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Abstract

Simulation studies provide four moment approximating distributions to each of the

four parameters of a beta distribution (Pearson Type I). Two of the parameters refer to

origin and scale, two to shape (skewness and kurtosis). Type I random number generator is

checked out, and the stability of moments of random samples of size n over cycles; particular

attention is paid to shape parameter moments. In Type I region of validity (referred to

skewness and kurtosis), moment methods become unstable in the neighborhood of Type III

(χ2) line, and ultimately abort. Thus extremely large variances and large higher moments

arise. We probe the cause of this phenomenon. Simulation studies are turned to since

alternative power series methods are forbiddingly complicated. However, use is made of the

delta method to provide asymptotic variances of the estimators, and asymptotic variances

of percentage points of the basic distribution. An account of work on the subject by K.

Pearson, some of it a century ago, is given. In particular an important paper by Pearson

and Filon provides some estimates of probable errors of moment parameter estimators such

as the basic distribution parameters, the mode, the skewness and others. The heated

controversy between Pearson and Fisher is considered.

2000 Mathematics Subject Classification: 62E20.

Keywords: Beta density; Delta method; Kurtosis variance; Moments; Monte Carlo simula-

tion; Percentage points; Skewness variance; Variance of percentage points.
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1 Introduction

Estimating the four parameters of the density

B(x; a, b; p, q) = c(x− a)p−1(b− x)q−1 (a < x < b; p, q > 0)

is perhaps the most complicated of all three main Pearson types which include I or Beta,

IV, and VI. The regions of validity are shown in Figure 1, along with density types.
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Figure 1: Pearson type distributions over β plane

Type III line is 2β2 − 3β1 − 6 = 0. Circles represent the cases studied.

We consider moment estimators (a∗, b∗; p∗, q∗) for the four parameters (a, b; p, q). In

particular

p∗ =
r∗

2

{

1 − (r∗ + 2)
√
b1√

D∗

}

, (
√

b1 = m3/m
3/2
2 , b2 = m4/m

2
2,ms =

∑

(xi − x̄)s/n)

q∗ =
r∗

2

{

1 +
(r∗ + 2)

√
b1√

D∗

}

,

b∗ − a∗ =
√
m2

√
D∗/2,
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a∗ = m′
1 − (b∗ − a∗)p∗/(r∗),

r∗ = 6(b2 − b1 − 1)/(6 + 3b1 − 2b2)

D∗ = (r∗ + 2)2b1 + 16(r∗ + 1).

(When asterisks are excluded, estimators take their population values; for example
√
b1 →√

β1, p
∗ → p, etc.)

It will be seen that the estimators all involve the second, third, and forth central moments

m2,m3,m4 along with the mean m′
1. Thus to study the moments µs(t

∗), (s = 1, 2, 3, 4), t∗

being one of the estimating parameters, in the form

µs(t
∗) ∼ T0 + T1/n+ T2/n

2 + · · · ,

n being the sample size, would involve four dimensional Taylor series in the deviates

ξs = m′
s − µ′s (s = 1, 2, 3, 4)

where here we revert to non-central moments. The reason for this is that using expectations,

through independence

E exp {α1ξ1 + α2ξ2 + · · ·} =

[

E

{

exp

(

d1(x− µ′1)

n
+
d2(x

2 − µ′2)

n
+ · · ·

)}]n

,

whereas this breaks down for

E{exp[α1(m1 −Em1) + α2(m2 −Em2) + · · ·]}.

Similarly, although p∗ and q∗ are functions of
√
b1, b2 only, there is no ready answer to

the problem of expanding

E{exp[α1(
√

b1 −E
√

b1) + α2(b2 −Eb2)]}.

We point out that the problem is much simpler when the end-points a, b are known and

taken to be a = 0, b = 1. Here, p and q have simple moment estimators based on the mean

and variance, and Taylor series developments are readily set up (Bowman and Shenton,

1992). The maximum likelihood approach is given by Lau and Lau (1991).

In summary, so far, it is clear that a mathematical analysis using Taylor series in de-

scending power of n, is out of reach even allowing for approaches assisted by mathematical

language packages (Derive, Maxima, Maple, etc). The reader may glance at first order

terms in the moments of the parameters given in the appendix.

The aim being to throw some light on the response of the moment estimators of

the parameters to the many types of samples thrown up in random sampling
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from specified basic Beta forms, we are compelled to resort, in the main to

simulation studies.

There is a historical component in our study. About, a century ago Karl Pearson (1857-

1936) in 1894 and 1895, introduced his system of curves in connection with the mathematical

theory of evolution. At the time the normal distribution had no rivals, so that faced with

skewness in natural measurements (for examples (1894) (i) measurements of 998 specimens

(pawns) from penultimate to hindmost tooth on the carapace, (ii) variation in the number of

Mullerian glands in the fore-legs of 2000 swine), Pearson resorted to a mixture of two normal

components to allow for skewness contamination. When this approach failed he considered

many components as a whole producing Bell-shaped data histograms conceptualized as

stemming from a simple differential equation

1

y

dy

dx
=

(x+ a)

Ax2 +Bx+ c
. (y being a density)

In the solutions, a discriminant arises defining the main types of curves and transition

types.

Three years later, Pearson and Filon (1898) produced a long paper ”On the probable

errors of frequency constants and on the influence of random selection on Variation and

Correlation.” The term probable error is no longer in use, but refers to a deviate on the

normal distribution corresponding to 25%; including the negative deviate, 50% is entailed.

In terms of normality then it may be interpreted as 0.6745σ. This study of Pearson and

Filon is quite difficult to understand; not surprisingly it has for the most part been ”ignored”

or overlooked. It appears to be deriving first order terms in maximum likelihood estimation

somewhat earlier than the studies of R. A. Fisher (1890-1962). Fisher and Pearson had a

difference of opinion in the approach to estimation, in particular relating to moments and

maximum likelihood (m.l.) in the case of the Beta distribution (referred to as an example

in the sequel). There was a quibble about numerical accuracy (8 or so decimal digits were

used in the computations), and both parties were insecure when asymptotics were involved;

here asymptotic efficiency related to the notion that m.l. estimators had less variance than

other estimators. However this problem was only lightly touched upon. To gain a flavor of

the conflict, Pearson (1936) remarks

”What is the practical value of showing that the distribution of a statistical parameter

may be approximately represented by a normal curve when n > 40, 000 when you are

seeking what happens when n = 400?” He continues, asking about a statement such as (in

our notation)

E(standard deviation) ∼ σ0 + σ1/n + σ2/n
2 + · · · (n → ∞)

If truncated to two terms, how large must n be for acceptance? With this background,

we consider

5



(i) validity of the random number generator for Beta distributions.

(ii) For various sample sizes (n = 100−5000) the cycle length needed to produce con-

sistent (not in the statistical sense) estimates of the first four moments of the 4 parameters

a, b, p, q.

(iii) Having satisfied (ii), we tabulate several cases of moments for the moment

estimators, including two of special interest since they spring from papers of Pearson-Filon

(1898) and Pearson (1902). Let it be noted that Pearson (1936) refers to the Koshal-

Fisher paper, which in fact does not exist. It happened partly through correspondence that

Pearson’s attention became focused on Koshal’s (1933) paper in JRSS, the subject being

the improvement of estimation by moments by the method of maximum likelihood. This

apparently acted as a lighting rod to Pearson who discovered that the study owed a great

deal to Fisher. Thus Pearson referred to the Koshal paper as the Koshal-Fisher paper.

(iv) Checks on the simulated values of the moments of c∗ = 6 + 3b1 − 2b2,
√
β1, and

β2, using Taylor series expansions and Padè approximation.

(v) Dominant asymptotics for moments using the delta method.

2 Notation and Formulas with Comments

First of all, it is convenient at this point to briefly define the fundamental entities used in

the study.

Type I density:

(1) End points 0,1:

B(x; p, q) =
Γ(p+ q)

Γ(p)Γ(q)
xp−1(1 − x)q−1 (0 ≤ x ≤ 1; p, q > 0)

(2) End points a, b; b > a, and shape parameters p, q:

B(x; a, b, p, q) =
Γ(p+ q)

Γ(p)Γ(q)

(x− a)p−1(b− x)q−1

(b− a)p+q−1
(a ≤ x ≤ b; p, q > 0)

Moments for the general case: (Johnson and Kotz, 1970)

Mean:

µ′1 = a+ (b− a)p/(p+ q)

Variance σ2:

µ2 = (b− a)2pq/[(p+ q)2(p+ q + 1)]

Skewness:
√
β1;

µ3

µ
3/2
2

=
2(q − p)

√

p−1 + q−1 + (pq)−1

p+ q + 2
= α3
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Kurtosis β2;
µ4

µ2
2

=
3(p+ q + 1)[2(p + q)2 + pq(p+ q − 6)]

pq(p+ q + 2)(p+ q + 3)
= α4

Parameters:

p, q =
r

2

{

1 ∓ (r + 2)

√
β1√
D

}

b− a =
√
µ2

√
D

a = µ′1 − (b− a)p/(p+ q)

where

r =
6(β2 − β1 − 1)

6 + 3β1 − 2β2
, D = (r + 2)2β1 + 16(r + 1).

Region of validity:
{

β2 − β1 − 1 > 0 (Boundary L1),

2β2 − 3β1 − 6 < 0 (Boundary L2).

Approximations (used in the text)

Symmetry:
√
β1 = 0

p = q = r/2 = 3(β2 − 1)/(6 − 2β2) (1 < β2 < 3).

Asymmetry:

(1) Neighborhood of L1

p, q ∼ r

2

{

1 ∓ 2
√
β1√

4β1 + 16

}

.

(2) Neighborhood of L2 and
√
β1 > 0.

{

p ∼ 4r(r + 1)/[β1(r + 2)2] (r → ∞),

q ∼ r.

Comments:

(1) In the vicinity of L1, the distributions are U-shaped, the skewness depending on

p− q.

(2) In the region ”midway” between L1 and L2 the distributions are J or inverted J-

shaped (interchanging p and q if
√
β1 < 0).

(3) In the vicinity of L2, the distributions are bell shaped (single mode).

Comments on the distribution

The Type I Pearson distribution in the general case involves four parameters (2 termi-

nals, 2 indices) and is valid over a 2-dimensional infinite space. Infinite varieties of structure

are therefore possible. Proximity of the skewness and kurtosis to transition regions (Type III

and Type VI), is an important driving force in the approximation procedure. For example

with
√
β1 = 1 (Table 1), q increases as the line L2 is approached.
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Table 1. Response of Parameters p and q to nearness to L2 Line

β1 = 1

β2 4.00 4.20 4.30 4.40 4.45 4.49 4.50

p 1.82 2.41 2.81 3.32 3.63 3.92 4.00

q 10.18 19.59 31.69 58.68 143.37 743.08 ∞

Series and Continued Fractions (c.f.)

We include this subject since rational functions are frequently better algorithms to turn

to in the face of divergence tendencies.

If f(x) = c1x+ c2x
2 + · · ·, then the c.f. is

a1x

1+

a2x

1+
· · · =

a1

1/x+

a2

1+

a3

1/x+

a4

1+
· · ·

where

a2s = ψs+1φs−1/ψsφs, a2s+1 = −φs+1ψs/ψs+1φs (s = 1, 2, · · ·)

and a1 = φ1, φ0 = 1, ψ1 = 1, φs = |c1, c3, · · · , c2s−1|, ψs = |c2, c4, · · · , c2s−2|, here diagonal

notation is used for a determinant.

Stieltjes (1918, 425-429) showed that for a power series

c0
n

− c1
n2

+
c2
n3

− c3
n4

+ · · ·

there is the c.f.

a1

n+

b1/a1

1+

a2/b1
n+

b2/a2

1+

a3/b2
n+

b3/a3

1+
· · · if valid

where as = As/As−1 and bs = Bs/Bs−1, and in diagonal notation

As = |c0, c2, · · · , c2s|, Bs = |c1, c3, · · · , c2s+1|,

A0 = B0 = 1 (A1 = c0, B1 = c1).

For example, A2 = c0c2 − c21.

If the first coefficient in the series is changed to c0 + µ, then the modified determinants

become
{

A∗
s = As + µCs−1 if Cs = |c2, c4, · · · , c2s|,

B∗
s = Bs (C0 = 1).

An example of this is the c.f. for E(2b2 − 3b1 − 6) in contrast to that for E(2b2 − 3b1).

Also see for example, Bowman and Shenton (1989), Wall (1948), Jones and Thron (1990)

for further properties.
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3 Random Number Generator for the Beta Distribution

3.1 Basics

First of all we carry out a check on the random number (r.n.) generator package (G05FEF,

NAG Fortran Library Routine). Runs of over 106 r.n. are shown (Table 2).

Table 2. Validity of r.n. Generator for Type I Distribution

N β1 β2 p q

106 G 0 1.1 0.0789 0.0789

E 0.0008 1.1007

2.5 × 106 G 0.0 1.5 0.5000 0.5000

E 0.0973 1.4720

106 G 0.36 2.04 0.4680 0.8920

E 0.4128 2.0421

106 G 1.0 2.1 0.0345 0.0905

E 0.9991 2.0979

5 × 106 G 1.0 4.2 2.4075 19.5925

E 1.0007 4.2035

106 G 2.0 3.1 0.0218 0.0816

E 2.0002 3.1000

106 G 3.0 4.1 0.0152 0.0730

E 3.0064 4.1058

Comment: G = given population value, E = r.n.generator results. On the whole quite

satisfactory. However the case β1 = 0, β2 = 1.5 compared to β1 = 0, β2 = 1.1 is rather

surprising. Mean and Variance are taken to be zero and unity respectively.

It is to be expected that when complicated functions are simulated, approximants will

deteriorate somewhat; for example, p∗, q∗, a∗, and b∗ are all anything but simple structures

in terms of the basic statistics, m′
1, m2,

√
b1 and b2.

In view of our interest in the historical use of the Type I distribution, we give (Table 3)

simulations of two data sets. (i) A set given by Pearson (1895); we direct attention to the

results for the estimators b∗ and q∗. (ii) A set given by Pearson and Filon (1898).
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Table 3. Two Examples

(a) µ′1 = 3.9832, µ2 = 5.5599, β1 = 0.662858, β2 = 3.3362804

a = 0.277847, b = 16.931730, p = 1.69751993, q = 5.93198896, Pearson (1936)

n µ′∗1 σ∗
√
β
∗

1 β∗2 cycles

500 a∗ 0.2949 0.2641 -0.9195 5.2222 9998

b∗ 17.8270 14.7234 53.7288 3870.0172

p∗ 1.7022 0.4160 1.7652 9.6632

q∗ 6.7555 12.7718 54.8813 3930.9467

750 a∗ 0.2898 0.2156 -0.6796 3.9952 7500

b∗ 17.2982 3.8956 5.6047 86.1983

p∗ 1.7005 0.3304 1.2400 6.0619

q∗ 6.2270 3.0012 6.4776 104.1592

1000 a∗ 0.2871 0.1858 -0.5937 4.0990 5000

b∗ 17.1748 3.0288 5.0712 90.9073

p∗ 1.6993 0.2811 1.1501 6.6421

q∗ 6.1628 2.3231 7.1879 148.9588

2000 a∗ 0.2870 0.1279 -0.3177 3.1289 5000

b∗ 16.9878 1.7760 1.0588 5.3589

p∗ 1.6918 0.1881 0.6239 3.7720

q∗ 5.9915 1.2741 1.2977 6.3947
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(b)
√
β1 = 0.5091, β2 = 3.1108, c = 6 + 3β1 − 2β2 = 0.5559

a = −0.8182, b = 17.2264, p = 4.7837, q = 15.2014, Pearson and Filon (1898)

n µ′∗1 σ∗
√
β
∗

1 β∗2 cycles 25% 75%

1000 a∗ -0.8060 0.5384 -1.1788 5.2433 4865 -1.0882 -0.4140

b∗ 27.0080 2.7646 196.1832 5419.4640

p∗ 4.9345 1.8952 2.0742 9.7576 3.5918 5.6915

q∗ 35.7296 440.6835 57.2115 3609.2558

c∗ 0.6023 0.2477 -0.1803 2.5314 0.4285 0.7859√
β1

∗
0.5049 .0728 0.1047 2.9502 0.4547 0.5536

β∗2 3.0892 0.1970 0.2878 2.7678 2.9453 3.2215

2000 a∗ -0.8236 0.4017 -1.0447 4.8757 4978 -1.0418 -0.5339

b∗ 20.7770 52.7646 46.5267 2565.8943

p∗ 4.9131 1.3896 1.8888 8.9112 3.9250 5.4913

q∗ 22.3520 104.8210 45.5275 2475.9034

c∗ 0.5752 0.1907 -0.2607 2.8574 0.4483 0.7119√
β1

∗
0.5078 0.0525 0.1127 2.9738 0.4717 0.5428

β∗2 3.1033 0.1491 0.2954 2.8512 2.9955 3.2023

Comment: In both cases, the higher moment parameters
√
β1 and β2 are extremely fragile.

However the mean and standard deviation are fairly reliable. Out of 5000 cycles, 135

samples had c values outside the Type I region for n = 1000, and 22 samples for n = 2000.

(c) n−1 terms of Covariances

a∗ b∗ p∗ q∗ σ(n = 2000)

a∗ 307.0093 -2824.3282 -915.6832 -4949.4605 0.3918

b∗ -0.8032 40271.7541 9650.1311 65369.7048 4.4873

p∗ -0.9735 0.8958 2881.8598 16617.3212 1.2004

q∗ -0.8601 0.9919 0.9425 107856.1934 7.3436

Values in the lower half triangle are correlations.

3.2 Stability and Closeness of c = 6 + 3β1 − 2β2 to Zero

Simulations present problems because the Beta distribution responds differently to (a) 0 <

p < 1, 0 < q < 1. (b) 0 < p < 1, q > 1 or 0 < q < 1, p > 1, and (c) p > 1, q > 1, when

seeking its inversion. In addition sampling from the Beta in the neighborhood of the gamma

line 2β2 = 3β1 + 6, is dangerously near to chaos. For in this case the moment parameter

r∗ → ∞ responding to the denominator 6 + 3β1 − 2β2.

Two examples of simulating the moments of q∗ (Table 4) bring out clearly a contrast in

results due to the different values of c = 6+3β1−2β2. As c (or c∗) becomes smaller sampling
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is likely to pick up values of c∗ > 0 but small (if c∗ < 0, the run is excluded), so that if√
b1 > 0 then q∗ is r∗ approximately, and r∗ has denominator c∗ (see the approximation in

section [2]).

Table 4. Variability Over Cycles

(a) β1 = 0.8, β2 = 3.0, a = 0, b = 1, p = 0.7601, q = 2.2319, c = 2.4, n = 50

Cycle E(a∗) σ(a∗)
√
β1(a

∗) β2(a
∗)

2000 0.00024 0.0087 -0.2538 3.0064

4000 0.00026 0.0086 -0.2606 3.0827

6000 0.00029 0.0086 -0.2447 3.0686

8000 0.00033 0.0086 -0.2574 3.0675

10000 0.00028 0.0086 -0.2545 3.0704

(b)
√
β1 = 1.0, β2 = 4.2, a = 0, b = 1, p = 2.4075, q = 19.5925, c = 0.6, n = 1000

Cycle E(q∗) σ(q∗)
√
β1(q

∗) β2(q
∗)

913 174.3 3932 30.1 907

1826 116.5 2831 40.6 1693

2734 87.0 2314 497 2534

3632 74.6 2010 57.1 3352

4542 74.4 1866 52.4 3628

Cycle E(p∗) σ(p∗)
√
β1(p

∗) β2(p
∗)

913 2.2503 0.4965 0.7804 3.4104

1826 2.2512 0.5060 0.9131 3.9460

2734 2.2456 0.5099 0.8872 3.8601

3632 2.2394 0.5048 0.8921 3.9828

4542 2.2396 0.5058 0.9081 3.9791

Out of 5000 cycles, 458 samples gave c values outside the Type I region.

Karl Pearson did observe that one or other of p∗, q∗ could be excessively large (in the

context of estimation of parameters), but suggested, rather vaguely that this characteristic

might not have much effect on the ”shape” of the distribution. We shall return to this point

later (section [6]).

Note that there is a non-negligible region for which c∗ is small (or negative) in which

case q∗ will be large. Contrast this aspect with Type III sampling for which the ”region”

degenerates to a line, and c∗ is no longer involved in estimation.

3.3 Checks on the Simulations using c∗ = 6 + 3b1 − 2b2

Internal checks on simulations, such as repeated cycle consistency, are not completely reli-

able. An alternative is to develop Taylor series, provided the fundamental deviates involved,
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in expectation can be evaluated. It would appear to be obvious to attempt Taylor series for

p∗, and q∗ in terms of b1−Eb1 and b2−Eb2. However the joint moments of the deviates are

excessively complicated since they involve moment parameters as ratios. The estimators a∗

and b∗ in terms of 4-dimensional Taylor series are also not attractive.

So we turn to c∗ which we studied (Bowman and Shenton, 1975) in Taylor series de-

velopments, purely from interest in the basic algorithm used. The report considers four

moments of
√
b1, b2, and c∗, mainly from Pearson distributions. At that time, the series

involved terms to n−8 for
√
b1, and terms to n−6 for b2 and c∗. Using a criteria for usage

by direct summation, ”safe sample sizes” are included. For the Pearson system the study is

confined to the Type I region including the Type III line; asymptotics tend to become fragile

tools in the Type IV and Type VI regions. If the sample size involved in any particular

case is within the ”safe” value, direct summation is acceptable; otherwise resort to rational

fractions (ratios of polynomials in n, the sample size) in the form

nq0
n+

p1

1+

q1
n+

p2

1+

q2
n+

· · ·

for the mean, with obvious modifications for higher moments (for example, drop the initial

n component for the variance). Examples are shown in Table 5.

See the notation section for remarks on continued fractions.

Table 5. Moments of c∗ by Simulation and Taylor Series

(a) n = 100,
√
β1 = 0.6, β2 = 2.04, p = 0.4680, q = 0.8920, c = 3

E(c∗) σ(c∗)
√
β1(c

∗) β2(c
∗) cycle

Simulation 3.1714 0.2498 -0.1506 3.4075 10000

Series 3.0109 0.2488 -0.0329 3.3691

(b) n = 100,
√
β1 = 0, β2 = 1.5, p = q = 0.5, c = 3

E(c∗) σ(c∗)
√
β1(c

∗) β2(c
∗) cycle

Simulation 3.0968 0.1551 -0.3089 3.2932 25000

Series 3.0102 0.1632 -0.3582 3.2856

(For this case Robert Byers (CDC) used the SPlus package over 5100 cycles for n = 200

and found E(c∗ = 3.005, against our series and Padé value 3.0050498. Dr. Byers also gave

σ(c∗) = 0.0611 compared to our approximation 0.0559 using linear interpolation in the 1975

tabulation.

(c) n = 2000, β1 = 0.259182, β2 = 3.11082, p = 4.7837, q = 15.2014, c = 0.5559

E(c∗) E(b1) E(b2) cycle

Simulation 0.5752 0.26058 3.1033 4978

Series 0.5689 0.26058 3.1064
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Remarks: On the whole one can have confidence in the random number generator and its use

in simulation studies. One does note the surprising discrepancy in the skewness estimates,

in case (a). It could be related to the fact that the sampled distribution in U-shaped. As

against this explanation case (b) is noticed - here however we have a symmetrical U-shape.

Nonetheless case (c) is somewhat disturbing.

(d) n = 1000, β1 = 1.0, β2 = 4.2, p = 2.4075, q = 19.5925, c = 0.6

E(c∗) σ(c∗)
√
β1(c

∗) β2(c
∗) cycle

Simulation 0.7626 0.3418 -0.1096 2.4092 4542

Series (Padè) 0.6568 0.4889 -1.3965

{

7.6830

7.6060

Remarks: The Padè approximants are based on Taylor series for the moments to order n−6

modified as rational fractions to reduce apparent divergence (Bowman and Shenton, 1975).

The β-point is near the Type III line; note that in this case the value of c on the L1 line

(β1 = 1) is 5, so that 0.6/5 = 0.12. Thus this case is likely to have large variances for b∗,

and q∗. From Table 8 for β1 = 1, β2 = 4.25, the n−1 variances of p∗, and q∗ are 882 and

1158487 respectively.

(e) Padè Approximants, n = 1000, β1 = 1.0, β2 = 4.2

Uses terms to µ′1(c
∗) µ2(c

∗) µ3(c
∗) µ4(c

∗)

1 0.664181 0.240475 -0.169440 -0.303402

2 0.656842 0.238955 -0.162744 0.466210

3 0.656843 0.239008 -0.163177 0.438915

4 0.656843 0.239009 -0.163195 0.434521

4 Simulation Moments for a∗, b∗, p∗, q∗, c∗

A selection of sampled populations (Table 5) gives some idea of the response of simulated

moments of the estimators to points (β1, β2) in the β-plane. As we have indicated previously,

the response has three patterns;

(a) β-points in the neighborhood of L1 ≡ β2 − β1 − 1 = 0 (J-shaped)

(b) β-points in the ”middle” region (U-shaped)

(c) β-points in the neighborhood of L2 = 6 + 3β1 − 2β2 = 0.

For practical purposes (c) is the most important, putting aside the question of sample

size. Here a chaos zone exists when sampling can produce a cluster of large values of r∗,

stemming from its denominator. This danger zone is difficult to define considering the extent
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of the β-plane and the included Type I region. If we limit this region to 0 <
√
β1 < 2 or so,

then one could compare the value of c∗ observed to c∗∗ on the L1 line. As an alternative

consider the kurtosis on line L1 and line L2, where the data point is (b1, b2) and belongs to

Type III region. On line L1, β
(1)
2 = 1 + b1, and on L2, β

(2)
2 = 3 + 3b1/2. For the data point

the kurtosis β
(d)
2 = b2. Hence consider the critical distance ratio

cr(b1, b2) =
β

(2)
2 − β

(d)
2

β
(2)
2 − β

(1)
2

=
3 + 3b1/2 − b2

2 + b1/2

If cr < 0 for example, then we should consider fitting Type III distribution.

We now turn to dominant (n→ ∞) asymptotics for the moments of the estimators.

The Table 6. gives four moments of the estimators, sample size, and cycle size. The

mean of a∗ should be near to -2.18; that of b∗ close to 10.75. Results of special interest

are noted. Evidently, since we have
√
β1 > 0, problems are to be expected in some cases

with b∗ and q∗, and especially with small samples. In the present content, small is about

100, whereas stability in some cases may only be reached for n = 5000. Farther comments

appear in a footnote to the Table 6.
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Table 6. An Example: Pearson(1984). 7 Sample Sizes

(a)

a = −2.18, b = 10.75, p = 3.6155, q = 7.5663, µ1 = 2, σ2 = 3,
√
β1 = 0.4, β2 = 2.8, c = 0.88

n µ′∗1 σ∗
√
β
∗

1 β∗2 cycles c∗ outside

100 a∗ -2.0511 1.1763 -5.2580 89.0642 47450 2550

b∗ 23.7758 1673.5923 208.4123 44466.239

p∗ 3.7501 5.1713 33.8736 2242.8162

q∗ 36.5366 3464.6444 210.2097 45105.492

250 a∗ -2.1673 0.7571 -1.7229 8.8806 19674 326

b∗ 14.8278 128.6360 98.2245 11405.113

p∗ 3.8332 2.2639 3.9879 32.5877

q∗ 16.9468 288.7022 93.7617 10536.316

500 a∗ -2.1927 0.5652 -1.6876 9.6754 9971 29

b∗ 12.0045 22.5196 60.0872 4377.1758

p∗ 3.7931 1.6330 4.2114 40.9884

q∗ 10.5141 61.4841 69.2238 5627.6438

750 a∗ -2.1896 0.4485 -1.3564 7.6771 7498 2

b∗ 11.2220 3.4939 6.4907 77.6990

p∗ 3.7356 1.2046 3.0770 24.5414

q∗ 8.5632 6.6409 9.3961 140.0576

1000 a∗ -2.1860 0.3815 -1.1824 7.1602 5000 0

b∗ 11.0612 2.5392 5.1087 64.5928

p∗ 3.7003 0.9846 2.5556 19.1353

q∗ 8.2145 4.4700 7.9262 129.3426

3000 a∗ -2.1778 0.2074 -0.5267 3.4796 3000 0

b∗ 10.8220 1.0774 0.9645 4.7998

p∗ 3.6332 0.4895 0.8770 4.4860

q∗ 7.7149 1.6126 1.2657 6.1432

5000 a∗ -2.1766 0.1558 -0.3626 3.3530 3000 0

b∗ 10.7804 0.7806 0.6108 3.6961

p∗ 3.6205 0.3597 0.5915 3.6974

q∗ 7.6336 1.1515 0.8136 4.3059

Note the largeness of the skewness and kurtosis of b∗ and q∗ when n = 750, and how this

largeness is exacerbated and spreads to the mean and standard deviation as n decreases.
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(b) n−1 terms of Covariances

a∗ b∗ p∗ q∗ σ(n = 5000)

a∗ 127.4565 -414.7359 -276.1989 -702.2247 0.1597

b∗ -0.6716 2991.5589 1142.1251 4240.9823 0.7735

p∗ -0.9519 0.8125 660.5074 1866.2431 0.3635

q∗ -0.7821 0.9749 0.9130 6325.3879 1.1248

Values in the lower half triangle are correlations.

5 First Order Covariances

One possibility to better understand the structure of Type I estimation is to consider the

large sample covariances, since exact covariances are out of the question. For in the case

of moment estimators, we are dealing with functions of the mean, variance, third and forth

central moments of a sample. The so-called delta method (see Appendix) is a very useful

tool, and is quite straightforward for implementation on a calculator.

As an example, consider y = m3/m
3/2
2 . Then

δy =
δm3

µ
3/2
2

− 3

2

µ3δm2

µ
5/2
2

,

so that to order n−1,

V ar1y =
V ar1(m3)

µ3
2

− 3µ3

µ4
2

Cov1(m2,m3) +
9

4

µ2
3

µ5
2

V ar1(m2)

Similarly for δ(m′
1,
√
b1) for example.

For given values of the basic moments, covariances (Table 6) are set up (values of n are

to be inserted). These should alert the user to trouble spots, by scrutinizing the means and

standard deviations in particular, and also the coefficient of variation.

In Table 7 we give a selection of first-order variances of p∗ and q∗. Recall that these

two estimators are solely dependent on the skewness and kurtosis. These should be useful

in gaining some idea of distributional properties, and deciding whether to use a Type III

model in preference to a Type I.
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Table 7. Coefficients of V ar1(p
∗) and V ar1(q

∗)

β2 β1 = 0.5 β1 = 1.0 β1 = 2.0 β1 = 3.0

p∗ q∗ p∗ q∗ p∗ q∗ p∗ q∗

1.00 0.0665 0.1398

1.75 0.1046 0.4410

2.00 0.4313 2.0125

2.50 3.8394 26.9379 0.2401 2.0424

3.00 44.5818 822.949 1.7378 21.7378

3.50 12.0893 394.763 0.1158 1.9139

4.00 158.582 30929 0.6089 14.5656

4.25 882.259 1158487 1.2545 41.1081 0.0208 0.5025

5.00 13.1950 2467.50 0.2965 10.8214

5.50 101.588 166178 0.9996 64.8096

6.00 3.4124 593.731

7.00 75.7705 579413

5.1 Checks on the Simulations using Approximate Percentage Points

We simulate percentage points for samples of 3000 and 5000 of the Pearson example in Table

6. The percentage points are also approximated by the Bowman-Shenton algorithm (1979a,

1979b), an algorithm using least squares and rational fractions in terms of the skewness and

kurtosis. The algorithm is applicable to cases in which
√
β1 < 2; the restriction on β2 is

mild. A computer program has been written by Davis and Stephens (1983). Comparisons

are shown in Table 8.
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Table 8. Percentage Point Comparisons

a = −2.18, b = 10.75, p = 3.6155, q = 7.5663, µ1 = 2, σ2 = 3,
√
β1 = 0.4, β2 = 2.8, c = 0.88

n Parameter 0.01 0.05 0.10 0.90 0.95 0.99

3000 a∗ MC -2.72 -2.54 -2.46 -1.94 -1.87 -1.78

BS -2.74 -2.55 -2.45 -1.93 -1.87 -1.77

b∗ MC 8.93 9.31 9.55 12.17 12.80 14.02

BS 8.97 9.36 9.60 12.23 12.80 14.07

p∗ MC 2.75 2.95 3.05 4.27 4.52 5.03

BS 2.77 2.96 3.07 4.28 4.53 5.08

q∗ MC 5.07 5.61 5.91 9.72 10.60 12.50

BS 5.18 5.65 5.96 9.80 10.72 12.84

5000 a∗ MC -2.59 -2.45 -2.38 -1.99 -1.94 -1.85

BS -2.58 -2.45 -2.38 -1.98 -1.94 -1.85

b∗ MC 9.27 9.63 9.81 11.78 12.15 12.96

BS 9.29 9.64 9.85 11.81 12.18 12.95

p∗ MC 2.92 3.08 3.18 4.08 4.26 4.63

BS 2.92 3.09 3.19 4.09 4.26 4.62

q∗ MC 5.52 5.97 6.24 9.07 9.69 10.84

BS 5.55 6.02 6.29 9.14 9.73 10.99

The agreement between simulation approximations and algorithmic values are most grati-

fying. It must not be overlooked that in practice asymptotic results are valid for sufficiently

large samples only - for moderate sample sizes they may be quite misleading. However, in

the present case an alternative is lacking.

6 Variation of Percentage Points and the Pearson System

Let the αth percentage point of a distribution be

P ∗
α = m′

1 +
√
m2π

∗
α(
√

b1, b2)

where π∗α(
√
b1, b2) is the standard αth level, and (P ∗

α −m′
1)/

√
m2 = π∗α(

√
b1, b2). π

∗
α may

be approximated satisfactorily by using the Bowman Shenton rational fraction approach.

In fact

π(
√

β1, β2) = π1(
√

β1, β2)/π2(
√

β1, β2)

where

πi(
√

β1, β2) =
∑∑

0≤r+s≤3
a(i)

r,s(
√

β1)
rβ2

s. (i = 1, 2)

The method is described in Bowman and Shenton (1979a, 1979b).
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Now using incremental calculus

δπα = δm′
1 +

δm2

2
√
µ2
π∗α(

√

β1, β2) +
√
µ2

(

δπ∗δb1
δβ1

+
δπ∗δb2
δβ2

)

= δm′
1 +M2δm2 + P1δb1 + P2δb2,

where

M2 = π∗α(
√

β1, β2)/(2
√
µ2),

P1 =
∂π∗α
∂β1

√
µ2,

P2 =
∂π∗α
∂β2

√
µ2.

Examples are given in Table 9 relating to cases considered in the test. A set of percentage

points are given along with the corresponding variance (to order n−1) and standard deviation

(to order n−1/2). As was expected, variances for the levels considered are small compared

to the extremes possible for variances of a∗, b∗, and p∗, q∗.

Note that the n−1 variances are not affected by a change of the mean.
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Table 9. Percentage Points of Pearson Distributions and Its Variances

Moments of Pearson Distributions

µ′

1
3.5010 2.0000 1.0000 1.0000 1.0000 1.0000 1.0000

µ2 2.8251 3.0000 1.0000 1.0000 1.0000 1.0000 1.0000√
β1 0.5091 0.4000 1.0000 1.0000 1.0000 1.0000 1.0000

β2 3.1108 2.8000 3.0000 3.5000 4.0000 4.2500 4.5000

Percentage Points

1% 0.3856 -1.2408 0.0004 -0.2127 -0.4222 -0.5112 -0.5893

2.5% 0.7049 -0.9286 0.0023 -0.1928 -0.3466 -0.4041 -0.4514

5% 1.0314 -0.5951 0.0060 -0.1579 -0.2576 -0.2908 -0.3164

10% 1.4443 -0.1641 0.0247 -0.0720 -0.1132 -0.1230 -0.1286

25% 2.2644 0.7071 0.1561 0.1923 0.2344 0.2523 0.2680

50% 3.3421 1.8599 0.6529 0.7519 0.8045 0.8221 0.8361

75% 4.5700 3.1494 1.6114 1.5825 1.5658 1.5597 1.5546

90% 5.7711 4.3601 2.5916 2.4646 2.3889 2.3616 2.3390

95% 6.5212 5.0817 3.0856 2.9978 2.9285 2.9007 2.8765

97.5% 7.1822 5.6949 3.4133 3.4405 3.4148 3.3988 3.3831

99% 7.9525 6.3692 3.6769 3.9066 3.9916 4.0114 4.0231

n−1 Coefficients of Variance

1% 8.7865 7.9536 0.2930 1.1515 2.7940 4.4060 7.1927

2.5% 4.7128 4.6058 0.2646 0.7193 1.2830 1.7805 2.5655

5% 3.3811 3.5588 0.2751 0.3837 0.6229 0.7956 1.0057

10% 3.0700 3.3627 0.1580 0.2439 0.4470 0.5582 0.6759

25% 3.2428 3.6249 0.2957 0.6584 0.8789 1.0002 1.1777

50% 3.4356 3.8643 1.7760 1.4380 1.2540 1.2061 1.1891

75% 5.1815 5.4390 3.7398 2.6390 2.2312 2.1458 2.1249

90% 8.5319 8.1419 5.0990 4.7657 4.5569 4.5776 4.7450

95% 12.3071 10.8480 4.5667 6.1326 6.7892 7.0296 7.3179

97.5% 18.7113 15.3129 3.6311 7.7314 10.5567 11.6385 12.5791

99% 36.4997 26.6484 3.9527 11.5963 20.4312 24.8478 29.2626

n−1/2 Coefficients of σ

1% 2.9642 2.8202 0.5413 1.0731 1.6715 2.0990 2.6819

2.5% 2.1709 2.1461 0.5144 0.8481 1.1327 1.3344 1.6017

5% 1.8388 1.8865 0.5245 0.6194 0.7892 0.8920 1.0029

10% 1.7522 1.8338 0.3975 0.4938 0.6686 0.7472 0.8221

25% 1.8008 1.9039 0.5438 0.8114 0.9375 1.0001 1.0852

50% 1.8535 1.9658 1.3327 1.1992 1.1198 1.0982 1.0905

75% 2.2763 2.3322 1.9339 1.6245 1.4937 1.4649 1.4577

90% 2.9209 2.8534 2.2581 2.1830 2.1347 2.1395 2.1783

95% 3.5081 3.2936 2.1370 2.4764 2.6056 2.6513 2.7052

97.5% 4.3257 3.9132 1.9055 2.7805 3.2491 3.4115 3.5467

99% 6.0415 5.1622 1.9881 3.4053 4.5201 4.9848 5.4095
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7 Conclusion

The basic Koshal paper (1933) undoubtedly owed much of its mathematical expertise to

Fisher and to a less extent to D.J. Finney. Nonetheless Koshal must have been a worthy

worker to be the recipient of the attentions of these two statistical and mathematical leaders.

The papers must be reviewed in the light of the prevailing scientific environment around

the turn of the century, and a few decades later. The narrow view would focus on the

failure of the normal distribution to produce a good model for natural phenomenal data,

leading to a more general model such as the Pearson system and differential series models

(Gram-Charlier, etc.). Estimation procedures surfaced focusing on the discovery of the best

approach; maximum likelihood against moment methods and efficient estimators based on

smallness of asymptotic variance. The asymptotic assessment in practice slowly trickled

down to subjective vagueness.

The broader view would note the emphasis on applied mathematics; Fisher took an

astronomy course doubtless highlighting aspects of the theory of errors. whereas Pearson

was influenced by Galton and theories of hereditary and evolution. Numerical analysis

was merely a trivial subject left to self-learning techniques. A first text on the subject

appeared in 1924 (Calculus of Observations, Whittaker and Robinson). Electronic com-

puters as against mechanical were some 3-4 decades in the future. As for the asymptotic

aspect, it seems likely that both Pearson and Fisher were unaware of the epoch making

lectures of Émile Borel at the Sorbonne early in the present century. Note in passing that

recent work by us on the statistical aspects of asymptotics (power series for moments) show

marked divergence especially for complicated structures such as those associated with Type

I sampling.

Some reflections on the Koshal-Turner (1930), Koshal (1933), Fisher (1937), Pearson

(1895), Pearson-Filon (1898) follow.

(i) Fisher and Pearson had open access to two prestigious journals ( Biometrika, Annals

of Eugenics).

(ii) The case of a Type I model being the center of the controversy was pure serendipity.

A more difficult model of 4 parameters would have been hard to find.

(iii) The rivals were apparently on fairly safe ground asymptotically with a sample

of n = 1000 - further similar material from Koshal-Turner was available but not used.

However ‘safeness’ considerations only apply if we concentrate on a criterion of ‘goodness

of fit’, ignoring (for the data concerned) the chaotic approximate distributions of two of the

estimators (b∗, and q∗).

(iv) With regard to (iii), Pearson-Filon made a valiant attempt to quantify, in modern

terminology, percentage points for four parameters, along with the range, mode, mean,

standard deviation, mean to mode distance, skewness, and modal frequency. Our study
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considers simulated covariances, and asymptotic covariances.

(v) We have attempted to define a gray area (of infinite extent) in the β-plane for which

chaotic distributions may arise for some of the parameters (if
√
b1 > 0, particularly the

parameter b for the range, and q for an index.) This area is bounded by Type III line and

a nearly parallel line in the Type I region. This region will be deeper near the line β1 = b1

and tail off sharply to the left and slowly to the right. Another approach to this unsafe

region, is to consider the n−1 variances of p∗ and q∗ and make a judgment relating them to

the corresponding mean (in other words, consider the coefficient of variation).

(vi) The problem of the approximate distribution of percentage points awaits attention.

In the single sentence, it seems Karl Pearson was amongst scientists to set up calculus

of morphological majors relating to plants and animals.

Appendix: First Order Covariances for the Estimators

A Background: The Delta Method

Since it is quite out of the question to simulate the full moments of the four estimators

(a∗, b∗; p∗, q∗) with their ten covariances over a representative region, we can partially

overcome this problem by considering dominant asymptotics; we have to assume that bias

is not important.

We are using moment estimators, and functions of moments. Thus the so-called delta

approach turns out to be answer to asymptotic covariances; delta, here referring to an

increment as in the calculus. An excellent account of the procedure is given in Kendall and

Stuart (1963, pp228-245).

B Fundamental Covariances

There are three essential results for moments in general.















V ar1(ms) = µ2s − µ2
s + s2µ2µ

2
s−1 − 2sµs−1µs+1 (n→ ∞),

Cov1(ms,mt) = µs+t − µsµt + stµ2µs−1µt−1 − sµs−1µt+1 − tµs+1µt−1,

Cov1(m
′
1,ms) = µs+1 − sµ2µs−1.

(1)

To derive V ar1(b2) say consider

y = m4/m
2
2.

Then

δy = δm4/µ
2
2 − 2µ4δm2/µ

3
2.
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Square and use (A1).

V ar1(b1) = β1(4β4 − 24β2 + 36 + 9β1β2 − 12β3 + 35β1), (2)

V ar1(b2) = β6 − 4β2β4 + 4β3
2 − β2

2 + 16β1β2 − 8β3 + 16β1. (3)

Cov1(b1, b2) = 2β5 − 3β4β1 − 4β3β2 + 6β2
2β1 + 3β1β2 − 6β3 + 12β2

1 + 24β1, (4)

V ar1(6 + 3b1 − 2b2) = 4β6 − 16β2β4 + 16β3
2 + 72β1β4 − 24β5 (5)

− 72β1β
2
2 + 48β2β3 + 81β2

1β2 − 108β1β3 (6)

− 4β2
2 − 188β1β2 + 40β3 + 171β2

1 + 100β1. (7)

Here β3 = µ3µ5/σ
8, β4 = µ6/σ

6, β5 = µ3µ7/σ
10, β6 = µ8/σ

8.

C Higher moments of the Pearson System

Define νs = µs/σ
s. Then

νs+1 =
s

∆s

[

(β2 + 3)(
√

β1)νs + (4β2 − 3β1)νs−1

]

, (s = 1, 2, · · · ; ν0 = 1, ν1 = 0)

where

∆s = 6(β2 − β1 − 1) − s(2β2 − 3β1 − 6).

All moments exist for the type I distribution. ”Below” Type III line the highest moment is

µs, where s = [x] + 1, and x = 6(β2 − β1 − 1)/(2β2 − 3β1 − 6). ([x] = integer part of x.)

The formula is due to Bowman and Shenton (1973).

D Further Formulas Needed

Cov1(m
′
1,m2) = µ3 (subscript means the n−1 coefficient)

V ar1(m
′
1) = µ2

Cov1(m
′
1, b1) = σ(2β2 − 3β1 − 6)

√

β1

Cov1(m
′
1, b2) = σ(µ5/σ

5 − 4
√

β1 − 2β2

√

β1)

Cov1(m2, b1) = σ2(2
√

β1µ5/σ
5 − 5β1 − 3β1β2)

Cov1(m2, b2) = σ2(µ6/σ
6 + β2 − 4β1 − 2β2

2)
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E Formulas for the Deltas of the Estimators

E.1 Parameter r∗

r∗ =
6(b2 − b1 − 1)

c∗
=

3(2b2 − 2b1 − 2)

c∗
=

3(2b2 − 3b1 − 6 + b1 + 4)

c∗
= −3 +

3(b1 + 4)

c∗

δr∗ =
3δb1
c

− 3(β1 + 4)(3δb1 − 2δb2)

c2

=
3cδb1 − 3(β1 + 4)(3δb1 − 2δb2)

c2

=
6(β1 + 4)δb2 + δb1(18 + 9β1 − 6β2 − 9β1 − 36)

c2

=
6[(β1 + 4)δb2 − (3 + β2)δb1]

c2
.

Hence

V ar1(r
∗) =

36

c4
[(β1 + 4)2V ar1(b2) − 2(β1 + 4)(3 + β2)Cov1(b1, b2) + (3 + β2)

2V ar1(b1)].

E.2 The Estimator p∗

We have

p =
r

2

{

1 − (r + 2)
√
β1

√

(r + 2)2β1 + 16(r + 1)

}

=
r

2
− r(r + 2)

√
β1

2
√
D

(D = (r + 2)2β1 + 16(r + 1))

Hence,

p∗ =
r∗

2
− r∗(r∗ + 2)

√
b1

2
√
D∗

and

δp∗ =
δr∗

2
− (r + 1)

√
β1√

D
δr∗ − (r + 2)rδb1

4
√
β1

√
D

+
r(r + 2)

√
β1

4D3/2
δD∗

where

δD∗ = 2(r + 2)β1δr
∗ + (r + 2)2δb1 + 16δr∗

This finally

δp∗ =
δr∗

2
− (r + 1)

√
β1√

D
δr∗ − (r + 2)rδb1

4
√
β1

√
D

+
r(r + 2)

√
β1

4D3/2
[2(r + 2)β1δr

∗ + (r + 2)2δb1 + 16δr∗]

= Aδr∗ +Bδb1
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say, where

A = −(r + 1)
√
β1√

D
+

1

2
+
r(r + 2)

4D3/2

√

β1[(2r + 4)β1 + 16]

=
1

2
− (r + 1)

√
β1√

D
+
r
√
β1

2D3/2
[(r + 2)2β1 + 8(r + 2)]

=
1

2
− (r + 1)

√
β1√

D
+
r
√
β1

2D3/2
(D − 8r)

=
1

2
− (r + 1)

√
β1√

D
+
r
√
β1

2
√
D

− 4r2
√
β1

D3/2

=
1

2
−

√
β1

2
√
D

(r + 2) − 4r2
√
β1

D3/2

B = − (r + 2)r

4
√
β1

√
D

+
r(r + 2)

√
β1(r + 2)2

4D3/2

= − (r + 2)r

4
√
β1

√
D

+
r(r + 2)

4
√
β1D3/2

(D − 16r − 16]

= −4r(r + 1)(r + 2)√
β1D3/2

δp∗ =

[

1

2
− (r + 2)

√
β1

2
√
D

− 4r2
√
β1

D3/2

]

6

c2
[(4 + β1)δb2 − (3 + β2)δb1] −

4r(r + 1)(r + 2)√
β1D3/2

δb1

= Iδb1 + Jδb2

Hence the n−1 term in V ar(p∗) follows by squaring and using (1) - (3).

E.3 Variance of q∗ and Cov1(p
∗, q∗)

V ar1(q
∗) follows from δp∗ by replacing

√
β1 by −

√
β1. With this we set up the n−1 covari-

ance for p∗, q∗.

E.4 Formula for δa∗

a∗ = m′
1 −

p∗

r∗
·
√
m2D∗

2

δa∗ = δm′
1 −

√
µ2D

2r
δp∗ − p

√
D

4r
√
µ2
δm2 +

p
√
µ2D

2r2
δr∗ − p

√
µ2

4r
√
D
δD∗

= δm′
1 −

p
√
D

4r
√
µ2
δm2 −

√
µ2D

2r
(Iδb1 + Jδb2) +

p
√
µ2D

2r2
(R1δb1 +R2δb2)
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− p
√
µ2

4r
√
D

(D1δb1 +D2δb2)

= δm′
1 −

p
√
D

4r
√
µ2
δm2 +A1δb1 +A2δb2

E.5 Formula for b∗

b∗ = a∗ +
√

m2D∗/2

δb∗ = δa∗ +

√
D

4
√
µ2
δm2 +

√
µ2

4
√
D
δD∗

δb∗ = δm′
1 +B1δb1 +B2δb2 +B3δm2
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