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1 Introduction

In Fisher’s Contributions to Mathematical Statistics (1950), the 38th paper, a short

one, considers certain aspects of the negative binomial distribution, moment and

maximum likelihood methods. The paper was written some sixty or so years ago

(1941), so that in the ensuring years there have been notation modifications. For

example, the Hessian matrix was referred to as the information matrix; also Fisher

preferred to use factorial notation rather than the gamma function, for example, ( 1
2
)!

We shall use ikk, ikp, ipp for elements in the information matrix, the probability

function for the negative binomial random variable being

Pr(X = x) = (q)−k

(

p

q

)x
Γ(k + x)

Γ(k)x!
(k > 0, p > 0, q = 1 + p)

and x = 0, 1, · · ·. We recall the basic moments

Mean : µ′

1 = kp, Variance : µ2 = kpq.

In this paper we have remarks to make on Fisher’s expression for the variance

of the maximum likelihood estimator k̂; but more importantly for the mathematical

structure of the asymptotic form of the skewness of the distribution of k̂; this takes

the form
√

β11(k̂), the coefficient of 1/
√
N in the skewness, N the sample size.

Maximum likelihood estimators of the parameters k, p for the negative binomial

distribution are fundamentally based on the Psi function and its derivatives. Actually

ψ(k + x) − ψ(k) and its derivatives turn up frequently.

We shall also mention Fisher’s idea of efficiency for a single estimator and jointly.

Data based examples are included.

2 Fisher’s expression for ikk

2.1 The formulas

The third central moment of the estimator θ̂a is (Bowman and Shenton, 1998, 1999)

µ32(θ̂a) = LaαLaβLaγ {[θα, θβ, θγ] + 3[θαθβθγ ] + 6[θαθβ, θγ]} (1)

where subscript 32 indicate third moment, coefficient of N−2, [αβγ] = E
(

∂3 ln(Pr)
∂α∂β∂γ

)

,

[αβ, γ] = E
(

∂2 ln(Pr)
∂α∂β

∂ ln(Pr)
∂γ

)

, [α, β, γ] = E
(

∂ ln(Pr)
∂α

∂ ln(Pr)
∂β

∂ ln(Pr)
∂γ

)

, summed for α, β,
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γ having the values 1, 2, · · · , s in the s-parameter case. We shall define the square

bracket terms as Tr(θ), θ referring to the parameters space.

For the Hessian, we have

H =





ikk ikp

ipk ipp



 .

The second derivatives of log(Pr) with respect to k and p are

∂2 ln(Pr)

∂k2
= ψ1(k + x) − ψ1(k),

∂2 ln(Pr)

∂k∂p
= −1

q
=
∂2 ln(Pr)

∂p∂k
,

∂2 ln(Pr)

∂p2
=

k

q2
− x(2p+ 1)

p2q2
.

For the element in the Hessian matrix ikk

ikk =
∞
∑

0

1

qk

(

p

q

)x
Γ(k + x)

Γ(k)x!
[ψ1(k) − ψ1(k + x)]

ψ1 being the derivative of the Psi function. Fisher defined r = p
p+1

= p
q
, and inserted

1
k2 + 1

(k+1)2
+ · · · + 1

(k+x−1)2
for ψ1(k) − ψ1(k + x).

Thus

ikk = (1 − r)k

{

rk
(

1

k2

)

+
r2

2!
k(k + 1)

(

1

k2
+

1

(k + 1)2

)

+
r3

3!
k(k + 1)(k + 2)

(

1

k2
+

1

(k + 1)2
+

1

(k + 2)2

)

+ · · ·
}

and Fisher goes on to expand this in powers of r (0 < r < 1), giving

ikk =
r

k
+

r2

2k(k + 1)
+

4r3

6k(k + 1)(k + 2)
+ · · · (2)

=
∞
∑

x=1

rx

x

(x− 1)!Γ(k)

Γ(k + x)
. (3)

2.2 Validity of ikk

We can only guess that Fisher used the pattern of terms displayed in (2) to extend

to the series in (3). We have been unable to produce a mathematical proof. However

the Maple code has polygamma functions as standard mathematical functions so we
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have checked out (3) for ikk up to the coefficient of r10. For the term in r6, Maple

gives the following output:

Coeff. of r6 =
1

6k
+

5k

16
− 17k2

144
+
k3

48
− k4

720
+

k

16 (k + 1)2 − 13k2

72 (k + 1)2

− k2

18 (k + 2)2
+

k

6 (k + 2)2 − 5k3

24 (k + 2)2
− 5k3

48 (k + 1)2
− 5k3

24 (k + 3)2

+
k2

18 (k + 3)2
+

k

6 (k + 3)2 +
25k4

144 (k + 1)2 − 5k4

72 (k + 2)2 − 5k4

72 (k + 3)2

− k5

16 (k + 1)2
+

k5

24 (k + 2)2 +
k5

24 (k + 3)2
− 25k4

144 (k + 4)2 − k5

48 (k + 4)2

+
13k2

72 (k + 4)2
+

k

6 (k + 4)2 − k5

16 (k + 4)2
− k5

48 (k + 5)2
− 17k4

144(k + 5)2

+
5k4

(k + 2)2
+

k5

48 (k + 3)2 +
17k4

144 (k + 5)2 +
5k3

16 (k + 5)2 +
137k2

360 (k + 5)2

+
k

6 (k + 5)2 +
k6

144 (k + 1)2 − k6

72 (k + 2)2 +
k6

72 (k + 3)2 − k6

144 (k + 4)2

+
k6

720 (k + 5)2 − 137

360

=
20

(k + 5)(k + 4)(k + 3)(k + 2)(k + 1)k
.

Fisher also stated the results

ipp =
k

pq
, ikp = −1

q
and |H| =

k

pq

∞
∑

x=2

rx

x

(x− 1)!Γ(k)

Γ(k + x)
.

It is gratifying to see that our low order moments of maximum likelihood estimators

found using Maple code (Bowman and Shenton, 2005) check out against Fisher’s

values.

Risking criticism because of repetition, we think interesting to high light the

relation

ikk =
∞
∑

x=0

1

qk

(

p

q

)x
Γ(k + x)

Γ(k)
{ψ1(k) − ψ1(k + x)}

=
∞
∑

x=1

rx(x− 1)!Γ(k + x)

xΓ(k)
, (r = p/q, 0 < r < 1, k > 0) (4)

a type of generating function for the Psi function derivative. The reader will note the

inversion of Γ(k + x)/Γ(k). A strict mathematical proof of (4) has not been

discovered
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3 Terms in skewness

3.1 Square bracket terms

The formulas for the third central moment of the estimator θ̂a is given in (1).

A complete listing of square bracket terms, third, forth, and fifth is given in

Bowman and Shenton (1965), where the symbol 1 refers to k̂, the symbol 2 to p̂. For

examples,

[kkk] = 2E[S3(x)], [kkp] = 0, [kpp] = 1/q2, [ppp] = 2k(1 + 2p)/(p2q2),

[kk, k] = E[(x− kp)S2(x)]/(pq), [kk, p] = −E[(x− kp)S2(x)]/(pq),

[kp, k] = [kp, p] = 0, [pp, k] = −(1 + 2p)/(pq2), [pp, p] = −k(1 + 2p)/(p2q2),

[k, k, k] = E[S1(x) − ln(q)]3, [k, k, p] = E[(x− kp)S2(x)]/(pq),

[k, p, p] = 1/(pq), [p, p, p] = k(1 + 2p)/(p2q2).

Here

Sλ(x) =
1

kλ
+

1

(k + 1)λ
+ · · ·+ 1

(k + x− 1)λ
, (x = 1, 2, · · · , λ = 1, 2, · · ·).

Using the Maple code we have set up expressions in terms of r = p/q, 0 < r < 1, for

the expectations of S1(x), S2(x), S1(x)
2, S1(x)

3, S1(x)S2(x), xS1(x), xS2(x), S3(x).

We shall discuss these components in the sequel.

For the present, note that

E[S1(x)] = r +
r2

2
+
r3

3
+ · · · = ln(q) = L, (0 < r < 1, k > 0)

E[S2(x)] =
r

k
+

r2

2k(k + 1)
+

2r3

3k(k + 1)(k + 2)
+ · · · =

∞
∑

x=1

rx(x− 1)!Γ(k)

xΓ(k + x)
,

E[S1(x)
2] = E[S2(x)] + L2,

E[S1(x)
3] = 3E[S1(x)S2(x)] − 2E[S3(x)] + L3.
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3.2 The asymptotic skewness for k̂

3.2.1 Basic forms

Using the Maple code implementation for the asymptotic skewness (
√

β11(k̂) = µ3/µ
3/2
2 )

of a maximum likelihood estimator we have found approximations to
√

β11(k̂).

√

β11(k̂) = [V ar1(k̂)]
3/2

{

−E(S3
1 +3S2L+L3+2S3)+

3E(x−pk)S2

kq
+

2p(p+2)

k2q2

}

(5)

where

E(S1) = ln(q) = L,

E(xS1) = p+ pkL,

E(S2
1 − S2) = L2, (6)

2E(S3) = E(S1S2 − S3
1 + L3),

E(x− kp)S2
1 = E[(x− kp)S2 + 2pL].

These expressions may be derived from

∞
∑

x=1

rx

x!
Γ(k + x) = (1 − r)−kΓ(k)

by differentiations. For examples

(1 − r)k
∞
∑

1

rx

x!
S2Γ(k + x) = Γ(k)E(S2)

Differentiate with respect to k, so that

−LΓ(k)E[S2(x)] + (1 − r)k
∞
∑

x=1

rx

x!
Γ(k + x){−2E[S3(x)]}

+ (1 − r)k
∞
∑

x=1

rx

x!
Γ(k + x){E[S1(x)S2(x)]}

= Γ′(k)E[S2(x)] + Γ(k)
∂E[S2(x)]

∂k
.

By adjustment we deduce the identity

E[S1(x)S2(x)] = LE[S2(x)] + 2E[S3(x)] +
∂E[S2(x)]

∂k
, (7)

where

E[S2(x)] =
∞
∑

x=1

rx(x− 1)!Γ(k)

xΓ(k + x)
, (0 < r < 1, k > 0).
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3.2.2 Identities for special cases of the parameter k

Example 1: The case k = 1.

Here the probability function is simple in form, but keep in mind we are still

involved with sampling from the 2 parameter negative binomial distribution. For

0 < r < 1, and k = 1,

E[S1(x)] = r +
r2

2
+
r3

3
+ · · · = ln

(

1

1 − r

)

= ln(q) = L,

E[S2(x)] =
r

12
+
r2

22
+
r3

32
+ · · · =

∞
∑

1

rx

x2

(

<
π2

6

)

= Fisher′s ikk,

E[S3(x)] =
r

13
+
r2

23
+
r3

33
+ · · · =

∞
∑

1

rx

x3
=

(2π)3

12

∫ 1

0
B(x) cot(πx)dx.

The example above was conjectured from the pattern exhibited in E[S3(x)] expanded

in power of r to r5.

Information matrix H(k, p)

|H(k, p)| =
1

pq

∞
∑

x=2

rx

x2
,

∂E[S2(x)]

∂r
=

1

r

∞
∑

x=1

rx

x2
.

For E[Ss(x)St(x)], s ∈ |N , t ∈ |N .

Coefficient r = 1/ks+t−1

Coefficient r2 =
k(k+1)

2

(

1

ks+t
+

1

ks(k+1)t
+

1

kt(k+1)s
+

1

(k+1)t+s

)

− 1

ks+t−1
(k > 0)

3.2.3 Numerical examples in the general case

Table 1 Expectation of S2 and S3

k p E[S2(x)] E[S3(x)] k p E[S2(x)] E[S3(x)]

1.0 0.1 0.093063 0.091971 10.0 0.1 0.009129 0.000878

1.0 0.582241 0.537213 1.0 0.051206 0.003994

5.0 1.144978 0.955870 5.0 0.086833 0.005340

5.0 0.1 0.018322 0.003547

1.0 0.104632 0.016884

5.0 0.180712 0.023384

Values of E[S2(x)] and E[S3(x)] arise in the next section.
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4 Skewness
√

β11(k̂)

4.1 Series in powers of r for some terms

An examination of the power series for E[S1(x)]
3, E[S1(x)S2(x)], and E[S3(x)], only

a few coefficients being available, indicates that only E[S2(x)] has coefficients of k in

descending order; thus

coeff. of r2 ∼ 1/(2!k2), coeff. of r3 ∼ 4/(3!k2), coeff. of r4 ∼ 36/(4!k2).

This strongly suggests that an expression for
√

β11(k̂) would be more satisfac-

tory if it could be expressed in terms of E[S3(x)], only and not involving E[S1(x)]
3,

E[S1(x)S2(x)].

Now from §(3.1)

[kkk] = 2E[S3(x)], [kk, k] = E[(x− kp)S2(x)]/(pq),

[k, k, k] = E[S1(x) − L]3.

Now µ3(k̂), from (1) involves these square bracket terms with symbols α, β, γ. We

define the sum of these as the triplet Tr(αβγ).

For example

Tr(kkk) = [k, k, k] + 3 [kkk] + 6 [kk, k] ,

Tr(kkp) = [k, k, p] + 3 [kkp] + 6 [kk, p] ,

Tr(kpp) = [k, p, p] + 3 [kpp] + 6 [kp, p] , (8)

Tr(ppp) = [p, p, p] + 3 [ppp] + 6 [pp, p] .

Each triplet Tr is multiplied by triples of Lij’s which we call A.

A(kkk) = V ar1(k̂)
3, A(kkp) = −V ar1(k̂)3 p

k
,

A(kpp) = V ar1(k̂)
3 p

2

k2
, A(ppp) = −V ar1(k̂)3 p

3

k3
.

4.2 The term Tr(kkk)

Let

E[S2(x)] = (1 − r)k
∞
∑

x=1

rxΓ(k + x)

x!Γ(k)
S2(x)

= F1(k, p).
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Then [kk, k] = E[xS2(x)] − kpF1(k, p), and differentiating F1(k, p) with respect to r

yields

E[xS2(x)] = rqkF1(k, p) + r
∂F1(k, p)

∂r
.

But rq = r/(1 − r) = p. Hence

[kk, k] = r
∂F1(k, p)

∂r

Again from §(3.1)

[k, k, k] = E[S1(x) − L]3 = E[S1(x)]
3 − 3LE[S1(x)]

2 + 2L3

Now we can use the identities of (6) and (7). Namely

E[S1(x)]
3 = −2E[S3(x)] + 3E[S1(x)S2(x)] + L3

(See Bowman and Shenton, 1965, p30).

Taking into account these terms we find

Tr(kkk) = −2E[S3(x)] +
∂F1(k, p)

∂k
.

with contribution Tr(kkk)[V ar1(k̂)]
3.

4.3 The remaining triplets in µ32(k̂)

Tr(kkp) =
3

pq
E(x− kp)S2(x) −

6

pq
E(x− kp)S2(x)

= − 3

pq
E(x− kp)S2(x) = − 3

pq
r
∂F1(k, p)

∂r
.

Contribution is (−p/k)Tr(kkp)[V ar1(k̂)]
3.

Next

Tr(kpp) =
3

pq
+

3

q2
− 6(1 + 2p)

pq2
=

3

pq2
(−1 − 2p)

Contribution is (p2/k2)Tr(kpp)[V ar1(k̂)]
3.

Lastly,

Tr(ppp) =
3k(1 + 2p)

p2q2
+

6k(1 + 2p)

p2q2
− 6k(1 + 2p)

p2q2

=
3k(1 + 2p)

p2q2

Contribution is (−p3/k3)Tr(ppp)[V ar1(k̂)]
3.
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4.4 Final form for skewness of k̂

Adding the terms in the previous section for µ32(k̂) we have

√

β11(k̂) = [V ar1(k̂)]
3/2

{

−2E[S3(x)] − 3
∂F1(k, p)

∂k
+

3r

kp

∂F1(k, p)

∂r
− 4r(1 + r)

k2

}

where
∂F1(k, p)

∂k
= −

∞
∑

x=1

rx

x

(x− 1)!Γ(k)

Γ(k + x)
[ψ(k + x) − ψ(k)],

and

r
∂F1(k, p)

∂r
=

∞
∑

x=1

rx(x− 1)!Γ(k)

Γ(k + x)
(0 < r < 1, k > 0)

and ψ(k + x) − ψ(x) = 1
k

+ 1
k+1

+ · · ·+ 1
k+x−1

, x = 1, 2, · · ·.

5 Skewness
√

β11(p̂)

µ32(p̂) (N−2 terms in µ3(p̂)) has triplet Tr(αβγ) terms identical to k̂ displayed in

equation (8). Only multiplier triples Lij will be different.

B(kkk) = −V ar1(k̂)3 p
3

k3
, B(kkp) = V ar1(k̂)

2 p
2

k2

(

pq

k
+
p2

k2
V ar1(k̂)

)

,

B(kpp) = −V ar1(k̂)
p

k

(

pq

k
+
p2

k2
V ar1(k̂)

)2

, B(ppp) =

(

pq

k
+
p2

k2
V ar1(k̂)

)3

.

The figure 1 display skewness of k̂ and p̂.

6 Efficiency of an estimator and joint efficiency

Fisher (1941) introduced the concept of efficient estimator in the form

Ef = lim
N→∞

V arθ1

V arθ2

Other comparisons may be considered, but keep in mind that estimators must be

consistent, i.e. E(θ̂) = θ + θ1

N
+ · · ·.

Fisher (1922) established the fact that maximum likelihood estimators have the

highest efficiency; and that moment estimators, in comparison, always inefficient. It

should however be remembered that high efficiency for maximum likelihood estimators
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Figure 1:
√

β11(k̂) and
√

β11(k̂)

does not in general imply other advantages. For example, there is no guarantee that

high efficiency implies smaller value of the skewness.

Joint efficiency is described in Fisher (1941). For two parameters, for example,

1

E∗

f

=

∣

∣

∣

∣

∣

∣

V ar1(m1) Cov1(m1, m2)

Cov1(m2, m1) V ar1(m
∗

2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

V ar1(θ̂1) Cov1(θ̂1, θ̂2)

Cov1(θ̂2, θ̂1) V ar1(θ̂2)

∣

∣

∣

∣

∣

∣

where in the numeration the m’s refer to sample values. For the negative binomial

model (k, p),

1

E∗

f

=

∣

∣

∣

∣

∣

∣

V ar1(p
∗) Cov1(p

∗, k∗)

Cov1(k
∗, p∗) V ar1(k

∗)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

V ar1(p̂) Cov1(p̂, k̂)

Cov1(k̂, p̂) V ar1(k̂)

∣

∣

∣

∣

∣

∣

Using moment estimators k∗ and p∗, the numerator is
∣

∣

∣

∣

∣

∣

q
(

2q + 3p+2
k

)

−2(k+1)q2

p

−2(k+1)q2

p
2k(k+1)q2

p2

∣

∣

∣

∣

∣

∣

=
2(k + 1)q3

p

and the members of denominator are

11



V ar1(k̂) = 1
∑

∞

x=2
rx

x

(x−1)!Γ(k)
Γ(k+x)

V ar1(k
∗) = 2k(k+1)q2

p2

V ar1(p̂) = pq
k

(

1 + r

k
∑

∞

x=2
rx

x

(x−1)!Γ(k)
Γ(k+x)

)

V ar1(p
∗) = q

(

2q + 3p+2
k

)

Cov1(k̂, p̂) = − p/k
∑

∞

x=2
rx

x

(x−1)!Γ(k)
Γ(k+x)

Cov1(k
∗, p∗) = −2(k+1)q2

p

Hence the Fisher joint efficiency of maximum likelihood estimator against moment

estimators is

1

Ef
=

(

2(k + 1)q3

p

)(

k

qp

)

∞
∑

x=0

rx

x

(x− 1)!Γk

Γ(k + x)

=
∞
∑

x=0

2rx(x + 1)!Γ(k + 2)

(x + 2)Γ(k + x+ 2)
.

Hence

E∗

f =
1

∑

∞

x=2
2rx(x+1)!Γ(k+2)
(x+2)Γ(k+x+2)

, (k > 0, 0 < r < 1)

the denominator a convergent power series in the ratio with positive terms, the first

term being unity.

The reader may refer to Fisher’s brief account in his paper (Fisher, 1941). Also

see Mikulski (1982) and Shenton (1950).

Fisher Joint Efficiency
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Figure 2: Joint efficiency of k and p
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7 Fisher’s data sets

7.1 Data

These are given by Fisher (1941) and relate to two samples of sheep classified accord-

ing to the number of ticks found on each sheep.

Table 2 The first example with sample size N = 60

Number of ticks 0 1 2 3 4 5 6 7 8 9 10

Number of sheep 7 9 8 13 8 5 4 3 0 1 2

Fisher uses the method of moments to fit a negative binomial distribution. For the two

moment estimators k∗, p∗ he uses the moments x̄ = 3.25, m2 = 349.25/59 = 5.9194915

to lead to the estimates p∗ = 0.821382, k∗ = 3.956740. Note Fisher has used the

divisor 59 in m2 to avoid bias. There is little discussion since a criterion of efficiency

sets this at about 90%.

Table 3 The second example with sample size N = 82

Number of ticks 0 1 2 3 4 5 6 7 8 9 10 and more

Number of sheep 4 5 11 10 9 11 3 5 3 2 19

(More details are given in Fisher, Table 2).

data
max.lik.estimator
moment,estimator
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Fisher Example 2, N=82
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Figure 3: Fisher’s examples of two cases

Maximum likelihood estimators p̂ and k̂ are

∂ lnPr

∂p
= 0 leads to p̂k̂ = x̄ (9)
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where x̄ is the sample mean. Using this

∂ lnPr

∂k
= −k ln(p− 1) + ψ(x+ k) − ψ(k)

where ψ(·) is the Psi function. This leads to, using (9) the transcendental equation

ψ(k̂) =
n
∑

x=0

nx

N
ψ(k̂ + x) − ln

(

1 +
x̄

k̂

)

For a solution of k̂ we use use






f(k) = ψ(k) −∑n
x=0

nx

N
ψ(k + x) + ln

(

1 + x̄
k

)

f ′(k) = ψ1(k) −
∑n

x=0
nx

N
ψ1(k + x) − x̄

k(x̄+k)

and

newk̂ = k − f(k)

f ′(k)
and newp̂ =

x̄

newk̂
.

The starting values for the iteration cycles, we use moment estimators

p∗ =
m2

x̄
− 1, k∗ =

x̄

p∗
.

We have used the maximum likelihood estimator k̂ and the mean to set up p̂. It

turns out the k̂ = 1.77476, p̂ = 3.69175, in exact agreement with Fisher (1950, page

38.186).

Table 4. Low order moments of k̂ and p̂

µ′

11 µ′

12/µ
′

11 µ′

21 µ′

22/µ
′

21 σ
√
β1 β2

Example 1 N = 60

k̂ = 3.7513 0.8664 0.3775 2.4552 1.1323 1.5669 2.0306 14.8144

p̂ = 0.8651 -0.2357 -0.0029 0.1374 0.0109 0.3706 0.4920 6.1987

Example 2 N = 82

k̂ = 1.7775 0.0923 0.0734 0.1326 0.2291 0.3642 0.8376 5.0285

p̂ = 3.6912 -0.0358 -0.0109 0.6931 0.0108 0.8325 0.4547 3.8903

We consider the “goodness of fit” by considering the moment ratios. For example

if for a statistic t,

E(t) ∼ τ0 +
τ1
N

+
τ2
N2

+ · · · (n→ ∞)

V ar(t) ∼ µ21

N
+
µ22

N2
+ · · · .
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Then we look at τ2/τ1, and µ22/µ21. Terms omitted in these expressions are modified

by introducing by taking N , the sample size, to be large enough.

For the estimator k̂:

τ2/τ1 = 0.677, µ22/µ21 = 0.229.

In addition the asymptotic skewness is
√
β1 = 0.83 and asymptotic kurtosis, β2 =

5.0. Looking at the four criteria, bias, variance, skewness, and kurtosis suggests a

reasonable fit. It is not surprising the criteria for the estimator p̂ is more promising.

We have for p̂:

τ2/τ1 = −0.010, µ22/µ21 = 0.011.
√

β1 = 0.49, β2 = 3.8.

With 8 degrees of freedom, the χ2 value of 8.40 given by Fisher would in random

sample only be less in about 40% cases.

8 Conclusion

This paper brings out a relation between maximum likelihood estimators for param-

eters of the negative binomial distribution and the Psi function and it derivatives.

Basically, it depends on R.A. Fisher’s discovery for a power series expression for ikk,

this being derived from the expectation of a second derivative of the logarithm of the

probability function. Fisher’s proof, as far as we can detect, depends on a deduc-

tion from a pattern in the first three terms. The underlying algebra is exceptionally

complicated and far out of reach of pen and paper approaches, relying on the imple-

mentation of a Maple Code. The random variable 1
k
+ 1

k+1
+ · · ·+ 1

k+x−1
, its derivatives

with respect to k, and powers plays an essential role.

The asymptotic skewness of the estimator k̂ (the negative binomial generating

function being (p + 1 − pt)−k) using the maximum likelihood approach, is stated in

terms of V ar1(k̂); similarly for the estimator p̂.

It is interesting to note that in Fisher’s 1941 paper he still adheres to the im-

portance of sample efficiency, directed to moment estimators (Karl Pearson) against

maximum likelihood estimators. Now let us recall Fisher’s note on his “Foundations”

paper (1922) in the Wiley (1950) publication. We quote Fisher.

He did not clearly see, for example, that the variance of an estimate does not, in

the theory of small samples, supply a satisfactory basis for comparison

15



In our approach we consider low oder moments up to the fourth instead of effi-

ciency and joint efficiency.
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Addendum

Validity of Fisher’s formula for ikk using an identity given in
Whittaker and Watson

A.1 A surprise result for Psi functions

We have noted in the paper, that the validity of the expression for Fisher’s ikk is

not clearly proved. By good fortune, glancing through the chapter on the gamma

function in Whittaker and Watson (1915, p257), we noticed the expression,

ψ(k+x)−ψ(k) =
x

k
− x(x− 1)

2k(k + 1)
+
x(x− 1)(x− 2)

3k(k + 1)(k + 2)
+· · · (x = 1, 2, · · · , k > 0). (1)

This result appears in the form

d

dz

ln Γ(z + x)

Γ(z)
= ψ(z + x) − ψ(z),

for x + z > 0.

An equivalent formula, namely

ψ(x) − ψ(x− α) =
∞
∑

s=0

1

s+ 1

α(α + 1) · · · (α + s)

x(x + 1) · · · (x + s)
(<(x− α) > 0)

appears in Nielsen (1906). In particular see page 83, equation 7 of the contribution

due to General Major V.H.O. Madsen.

To us, this result on the psi function is quite remarkable, especially when consid-

ered from a statistical point of view, and especially the negative binomial distribution

and factorial moments. For

E[x] = kp, E[x(x− 1)] = k(k + 1)p2, E[x(x− 1)(x− 2)] = k(k + 1)(k + 2)p3,

and in general

E[x(x− 1) · · · (x− s+ 1)] = psk(k + 1) · · · (k + s− 1).
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Taking expectations in (1) for a negative binomial variate, we have

E (ψ(k + x) − ψ(k)) = E
(

1

k
+

1

k + 1
+ · · ·+ 1

k + x− 1

)

= p− p2

2
+
p3

3
− · · · = ln(p+ 1) (0 < p < 1)

as it should as shown in the main part of the paper.

A.2 Further examples

We can write (1) in the form

S1(x, k) =
x

k
− x(x− 1)

2k(k + 1)
+

x(x− 1)(x− 2)

3k(k + 1)(k + 2)
− · · · (2)

using the notation

Sλ(x, k) =
1

kλ
+

1

(k + 1)λ
+· · ·+ 1

(k + x− 1)λ
(λ = 1, 2, · · · , x = 1, 2, · · · , k > 0)

= x, if λ = 0.

If we differentiate (2) with respect to k, then derivatives of (k(k+1) · · · (k+x−1))−1

are required. Set z = 1
k(k+1)···(k+x−1)

, then

∂z

∂k
= −[S1(x, k)]z,

∂2z

∂k2
= [S2(x, k) + S1(x, k)

2]z, (3)

∂3z

∂k3
= −

{

2S3(x, k) + 3S1(x, k)S2(x, k) + S1(x, k)
3
}

z,

and so on.

From (1) then

E(ψ1(k + x) − ψ1(k)) = E

(

1

k2
+

1

(k + 1)2
+ · · ·+ 1

(k + x− 1)2

)

=
∞
∑

x=1

(−1)x−1

x
px

(

1

k
+

1

(k + 1)
+ · · ·+ 1

(k + x− 1)

)

=
p

k
− p2

2

(

1

k
+

1

k + 1

)

+
p3

3

(

1

k
+

1

k + 1
+

1

k + 2

)

+ · · ·
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where

Coeff. r =
1

k
,

Coeff. r2 =
1

k
− 1

2

(

1

k
+

1

k + 1

)

=
1

2k(k + 1)
,

Coeff. r3 =
1

k
− 1

2

(

1

k
+

1

k + 1

)

+
1

3

(

1

k
+

1

k + 1
+

1

k + 2

)

=
2

3k(k + 1)(k + 2)
.

Further coefficient have been checked and agree with Fisher’s ikk series.

A.3 A new expression for E[S3(x, k)]

From the derivatives in (3)

E(ψ2(k + x) − ψ2(k)) = 2E

(

1

k3
+

1

(k + 1)3
+ · · · + 1

(k + x− 1)3

)

=
∞
∑

x=1

(−1)x−1

x
px
(

S2(x, k) + [S1(x, k)]
2
)

.

Thus

2E

(

1

k3
+

1

(k+1)3
+· · ·+ 1

(k+x−1)3

)

=
(

1

k2
+

1

k2

)

p−1

2

{

1

k2
+

1

(k + 1)2
+
(

1

k
+

1

k + 1

)2
}

p2

+
1

3

{

1

k2
+

1

(k + 1)2
+

1

(k + 2)2
+
(

1

k
+

1

k + 1
+

1

k + 2

)2
}

p3 (4)

− 1

4

{

1

k2
+

1

(k + 1)2
+

1

(k + 2)2
+

1

(k + 3)2
+
(

1

k
+

1

k + 1
+

1

k + 2
+

1

k + 3

)2
}

p4

+
p5

5







4
∑

0

1

(k + s)2
+

(

4
∑

0

1

k + s

)2






+ · · · .

If we express this in terms of r, where r = p/(p + 1), p = r/(1 − r), then the

coefficient of rs in 2E[S3(x, p)] is

(−1)s−1

{

αs(k)

s
− αs−1(k)

s− 1

Γ(s)

1!Γ(s− 1)
+
αs−2(k)

s− 2

Γ(s)

2!Γ(s− 2)

−αs−3(k)

s− 3

Γ(s)

3!Γ(s− 3)
+ · · · + (−1)s−1α1(k)

s− (s− 1)

Γ(s)

(s− 1)!Γ(1)

}
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where

αt(k) =

(

1

k2
+

1

(k + 1)2
+ · · · + 1

(k + t− 1)2

)

+
(

1

k
+

1

k + 1
+ · · ·+ 1

k + t− 1

)2

α1(k) =
1

k2
+
(

1

k

)2

=
2

k2
, (t = 1, 2, · · ·).

Concerning the extended expression in (4), we have for 2E
(

1
k3 + 1

(k+1)3
+ · · · + 1

(k+x−1)3

)

,

Coeff. r =
1

k2
,

Coeff. r2 = − k2 − k − 1

2k2(k + 1)2

Previous algebraic results using Maple code for E(S3)

Coeff. r =
1

k2

Coeff. r2 = − k2 − k − 1

2k2(k + 1)2

Coeff. r3 = − 3k3 + 3k2 − 6k − 4

3k2(k + 1)2(k + 2)2

Coeff. r4 =
11k4 − 42k3 + 13k2 − 66k − 36

4k2(k + 1)2(k + 2)2(k + 3)2

Coeff. r5 = −2(25k5 + 190k4 + 395k3 − 10k2 − 600k − 288

4k2(k + 1)2(k + 2)2(k + 3)2(k + 4)2
.

For S4 we have

6E[S4(x, k)] =
∞
∑

x=1

(−1)x−1

x
px
(

2S3(x, k) + 3S2(x, k)S1(x, k) + S3
1(x, k)

)

.

Differentiating with respect to k

∞
∑

x=1

rx

x!

Γ(k + x)

Γ(x)
Sm(x, k),

we can set up an expression for E[S1(x, k)Sm(x, k)]. But expressions such as

E[S2(x, k)Sm(x, k)], m = 2, 3, · · · have not been found.

The reader may like to check out the validity of the identity

E[S1(x, k)]
3 = 4E[S3(x, k)] + 3LE[S2(x, k)] +

3∂

∂k
E[S2(x, k)] + L3,
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where the first term on the right is given in the text, and

(i) L = ln(1 + p),

(ii) E[S2(x, k)] =
∞
∑

x=1

rx(x− 1)!Γ(k)

xΓ(k + x)
(Fisher)

(iii) p > 0, k > 0, r =
p

p+ 1
, 0 < r < 1.

A.4 Conclusion

The mathematical identity in equation (1) is stated in a book by Whittaker and

Watson (1915, p 257). The book concerns so-called ”mathematical Analysis” and has

little to do with statistics or probability.

Now in the identity (1) the denominators are k, k(k + 1), k(k + 1)(k + 2) and so

on; but these occur in the factorial moments of the negative binomial variate. For

example, the factorial moments are

µ[s] = psk(k + 1) · · · (k + s− 1) = psΓ(k + s)/Γ(k). (s = 0, 1, · · ·)

Stieltjes moment problem which refers to the case of distributions on (0,∞) are

involved. For a set of moments, Stieltjes (1918,1874-5) considered the Stieltjes integral

transform
∫

∞

0

dσ(x)

x + 1
=

1

α0x+

1

α1+

1

α2x+

1

α3+
· · ·

referring to a continued fraction form. The moment problem is determinate if and

only if α’s are positive and also if
∑

αs = ∞. Now from Bowman and Shenton (1989,

p48), for the negative binomial distribution B(k, t; p), there is the Stieltjes continued

fraction

∞
∑

t=0

B(k, t; 1)

z + t
=

1

z+

kp

1+

q

z+

(k + 1)p

1+

2q

z+

(k + 2)p

1+
· · ·

=
1

α1z+

1

α1+

1

α3z+
· · · .

If
q0
x+

p1

1+

q1
x+

p2

1+

q2
z+

· · · =
1

α0+

1

α1+

1

α2+

1

α3+
· · ·

then

α2p−1 =
q0q1 · · · qs−1

p1p2 · · · ps

.
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Examples

α1 =
1

kp

α3 =
1

kp

q

(k + 1)p

α5 =
1

kp

q

(k + 1)p

2q

(k + 2)p

α7 =
1

kp

q

(k + 1)p

2q

(k + 2)p

3q

(k + 3)p

and in general

α2s−1 =
1

p

(

q

p

)s
Γ(s)Γ(k)

Γ(k + s)
∼ Γ(k)

p

(

q

p

)s−1

s−k (s→ ∞)

=
Γ(k)

p
exp

{

(s− 1) ln

(

q

p

)

− k ln(s)

}

. (q = 1 + p, 0 < p)

Hence
∑

αs diverges and
∑

αs = ∞. No other distribution has the same moments

as the negative binomial random variable.
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