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Abstract
For the negative binomial model (probability generating function (p+ 1 − pt)−k) a logarithmic

derivative is the Psi function difference ψ(k+x)−ψ(k); this and its derivatives lead to a test statistic

to decide on the validity of a specified model. The test statistic uses a data base so there exists a

comparison available between theory and application. Note that the test function is not dominated

by outliers.

Applications to (i) Fisher’s tick data, (ii) accidents data, (iii) Weldon’s dice data are included.
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1 Introduction

In a recent paper (Bowman and Shenton, 2007a, 2007b) on the skewness of maximum

likelihood estimators of the parameters of the negative binomial distribution (nbd), we

have introduced the function of Psi functions

S1(x, k) = ψ(k + x) − ψ(k), (k > 0, x = 0, 1, · · ·)

which is equivalent to

S1(x, k) =
1

k
+

1

k + 1
+

1

k + 2
+ · · · + 1

k + x− 1
, (x = 1, 2, · · ·)

= 0 when x = 0. (1)

Now from a previous study (Bowman and Shenton, 1965, p30) we have the expectations

E[S1(x, k)] = L = ln(p+ 1),

E[xS1(x, k)] = p+ pkL, (2)

E[S2
1(x, k)] = L2 +E[S2(x, k)]

where

S2(x, k) =
1

k2
+

1

(k + 1)2
+ · · · + 1

(k + x− 1)2
, (x = 1, 2, · · ·)

= 0 when x = 0

the probability generating function of the negative binomial distribution being (p+1−pt)−k.

2 A generalization of S1(x, k)

We consider

Sj(x, k) =
1

kj
+

1

(k + 1)j
+ · · · + 1

(k + x− 1)j
(j = 1, 2, · · · ; k > 0, x = 0, 1, · · ·)

= 0 when x = 0,

noting that it takes the value zero when x = 0, it being related to the Psi functions

ψj−1(k + x) − ψj−1(k).

We have

E[Sj(x, k)] = E

{

1

kj
+

1

(k + 1)j
+ · · · + 1

(k + x− 1)j

}
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=
1

(j − 1)!
E

{
∫

∞

0

(e−kωωj−1+e−kωωj−1e−ω+e−kωωj−1e−2ω+· · ·+e−kωωj−1e−(x−1)ω)dω

}

=
1

(j − 1)!
E

{
∫

∞

0

e−kωωj−1(1 + e−ω + · · · + e−ω(x−1))dω

}

=
1

(j − 1)!
E

∫

∞

0

e−kωωj−1(1 − e−ωx)dω

1 − eω

=
1

(j − 1)!

∫ 1

0

tk−1(ln 1
t
)j−1

1 − t

{

1 − 1

(p+ 1 − pt)k

}

dt, (k > 0, p > 0) (3)

after the transformation e−ω = t.

In particular when j = 1

E[S1(x, k)] =

∫ 1

0

tk−1

1 − t

{

1 − 1

(p+ 1 − pt)k

}

dt, (k > 0, p > 0)

and from (2)

ES1(x, k) = E{ψ(k + x) − ψ(k)}

=

∫ 1

0

tk−1

1 − t

{

1 − 1

(p+ 1 − pt)k

}

dt

= ln(p+ 1) (k > 0, p > 0).

The result may be proved by differentiating with respect to p and setting

ω = t/(p+ 1 − pt). (ω = 1, t = 1;ω = 0, t = 0)

Then

t = ω(p+ 1)/(1 + ωp),

and
dt

dp
=

p+ 1

(1 + ωp)2
.

Finally
d

dp
[ES1(x, k)] =

1

(p+ 1)2
(1 + p)k

∫ 1

0
ωk−1dω =

1

p+ 1
.

So

E[S1(x, k)] = ln(p+ 1) + constant,

and letting p→ 0 shows the constant is zero.

In a sense the integral is independent of k for k > 0. For several pairs of values (k, p)

the result has been checked numerically by computer. It is easily checked algebraically for

k = 1 and k = 2. Expanding [1 + p(1 − t)]−k in powers of (1 − t), we find

E[S1(x, k)] =
p

k
− p2

k + 1
+

p3

k + 1
− p4

k + 3
+ · · · (k > 0, 0 < p ≤ 1)

= ln(p+ 1) when k = 1.
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(A reader has pointed out that we have assumed the sum of integrands equals the integrand

of sums)

3 A peripheral remark on skewness

In Bowman and Shenton (2007a, 2007b) we state formulas for the skewness of the maximum

likelihood estimators k̂, p̂; see §4.4 in the paper. The skewness for k̂ appears as the third

standard central moment (µs/σ
3) and its 1/

√
N coefficient, where N the sample size. All

four terms in
√

β11(k̂) are defined algebraically except for the term −2E[S3(x, k)]. Expres-

sion (3) of the present paper provides an answer. The skewness of the estimator k̂ can now

be set up numerically by computer and also in algebraic form.

4 Test statistics for binomial, Poisson, and negative binomial

distributions

4.1 Negative binomial distribution

The probability generating function for the negative binomial distribution is

(p+ 1 − pt)−k (k > 0, p > 0)

and the probability function contains the factor Γ(k + x)/Γ(k) with logarithmic derivative

in Psi functions S1(x, k).

Suppose the statistical model for a data base is the negative binomial distribution. Then

we have the test function

T1(n; k̄) =
n1

N

(

1

k̄

)

+
n2

N

(

1

k̄
+

1

k̄ + 1

)

+
n3

N

(

1

k̄
+

1

k̄ + 1
+

1

k̄ + 2

)

+ · · · (4)

for a sample of size N with frequencies n1, n2, · · ·; k̄ may refer to either k or p.

Now from §1 or ORNL Report 1643

E[S1(x, k)] = ln(p+ 1)

where p is taken to be a consistent estimator of p. From (2)

V ar[S1(x, k)] = E[S2(x, k)],

and from Fisher (1941),

V ar[S1(x, k)] = ikk =
∞
∑

x=1

rx

x

(x− 1)!Γ(k)

Γ(k + x)
, (k > 0, r = p/q = p/(p+ 1)).
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A formula for µ3[S1(x, k)] is given in the appendix. In general numerical values of the

moments may be calculated directly from

µ′s[S1(x, k)] =
1

(p+ 1)k

∞
∑

x=1

(

p

q

)

Γ(k + x)

x!Γ(k)
[S1(x, k)]

s,

and central moments using the usual correction formulas. For the statistic in (4), the

moments will be

µ′1(T1) = µ′1[S1(x, k)],

µ2(T1) = µ2[S1(x, k)/N ] = σ2(T1),
√

β1(T1) =
√

β1[S1(x, k)]/
√
N,

β2(T1) = 3 +
β2[S1(x, k)] − 3

N
.

Thus a 4-moment approximating distribution to T1 may be set up (Pearson (see Bowman

and Shenton, 1979a, 1979b), SU or SB of the Johnson (1949) system). The significance of

the standardized difference

T̄1 =
T1 −E(T1)

σ(T1)

is considered..

Example 1

Two sets of data considered by Fisher (1941) correcting ticks on sheep, samples of 60

and 82.

Maximum likelihood estimators (k̂, p̂) and moment estimators (k∗, p∗) are considered.

Table 1 Fisher’s data N = 60, k̂ = 3.7513, p̂ = 0.8651

x 0 1 2 3 4 5 6 7 8 9 10

nx 7 9 8 13 8 5 4 3 0 1 2
1

k+x−1 0 0.27 0.21 0.17 0.15 0.13 0.11 0.10 0.09 0.09 0.08

S1(x, k) 0 0.27 0.48 0.65 0.80 0.93 1.04 1.14 1.24 1.32 1.40

S1(x, k)nx/N 0 0.04 0.06 0.14 0.11 0.08 0.07 0.06 0 0.02 0.05

ln(p̂+ 1) = 0.6233 and T1(n; k̂, p̂) = 0.6240. If we use moment estimators k∗ = 3.9567 and

p∗ = 0.8213 that ln(p∗ +1) = 0.5996 and T1(n; k∗, p∗) = 0.5984. Moments of the E[S1(x, k)]

are shown in the Table 2.

Table 2 Moments of the E[S1(x, k)]

µ′1 µ2 σ
√
β1 β2

S1(x, k̂) 0.6233 0.1305 0.3612 0.1567 2.5481

S1(x, k
∗) 0.5996 0.1198 0.3461 0.1682 2.5662
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Comment: There is good agreement between the test function T1(n; k, p) and its expected

value ln(p+1), using maximum likelihood, or moment estimators. Fisher (1941) was mainly

interested in estimator’s efficiency.

For the case of Fishers second data with sample size N = 82,

Table 3 Fisher’s data N = 82.
Estimator of k Estimator of p ln(p+ 1) T1(n; k, p)

Maximum likelihood 1.7775 3.6918 1.5458 1.5457

Moment 1.5261 4.2992 1.6676 1.6988

For N = 82, this sample has a “long tail”, there being sheep with as many as 25 ticks.

Outliers for moment procedures may play a significant role. The T̄1 test reduces the influ-

ences of outliers. We have T1(n; k̂, p̂) = 1.5457 and T1(n; k∗, p∗) = 1.6988 supporting the

conjecture that a negative binomial distribution model is appropriate.

4.2 The Poisson distribution

Example 2

Kendall (1977) considered an accident data set using the Poisson distribution.

Pr(X = x) =
e−θθx

x!
, (θ > 0, x = 0, 1, · · ·)

with θ̂ = θ∗ =
∑

(nx/N) = 0.4652.

E[S1(x, θ)] = E

∫ 1

0

tθ−1(1 − tx)dt

1 − t

=

∫ 1

0

tθ−1(1 − eθ(t−1))dt

1 − t

and S1(x, θ) = 1
θ

+ 1
θ+1 + · · · + 1

x+θ−1 .

Table 4 Accident data N = 647 using Poisson distribution.

x 0 1 2 3 4 5 and over

nx 447 132 42 21 3 2
1

θ+x−1 0 2.1495 0.6825 0.4056 0.2886 0.2240

S1(x, θ) 0 2.1495 2.8320 3.2376 3.5262 3.7502

S1(x, θ)nx/N 0 0.4385 0.1838 0.1051 0.0164 0.0116

S2(x, θ)nx/N 0 4.6204 5.0861 5.2507 5.3339 5.3841

so that ES1(x, θ) = 0.8594 (computed by integral) and T1(θ) = 0.7554 s discrepancy is not

surprising since the Poisson fit is known to be a poor fit. For E[S2(x, θ)] =
∑5

1 S2(x, θ)nx/N =

µ′2(S1(x, θ)).The standard deviation was computed with the usual formula and µ2 = 0.7461;

for sample size of N = 647, σ = 0.03396.
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4.3 Test statistic for a binomial distribution (pgf = (pt + q)n)

4.3.1 Test statistics

The random variables and statistics are:






S1(x, n
+) = 1

n
+ 1

n+1 + · · · + 1
n+x−1 ,

T1(n;n+) = n1

N

(

1
n

)

+ n2

N

(

1
n

+ 1
n+1

)

+ · · · ;






S1(x; p) = 1
p

+ 1
p+1 + · · · + 1

p+x−1 ,

T1(n; p) = n1

N

(

1
p

)

+ n2

N

(

1
p

+ 1
p+1

)

+ · · · ;






S1(x, n
−) = 1

n
+ 1

n−1 + · · · + 1
n−x+1 ,

T1(n;n−) = n1

N

(

1
n

)

+ n2

N

(

1
n

+ 1
n−1

)

+ · · · ;

there being a binomial data base (n0, n1, · · ·) for a sample of size N . Similar expressions

involving jth powers occur. For example

Sj(x, n
+) =

1

nj
+

1

(n+ 1)j
+ · · · + 1

(n+ x− 1)j
. (j = 1, 2, · · ·)

4.3.2 Integrals and series

We have, in expectation

E[S1(x;n
+)] = E

∫ 1

0
(tn−1 + tn + · · · + tn+x−1)dt

= E

∫ 1

0

tn−1(1 − tx)dt

1 − t

=

∫ 1

0

tn−1{1 − (pt+ q)n}dt
1 − t

;

similarly

ESj(x;n
+) =

1

(j − 1)!

∫ 1

0

tn−1(ln 1
t
)j−1

1 − t
{1 − (pt+ q)n} dt.

Omitting details we also have

ESj(x; p) =
1

(j − 1)!

∫ 1

0

tp−1(ln 1
t
)j−1

1 − t
{1 − (pt+ q)n} dt, (j = 1, 2, · · ·)

ESj(x;n
−) =

1

(j − 1)!

∫ 1

0

(p+ qt)n − tn

1 − t
(ln

1

t
)j−1dt, (j = 1, 2, · · ·)

and in particular

ES1(x, n
−) =

∫ 1

0

(p+ qt)n − tn

1 − t
dt = p+

p2

2
+ · · · + pn

n
. (0 < p < 1)

The last case is found by differentiating the integral with respect to p.
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4.3.3 Moments of random variable

For the three forms of the test statistics, low order moments can be found using computers.

For S1(x;n
+)

µ′r[S1(x, n
+)] =

n
∑

x=1

(

n

x

)

pxqn−x

(

1

n
+

1

n+ 1
+ · · · + 1

n+ x− 1

)r

,

and from r = 1, 2, 3, 4 central moments are set up. For example µ2 = µ′2 − (µ′1)
2. For the

corresponding test statistic

σ2(T1) = µ2[S1(x, n
+)]/N,

√

β1(T1) =
√

β1[S1(x, n+)]/
√
N,

and β2 = 3 + β2[S1(x,n+)]−3
N

;
√
β1 and β2 are sometimes defined as α3 and α4. In this case

the standardized test statistic is

T̄1 =
T1(n;n+) −E[T1(n;n+)]

σ[T1(n;n+)]
.

4.3.4 Application to dice data

Example 3 W.F. Weldon’s dice data (Kendall and Stuart(1977))

Table 5 Frequency-distribution of 26,306 throws of 12 dice,

the occurrence of a 5 or 6 being counted a success

No.of Observed Theoretical frequency No.of Observed Theoretical frequency

successes frequency from the binomial successes frequency from the binomial

26,306 26,306

(0.6623 + 0.3377)12 (0.6623 + 0.3377)12

0 185 187 6 3067 3043

1 1149 1146 7 1331 1330

2 3265 3215 8 403 424

3 5475 5465 9 105 96

4 6114 6269 10 and over 18 15

5 5194 5115 11 0 1

12 0 0

Totals 26306 26306

If the dice were perfect (a condition rarely realized in practice) the proportion p of successes

would be 1
3 ; and the appropriate binomial would be in the form of binomial distribution

given in Kendal and Stuart (1977), ( 2
3 + 1

3)12. In this particular case the dice were not quite

perfect, the proportion of cases exhibiting a 5 or 6 being 0.3377. Taking this as the value

of p, we get the frequency function (0.6623 + 0.3377)12, which when multiplied by the total
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frequency 26.306 gives the theoretical frequencies shown in the third column Table 5. The

agreement with observation is evidently fairly good.

Test statistics moments for the three cases are:

Table 6. The moments of three test statistics
E( 1

n
+ 1

n+1 + · · · + 1
n+x−1) E(1

p
+ 1

p+1 + · · · + 1
p+x−1) E( 1

n
+ 1

n−1 + · · · + 1
n−x+1)

T1 0.2962 4.3265 0.4120

σ(T1) 0.0024 0.0411 0.0032
√

β1(T1) -0.0090 -0.0083 -0.0076

β2(T1) 3.0000 2.9999 3.0000

T̄1 -0.0154 -0.0083 0.0209

The last row indicates that the discrepancies are not significant.

5 A second test for the negative binomial distribution model

We define the test statistic T2 as

T2(n, k) =
n0

N

(

1

k

)

+
n1

N

(

1

k + 1

)

+
n2

N

(

1

k + 2

)

+ · · ·

and is associated with random variable

s(x) =
1

k + x
(x = 0, 1, · · · , k > 0)

where x refers to the negative binomial (it also may refer to other binomial distributions

defined on x = 0, 1, 2, · · ·). Non-central moment are

µ′s(s(x)) ≡
1

(j − 1)!

∫ 1

0

tk−1(ln 1
t
)j−1dt

(p+ 1 − pt)k
, (k > 0, p > 0)

and in particular the mean is

µ′1(s(x)) =

∫ 1

0

tk−1dt

(p+ 1 − pt)k
.

We can set up a 4-moment approximating distribution and consider the significant if the

standardized statistic

T̄2 =
T2 −E(T̄2)

σ(T̄2)
.

Since the procedure follows closely that of the first test statistic T1, our description here

has been accordingly attenuated.
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6 Remarks in conclusion

The random variable

S1(x, k) =
1

k
+

1

k + 1
+ · · · + 1

k + x− 1
(k > 0)

has a distribution when x has a probability with support from the set of non-negative inte-

gers (0, 1, 2, · · ·). The distributions considered are the binomial, Poisson, negative binomial

with probability generating functions (pt+ q)n, exp(θ(t− 1)), (p+ 1 − pt)−k.

There is a statistical version of (1), using a data base leading to the test statistic

T1(n, k) =
n1

N

(

1

k

)

+
n2

N

(

1

k
+

1

k + 1

)

+ · · · + .

Notice that the zero frequency n0 does not appear.

The moments of the test statistic T1, assuming existence, are readily set up using a

computer; from time to time algebraic or integral forms may be available as checks. Al-

though the from of the test is peculiar to the negative binomial distribution, there are many

applications relating to discrete distributions. Some examples are:

(i) Contagious distributions such as a Neyman forms.

(ii) Compound distributions, such as Poisson-binomial with probability generating func-

tion exp{θ[(pt+ q)n − 1]}.
(iii) Mixture distribution as published by Everett and Hands (1981).

The binomial itself has two forms involving expressions such as

∫ 1

0

tn−1(1 − (pt+ q)n)dt

1 − t

and
∫ 1

0

(p+ qt)n − tn

1 − t
dt.

Appendix

Moments of S1(x, k), S2(x, k) and similar terms and the negative binomial

distribution

A.1 The third central moment of S1(x, k) from ORNL-1643, we have

E(S3
1) = 3E(S1S2) − 2E(S3) + L3 (L = ln(1 + p))

and similarly

E(S1S2) = 2E(S3) +
∂

∂k
E(S2) + LE(S2)
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so

µ3(S1) = 3

{

2E(S2) +
∂

∂k
E(S2) + LE(S2)

}

−2E(S3) + L3 − 3LE(S1)
2 + 2L3

= 4E(S3) + 3
∂

∂k
E(S2) − L3

A.2 Other cases. We have not been able to discover an algebraic form for the fourth central

moment; the problem relates to E(S2
2); similar forms such as E(S2

3) appear intractable

algebraically.
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