0)

and

S1(x;π) =
1

π
+

1

π + 1
+ · · · + 1

π + x− 1
.

These are all examples of

S1(x;α) =
1

α
+

1

α+ 1
+ · · · + 1

α+ x− 1
, (x = 0, 1, · · ·)

with α ∈ <+.

An upper bound for S1(x;α) is

E

(

x

α

)

=
π1θ1 + π2θ2

α
(α ∈ <+, π2 = 1 − π1).

A lower bound is

E

(

x

x+ α− 1

)

=
∞
∑

x=1

x

x+ α− 1

(

π1
e−θ1θx

1

x!
+ π2

e−θ2θx
2

x!

)

(θ1, θ2 > 0, α > 0).

The right hand-side is a Stieltjies integral and is a generalization of the Stieltjies transform

∞
∑

x=0

e−θθx/x!

x+ z
(<(z) > 0).

See Bowman and Shenton (1989, p.30-32).

A form of the bound follows from writing x
x+α−1 or 1+ 1−α

x+α−1 but this modification only

hold if α > 1.

2.2 Three component Poisson model

The parameters are θ1, θ2, θ3, π1, π2 with π1 + π2 + π3 = 1, and 0 < π1 < 1, 0 < π2 < 1.

The probability function for the mixture is

Pr(X = x) =
3
∑

r=1

πrPr(x; θr),

where Pr(x; θr) = e−θr θx
r

x! , (θr > 0,
∑

πr = 1, 0 < πr < 1, r = 1, 2, 3). An upper bound for

S1(x;α) is
π1θ1 + π2θ2 + π3θ3

α

where α is replace by any one of the five parameters defining the Poisson mixture.

For the lower bounds we compute

∞
∑

x=1

x

x+ α− 1

(

3
∑

r=1

πr

e−θrθx
r

x!

)

.
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Lastly

E[S1(x;α)] =
∞
∑

x=1

(

1

α
+

1

α+ 1
+ · · · + 1

α+ x− 1

)

{

s
∑

r=1

πrPr(x; θr)

}

=
∞
∑

x=1

∫ 1

0
(tα−1 + tα + · · · + tx−1)

{

s
∑

r=1

πrPr(x; θr)

}

dt

=
∞
∑

x=1

∫ 1

0

tα−1(1 − tx)

1 − t

{

s
∑

r=1

πrPr(x; θr)

}

dt

=
∞
∑

x=0

∫ 1

0

s
∑

r=1

tα−1

{

πr(1 − eθr(t−1))

1 − t

}

dt.

The coefficient of πr is
∫ 1

0
tα−1

{

∞
∑

m=1

(−1)m−1θm
r (1 − t)m−1

m!

}

dt =
θr

α
− θ2

r

2α(α + 1)
+

θ3
r

3α(α + 1)(α + 2)
− · · · ,

so

E[S1(x;α)] =
s
∑

r=1

πr

{

θr

α
− θ2

r

2α(α + 1)
+

θ3
r

3α(α + 1)(α + 2)
− · · ·

}

,

a series of alternating terms; note that the general form (sign not important here) is

1

r

(

θr

α

)(

θr

α+ 1

)(

θr

α+ 2

)

· · ·
(

θr

α+ r − 1

)

and the ratio of successive terms is
(

r − 1

r

)

θr

α+ r − 1
→ 0, r → ∞

and so the series converges. See T. J. I. A Bromwich (1926, p.55).

2.3 A four component binomial model

The probability function is

Pr(X = x) =
4
∑

r=1

πr

(

n

x

)

px
rq

n−x
r , (x = 0, 1, · · · , n)

with 0 < pr < 1, qr = 1−pr, r = 1, 2, 3, 4, and the proportions less than unity but summing

to unity. For the bounds we consider

S1(x; pλ) =
1

pλ

+
1

pλ + 1
+ · · · + 1

x+ pλ − 1
, (λ = 1, 2, 3, 4)

S1(x;πλ) =
1

πλ

+
1

πλ + 1
+ · · · + 1

x+ πλ − 1
, (λ = 1, 2, 3)

S1(x;n
+) =

1

n
+

1

n+ 1
+ · · · + 1

x+ n− 1
, (n = 1, 2, · · ·)

S1(x;n
−) =

1

n
+

1

n− 1
+ · · · + 1

n− x+ 1
, (n = 1, 2, · · ·)
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each S1 being zero with x = 0. Upper bounds are

E[S1(x;α)] =
n(π1p1 + π2p2 + π3p3 + π4p4)

α

for the various values of α, excepting

E[S1(x;n
−)] =

n
∑

x=1

x

n− x+ 1

4
∑

r=1

πr

(

n

x

)

px
rq

n−x
r .

The coefficient of πλ is

n
∑

x=1

(

−1 +
n+ 1

n− x+ 1

)

(

n

x

)

px
λq

n−x
λ = −(1 − qn

λ) + (n+ 1)
n
∑

x=1

∫ 1

0
tn−x

(

n

x

)

px
λq

n−x
λ dt

= −(1 − qn
λ) + (n+ 1)

{

− qn

n+ 1
+

∫ 1

0
(pλ + qλt)

ndt

}

= −1 +
1 − pn+1

λ

1 − pλ

= pλ + p2
λ + · · · + pn

λ.

Hence, for the general case of s binomial distributions
s
∑

r=1

πrpr < E[S1(x;n
+)] <

s
∑

r=1

πr

n
∑

t=1

pt
r (s = 1, 2, · · · ;n = 1, 2, · · · ; 0 < pr < 1).

By a modification of the above, we find

E[S1(x;n
−)] =

s
∑

r=1

πr

(

pr +
p2

r

2
+
p3

r

3
+ · · · + pn

r

n

)

providing some interesting inequality in algebra. The architectural symmetry displayed is

surely surprising.

2.4 An additional binomial example

It is interesting to note the binomial case

E[S1(x;np)] = E

{

1

np
+

1

np+ 1
+ · · · + 1

x+ np− 1

}

for a single mixture component; clearly

E[S1(x;np)] <
E(x)

np
= 1.

For a mixture of s binomial component, this becomes

E[S1(x; pλ)] <
s
∑

r=1

πrpr/pλ.

For the lower bound of a mixture of s binomial components we have the expression

n
∑

x=1

x

x+ npλ − 1

s
∑

r=1

πr

(

n

x

)

px
rq

n−x
r , (λ = 1, 2, · · · , s).
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2.5 Negative binomial mixture model

A single component has probability generating function (p+ 1− pt)−k, p > 0, k > 0. For a

mixture of s components

∞
∑

x=1

x

x+ kλ − 1
Ps(x) < E[S1(x; kλ)] <

π1k1p1 + π2k2p2 + · · · + πsksps

kλ

∞
∑

x=1

x

x+ pλ − 1
Ps(x) < E[S1(x; pλ)] <

π1k1p1 + π2k2p2 + · · · + πsksps

pλ

where Ps(x) =
∑s

r=1 πr(pr + 1)−kr
Γ(kr+x)
x!Γ(kr) . Moreover

E[S1(x; kλ)] =
∞
∑

x=1

∫ 1

0

tkλ−1(1 − tx)

1 − t
Ps(x)dt

and the coefficient of πr is

∞
∑

x=1

∫ 1

0

tkλ−1(1 − tx)

1 − t
Ps(x)dt =

∫ 1

0

tkλ−1[1 − (pr + 1 − prt)
−kλ ]

1 − t
dt.

If there is only one component then this reduces to ln(p+1), as mentioned in Bowman and

Shenton (2007). Thus

E[S1(x; kλ)] =
s
∑

r=1

πr

∫ 1

0

tkλ−1[1 − (pr + 1 − prt)
−kλ ]

1 − t
dt.

2.6 Poisson-Poisson distribution

Here the probability function is

Pr(X = x) =
θ(θ + λx)x−1e−θ−λx

x!
(θ > 0, 0 < λ < 1, x = 0, 1, · · ·),

and is due to P. C. Consul (1989).

The mean is θ/(1− λ). Percentage points and bounds for Poisson-Poisson mixtures are

readily set up using the descriptions given in previous paragraphs.

3 Computing bounds for S1(x; α)

3.1 Bounds

S1(x;α) =
1

α
+

1

α+ 1
+ · · · + 1

α+ x− 1
(α > 0)

s component ψ1(x), ψ2(x), · · ·, ψs(x) with mean values ψ̄1, ψ̄2, · · ·, ψ̄s.
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E[S1(x;α)] <
π1ψ̄1 + π2ψ̄2 + · · · + π2ψ̄s

α
,

E[S1(x;α)] >
∞
∑

x=1

x

x+ α− 1
(π1ψ1(x) + · · · + πsψs(x)),

E[S2(x;α)] =
∞
∑

x=1

(

1

α
+

1

α+ 1
+ · · · + 1

α+ x− 1

)

(π1ψ1(x) + · · · + πsψs(x)).

For the 4 component binomial mixture model, parameters are

α → p1, p2, p3, p4, π1, π2, π3.

3.2 Binomial case

For the binomial there are two more cases, the first is

S1(x;n
+) =

1

n
+

1

n+ 1
+ · · · + 1

n+ x− 1
. (n = 1, 2, · · ·)

The second is the case α = n−.

S1(x;n
−) =

1

n
+

1

n− 1
+

1

n− 2
+ · · · + 1

n− x+ 1
, (n = 1, 2, · · ·)

E[S1(x, n
−)] =

n
∑

x=1

(

1

n
+

1

n− 1
+ · · · + 1

n− x+ 1

)

(π1ψ1(x) + · · · + πsψs(x)).

This does not subscribe to an α form.

A Pearson Type I (Beta) appears to be the appropriate distribution to approximate

the distribution of T1 the probability function being C(x− a)p−1(b− x)q−1. The lower and

upper bound determine a and b. In standard measure

p = m′
1(m

′
1 −m2)/m2, q = (1 −m′

1)(m
′
1 −m2)/m2.

4 Illustrative examples and percentage points for the approx-

imate distribution of the random variable S1

4.1 Pearson percentage points for S1

As mentioned in the introduction we have a computer program to assess the percentage

points (eleven basic percentages) of a Pearson curve (Pearson, 1902) based on a first order

differential equation; some readers regard the Pearson curve as a manifold. As approxi-

mating distributions, given the existence of µ′
1, σ, and moment ratios

√
β1 = µ3/σ

3, and

β2 = µ4/σ
4, the system has had wide applications, in part due to the papers (Bowman and
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Shenton, 1979a, 1979b). The reader may refer to Elderton and Johnson (1969). For the

two component Poisson model, percentage points are given in Table 3; the upper bound for

S1 is computed for comparison, quite satisfactorily.

4.2 A two component Poisson model

The data relates to the number of women over 80 years of age reported in the Times (Lon-

don), and is taken from Hasselblad (1969). For the three parameters, moment estimators

are θ1 = 1.10209, θ2 = 2.58164, and π = 0.28705,

Table 1 Data of two component Poisson mixture

Single Poisson Mixture

Observed Observed Expected Expected

death count frequency frequency frequency

0 162 126.79 163.62

1 267 273.47 267.78

2 271 294.92 260.46

3 185 212.04 192.84

4 111 114.34 115.83

5 61 49.32 57.91

6 27 17.73 24.57

7 8 5.46 9.00

8 3 1.47 2.89

9 1 0.35 0.83

χ2
6 = 26.97 χ2

4 = 1.52

The second column refers to the data frequency, the third to a Poisson model, and the

forth to a two component Poisson model, the latter clearly indicating a good fit. The new

test functions relating to θ1, θ2, π will indicate whether the assumption regarding the basic

model is justified. Note that sample size N = 1096. Our computer output follows.

Table 2 Values of test functions
θ1 θ2 π

Parameter value 1.10209 2.58164 0.28705

E(S1) 1.25050 0.63305 3.68252

σ 0.05035 0.02578 0.14981√
β1 -0.03500 -0.03053 -0.03858

β2 2.99850 2.99842 2.99854

Test value T̄1 0.02922 0.02362 0.04025

Upper bound 1.957 0.835 7.514
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The skewness and kurtosis, moment ratio estimators suggest normality or Pearson Type I

distribution. The values of T̄1(θ1), T̄1(θ2), T̄1(π) are approximately 3/102, 2/102, and 4/102

respectively. These being scale and location free indicate acceptance of the basic model

structure. Note that sample size is scarcely an issue.

Table 3 Percentage points of S1

% 1 2.5 5 10 25 50 75 90 95 97.5 99

S1(x; θ1) 1.135 1.153 1.168 1.186 1.216 1.250 1.284 1.315 1.334 1.350 1.369

S1(x; θ2) 0.574 0.583 0.591 0.600 0.616 0.633 0.650 0.666 0.676 0.684 0.694

S1(x;π) 3.338 3.392 3.437 3.491 3.581 3.682 3.783 3.875 3.931 3.979 4.036

4.3 A three component Poisson mixture

The parameters of the mixture are θ1, θ2, θ3, and π1, π2. Everitt and Hand (1981) produced

a random sample of N = 500 from the mixture θ1 = 0.5, θ2 = 3.0, θ3 = 6.0, π1 = 0.3,

π2 = 0.3.

Pr(X = x) =
3
∑

r=1

πr
e−θrθx

r

x!
(θr > 0,

∑

πr = 1, 0 < πr < 1, r = 1, 2, 3).

The example is given to show whether the five test functions will indicate rejection of

base hypotheses. Here is the computer output.

Table 4 Three component Poisson Model (N = 500)

θ1 θ2 θ3 π1 π2

Parameter value 0.5000 3.0000 6.0000 0.3000 0.3000

E(S1) 6.9990 0.7660 0.3812 6.4372 2.3131

σ 0.2277 0.0651 0.0385 0.3342 0.3342√
β1 -0.0371 -0.0314 -0.0286 -0.0377 -0.0377

β2 2.9953 2.9952 2.9952 2.9952 2.9952

Test values T̄1 0.4338 0.2553 0.2049 0.4787 0.4787

ml estimators 0.1430 2.9210 7.1650 0.1580 0.6040

E(S1) 6.9990 0.7660 0.3812 6.4372 2.3131

σ 0.6110 0.0661 0.0335 0.5609 0.1973√
β1 -0.0402 -0.0324 -0.0275 -0.0403 -0.0391

β2 2.9954 2.9953 2.9952 2.9954 2.9954

Test values T̄1 0.1574 0.0320 0.0322 0.1526 0.0771

Comment: From the moment ratios
√
β1, β2, we may assume the approximating distribu-

tion to be near normal. The standard deviates associated with the maximum likelihood
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estimators θ̂1, θ̂2, θ̂3, π̂1, π̂2 are no longer small and acceptable. See the list line in the

computer output. The rejection may be traced to

(i) sample size not large enough,

(ii) estimation procedures,

(iii) error in assumption regarding the basic model.

(iv) There is also a discrepancy it should noted. By random generation (Everitt and

Hand, 1981) the parameters are θ1 = 0.5, θ2 = 3.0, θ3 = 6.0, π1 = 0.3, and π2 = 0.3.

Maximum likelihood estimators are θ̂1 = 0.143, θ̂2 = 2.921, θ̂3 = 7.165, π̂1 = 0.158, and

π̂2 == .604. In particular, for θ1, π1 and π2 can not be ignored, so the sample is not a good

representative of the population assumed.

A graph of the population distribution against that estimated by maximum likelihood

is shown in Fig. 1. There is excellent agreement for x > 4, but disagreement for x < 4,

particularly for 2 < x < 4. Can this be explained? Note the proportion in the population

is 0.3; the corresponding maximum likelihood proportion is 0.15. Again 0.3 for population,

0.6 by maximum likelihood. Again in the population θ1 = 0.5, whereas the maximum

likelihood value is 0.14. Taking into account these discrepancies supports the hypothesis

that the maximum likelihood fit is only moderately acceptable. From Table 4 and values

of the skewness (
√
β1) and kurtosis (β2) for the standardized test statistic T̄1, approximate

normality is suggested, the highest value being 0.16 for θ̂1. Note that for the 2 component

Poisson mixture, corresponding values of T̄ are one tenth of this value.

population
ml estimators

 

0

0.05

0.1

0.15

0.2

P
r(

x)

2 4 6 8 10 12 14 16x

Figure 1: 3 component mixture of Poisson model
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4.4 A four component binomial model

Everitt and Hand (1981, pp. 92-93) constructed a 4 component binomial mixture for a

sample of N = 200 from the mixture θ1 = 0.1, θ2 = 0.2, θ3 = 0.6, θ4 = 0.9, π1 = 0.2,

π2 = 0.2, π3 = 0.2, and n = 30.

The 200 sample values were

Table 5 Four component binomial mixture N = 200

7 25 27 27 24 25 12 6 29 5

7 29 6 2 24 15 15 27 4 5

26 28 5 16 29 7 28 28 27 29

10 28 29 30 1 30 5 28 7 2

3 28 28 22 21 30 27 4 6 25

2 28 16 7 2 2 17 3 3 3

29 27 4 3 1 23 23 28 28 27

25 18 21 28 26 22 28 16 26 29

19 20 24 17 3 17 26 18 6 28

28 28 29 6 27 4 27 20 28 5

30 29 29 27 26 3 10 28 22 7

29 28 24 28 12 22 2 27 5 28

28 14 13 27 22 3 7 7 28 3

8 2 27 5 4 29 29 2 1 3

6 1 3 6 21 17 6 10 29 4

1 25 0 7 28 29 28 28 29 1

28 28 26 28 24 8 19 28 25 3

17 19 10 0 9 15 15 26 20 26

6 27 22 2 27 14 14 4 9 28

27 28 28 3 28 28 27 24 27 27

Table 6 Frequency distribution for Table 4.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Freq. 2 6 9 13 7 7 9 9 2 2 4 0 2 7 3 4

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Freq. 3 5 2 3 3 3 6 2 6 6 8 19 34 16 4

From Table 6 there is evidence of 3 peaks in the data. Computer output now follows in

three parts displaying the values of T̄1 (test statistics being location and scale free) for the

seven parameters (θ1, θ2, θ3, θ4;π1, π2, π3). Using

(i) the base set of these from the distribution sampled,

(ii) maximum likelihood estimators,
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(iii) moment estimators.

Table 7 four component Model (n = 30, N = 200)

θ1 θ2 θ3 θ4 π1 π2 π3

Parameter value 0.1000 0.2000 0.6000 0.9000 0.2000 0.2000 0.2000

E(S1) 12.7008 7.6278 3.9726 3.2339 7.6278 7.6278 7.6278

σ 3.4557 2.0526 1.0521 0.8525 2.0526 2.0526 2.0526√
β1 -0.0368 -0.0372 -0.0372 -0.0370 -0.0372 -0.0372 -0.0372

β2 2.9860 2.9860 2.9861 2.9861 2.9860 2.9860 2.9860

Test values T̄1 0.0284 0.0503 0.0980 0.1182 0.0503 0.0503 0.0503

ml estimators 0.0909 0.2197 0.6052 0.9123 0.1832 0.1780 0.1756

E(S1) 13.7827 7.2495 4.0443 3.3004 8.1879 8.3500 8.4303

σ 3.9113 2.0219 1.1053 0.8952 2.2923 2.3391 2.3623√
β1 -0.0353 -0.0359 -0.0363 -0.0363 -0.0358 -0.0358 -0.0358

β2 2.9859 2.9860 2.9860 2.9860 2.9860 2.9860 2.9860

Test values T̄1 0.0054 0.0083 0.0123 0.0139 0.0076 0.0075 0.0074

Moment est. 0.0670 0.1777 0.5694 0.9090 0.0959 0.2488 0.1687

E(S1) 17.6784 8.3631 4.1832 3.3168 13.2003 6.6982 8.6698

σ 5.0674 2.3522 1.1472 0.9012 3.7603 1.8699 2.4413√
β1 -0.0349 -0.0357 -0.0362 -0.0363 -0.0352 -0.0359 -0.0356

β2 2.9859 2.9860 2.9860 2.9860 2.9859 2.9860 2.9860

Test values T̄1 0.0077 0.0060 0.0032 0.0021 0.0072 0.0052 0.0061

Remarks: (i) Notice that the skewness values are small, and that β2(µ4/µ
2
2) is near to 3

suggesting normality; (ii) the standard deviates T̄1 are less than 1/10 for maximum likeli-

hood and moment approach, but increase when the theoretical values are used; and (iii) the

test function results give some support for accepting the validity of the basic assumptions

that sampling from a binomial mixtures.

Note that closeness of the means of the component is an obvious warning of estima-

tion procedure problems. In this connection, Matusita introduced the concept of distance

between discrete distributions (Matusita, 1955). For example, if pq(x) and ps(x) are two

discrete distributions then the distance between them is defined as

||D||2 = [
∑

(
√

pq(x) −
√

ps(x))
2]

1

2 .

The affinity is
(

∑

√

pq(x)
√

ps(x)
)

1

2

.

For Poisson distributions, the affinity is

e
1

2
(
√

θ1−
√

θ2)2
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involving square roots. For θ1 = 1, θ2 = 9, closeness depends on 1 and 3, not 1 and 9. For

examples, see Bowman and Shenton (2004).

5 Some mathematical forms

In some cases mathematical forms may be found for the moments of S1 and similar terms.

For a binomial variable, 0 < p < 1, n = 1, 2, · · · ,

E[S1(x, n
+)] = E

{

1

n
+

1

n+ 1
+ · · · + 1

n+ x− 1

}

=

∫ 1

0

(1 − (pt+ q)n)tn−1

1 − t
dt

E[S1(x, p)] =

∫ 1

0

(1 − (pt+ q)n)tp−1

1 − t
dt

and

E[S1(x, n
−)] = E

{

1

n
+

1

n− 1
+ · · · + 1

n− x+ 1

}

=

∫ 1

0

(qt+ p)n − tn

1 − t
dt = p+

p2

2
+ · · · + pn

n
.

Similar expressions can be found for S2, S3, · · · . In particular,

E[Sj(x, n
+)] = E

{

1

nj
+

1

(n+ 1)j
+ · · · + 1

(n+ x− 1)j

}

=
1

(j − 1)!

∫ 1

0

ln(1
t
)(1 − (pt+ q)n)tn−1

1 − t
dt

E[Sj(x, p)] = E

{

1

pj
+

1

(p+ 1)j
+ · · · + 1

(p+ x− 1)j

}

=
1

(j − 1)!

∫ 1

0
tp−1(ln

1

t
)j−1 (1 − (pt+ q)n)

1 − t
dt.

The generating function of S1(x; k) for the negative binomial distribution is

1

ln(p+ 1)

∞
∑

x=1

(p+ 1)−k

(

p

p+ 1

)x Γ(k + x)

x!Γ(k)

(

1

k
+

1

k + 1
+ · · · + 1

k + x− 1

)

tx

= (p+ 1 − pt)−k[1 − ln(p+ 1 − pt)−k],

the logarithmic term suggesting the deviation from normality when k → ∞.

6 Conclusion

The random variable ψ(k + x) − ψ(k), with k > 0, x = 0, 1, · · ·, has a distribution if the

distribution of x is known; cases when x is binomial, Poisson, negative binomial have been

13



considered. The test function T1(n; k) has arisen from the sample available and is the mean

of S1(x; k); higher moments therefore follow the pattern of those for the mean. The single

component case has been studied by Bowman and Shenton (2007). Properties for a single

component apply to mixtures since these are linear in the components.

John (1970) treats the two component mixture and asymptotics for moment estimators.

The book by Johnson, Kotz and Kemp (1981) has an excellent account of mixtures (Chapter

8) and a treatment of the calculus of probabilities. We believe the book is mainly the work

of Dr. A. Kemp (see Read (2004)). An early account of discrete distributions is given in

Johnson and Kotz (1969). Karlis and Xekalaki (2005) give an extensive review of literature

on Poisson mixtures. (Note here, Poisson is used as a general descriptive).
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