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1 Introduction

The two component normal mixture distribution involves 5 parameters, two means, two
standard deviations and a proportion. Karl Pearson (1894) studied this distributional model
since fitting a single normal component was found to be inadequate. Pearson used the
method of moments focusing on the three sample cumulants k3, k4, and ks, relating these to
the estimators of the 5 parameter normal mixture involves tedious elementally mathematics.
So the Pearson study became less interesting. Later work, in particular, involved steepest
descent and Newton-Raphson approaches initiated by Hald (1952) and Hasselblad (1966)
and using the maximum likelihood approaches.

We have advanced the subject in two directions. First we have a Maple code which
produces low order moments of maximum likelihood estimators, only requiring a definition
of the basic probability function (Bowman and Shenton, 2005). This code is based on our
study (Shenton and Bowman, 1977) which sets up a Taylor series for the logarithms of
the likelihood function. Several examples verifying the formula are available. Since several
parameters may be involved, integration problems in the Maple code may be a problem.
Secondly we are now introducing an iterative scheme which applies to the general case
of s component (3s — 1 parameters). The iterative scheme is based on the logarithmic
derivatives of the probability function with respect to the parameters (means, standard
deviations or variances, proportions). In particular this derivative with respect to the
proportion parameter plays a dominant role leading to a criterion for convergence. The
iterative scheme is simple in form, easy to relate to a computer. Examples included relate
to biological data, percentage ash content in peat, and release time of a relay. The ash
content in peat data provides a remarkable example for which the y?-value take the value
5.74 (no tail grouping being involved). There is a one in a hundred chance of a lower x?
value. When grouping is involved the x? value is 5.41, with a very satisfactory probability of
acceptance. We note that a y? for this case had been computed by Hasselblad, but otherwise
these appears to be no case in the literature showing the complete table of goodness of fit
and theory vs observed. Such a marvelous example of statistical model building has been
ignored. The actual source of the ash content data is not given in Hald. However, he does
suggest that since a two component normal mixture does give a good fit, then there may
be two sources for the samples of peat drawn.

It is assumed that the data base is divided into a set of equal intervals, the frequencies in
order being ny, ng, * -+, Ny, - -+ for a sample of size N = ni +ng + - --. The variate n, is the
ordinate at the center of the zth interval. In a sense when, grouping of data is appropriate,
we are looking at the discrete case.

Another widely used continuous distribution is the gamma with mean ap and variance
a’p. In section 4 we give expressions for the low order moments of maximum likelihood
estimators.



2 Maximum likelihood equations for normal mixtures
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and

do o1 o3
so that
R ng (z — A\)*Py
newU% = Z Nm ]5
Similarly

The notation here uses P;, Py, and P to refer to the parameters m, A1, Aa,01, 02 brought
up to date with the phase of the cycle involved.
For the 3 component normal mixture, parameters are A1, o1, Ag, 02, A3, 03, 71, and mo.

We have
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The cycle is continued until satisfactory convergence is apparent. We now give several
examples of mixture distributions, the first and second from Karl Pearson.

3 Examples

3.1 Pearson’s Breadth of “Forehead” of Crabs

Pearson’s (1984, p85) best fit (moment estimators) for the mixture of two normal distribu-
tions is given on (p.88) and is used as initial input to our maximum likelihood estimators,

Table 1 Maximum likelihood estimators and their asymptotic moments

(n = 1000)

Moment estimator mle 500 cycles Bias o VB
m 0.4145 0.43 -0.28 0.30 -4.06
T 0.5855 0.57
A 13.282 13.56 -4.19 3.19 -6.28
A2 19.289 19.27  0.99 0.65 -6.22
o1 4.4685 4.58 -1.68 1.08 -7.40
09 3.1154 3.15  0.03 0.43 -0.36
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Figure 1: Data and fits of Pearson example

Discussion: Some details of low-order moments are given in Table 1. Convergence is very
slow, 500 cycles being used. The asymptotic low-order moments of maximum likelihood
estimators were computed by using the Maple code (see Bowman and Shenton, 2005).

The fits of using moment estimators and maximum likelihood estimators (Table 2) are
almost identical as shown in the Figure 1. The goodness of fits test values are 21.21 and
20.47, with degree of freedom 23. The probability of a larger value of x2, from a table, is
70% approximately. Note that bias values are relatively small, but in all cases except the
estimator &9, the skewness is large, in values lying between 4 and 7.



Table 2. Data frequency and fits of Pearson example

Abscissa  Ordinates Pearson fits Maximum likelihood fits

1 1 0.85 0.87
2 3 1.53 1.55
3 5 2.62 2.63
4 2 4.28 4.24
5 7 6.65 6.53
6 10 9.82 9.60
7 13 13.82 13.47
8 19 18.52 18.05
9 20 23.71 23.17
10 25 29.15 28.64
11 40 34.66 34.34
12 31 40.37 40.38
13 60 46.70 47.13
14 62 54.26 55.09
15 54 63.42 64.45
16 74 73.68 74.62
17 84 83.39 83.93
18 86 90.00 89.97
19 96 90.96 90.42
20 85 85.00 84.21
21 75 72.81 72.09
22 47 56.87 56.44
23 43 40.37 40.29
24 24 25.99 26.17
25 19 15.17 15.46
26 9 8.02 8.30
27 5 3.84 4.06
28 0 1.67 1.81
29 1 0.66 0.74
Total 1000 998.79 998.65
Test 21.21 20.47




3.2 Pearson’s Palaemon serratus measurements

See Pearson (1984) on page 101, beginning with the data sets

Table 3 Palaemon serratus - Measurements in 998 specimens (adult female) from
penultimate to hindmost tooth on the carapace.
Entry interval Number of specimens Entry interval Number of specimens

1(27) 1 23 (49) 25
2 (28) 0 24 (50) 17
3 (29) 0 25 (51) 11
4 (30) 0 26 (52) 8
5 (31) 1 27 (52) 4
6 (32) 0 28 (53) 1
7 (33) 3 29 (54) 0
8 (34) 3 30 (55) 0
9 (35) 4 31 (56) 1
10 (36) 11 32 (57) 1
11 (37) 24 33 (58) 0
12 (38) 38 34 (59) 0
13 (39) 56 35 (60) 0
14 (40) 80 36 (61) 0
15 (41) 105 37 (62) 0
16 (42) 121 38 (63) 0
17 (43) 117 39 (64) 1
18 (44) 108 40 (65) 0
19 (45) 77 41 (66) 0
20 (46) 69 42 (67) 0
21 (47) 62 43 (68) 1
22 (48) 48

Pearson pointed out the “gigantic” values at 65 and 69. The data is given graphically
in Figure 2.

For solutions, Pearson finds o1 = 3.5595, 09 = 5.76264/—1, i.e. no solution for the two
component model. We used as initial values for the iterative solution of maximum likelihood
estimators Xl, ;\2, 01, 092, and 1. See Table 4.



Palaemon serratus measurements
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Figure 2: Data and fits of Palaemon serratus measurement
Table 4 Maximum likelihood estimators
A1 A9 o1 02 Uy 2
Moment estimator 16.0440 21.5023 3.3897 8.9330 0.9730 0.0170
mle 10 cycles 17.2076 1.0010 3.7239 0.0010 0.9990 0.0010

The underscored variance term shows there is no two component normal mixture solution.

The values Ay = 17.21, and o1 = 3.72 are suggested for a one component normal model.

3.3 Data from Hald (1952, p156) and studied by Hasselblad (1966)

The data has sample size 430 and is widely referred to in mixture distribution literature
(Everitt and Hand, Johnson, Kotz, and Kemp). Hasselblad used steepest descent, and
Newton-Raphson for solutions. He worked on IBM 7094 with the Fortran IV code, stating
that 1/10 second computer time was needed for steepest descent, one second for Newton-
Raphson.

With our iterative approach we used the fact that for maximum likelihood estimates

”ﬁ% = 1 as a criterion for convergence. The sequence of approximations is shown in
Table 5. It turns out that the solution by Bowman and Shenton for this ash content data
agrees more or less perfectly with Hasselblad; the comparison with Hasselblad and low order
moments of maximum likelihood estimators computed by Maple code are given in Table 5.

The moments of the data are mean=6.4465, standard deviation=2.2013, v/b; = —0.3916,
and by = 2.5088. This is the case which clearly shows the distribution has two components.
A1 is near 3.25, )y is near 7.25. We can take o7 to be 1.0 and o3 to be 2.0, and 7 to be 0.2
for initial estimates for the cycles of iteration scheme.



Table 5 The iteration solution sequence for Hald’s ash content data
e % A1 Ao a? o2 T

1 1.0803 3.4610 7.1929 1.0720 2.1748 0.21606

2 1.0230 3.3511 7.2996 1.1787 2.2505 0.22103

3 1.0074 3.3070 7.3373 1.1429 2.2193 0.22267

4 1.0027 3.2823 7.3529 1.1053 2.1943 0.22328

5 0.9994 3.2622 7.3619 1.0777 2.1834 0.22316

6  0.9973 3.2464 7.3658 1.0571 2.1807 0.22256

7 09963 3.2345 7.3660 1.0414 2.1825 0.22173

8 0.9959 3.2258 7.3641 1.0296 2.1866 0.22083

9 0.9961 3.2197 7.3610 1.0208 2.1916 0.21995
10 09964 3.2156 7.3576 1.0143 2.1967 0.21917
11 0.9969 3.2129 7.3542 1.0096 2.2014 0.21850
1209975 3.2112 7.3511 1.0063 2.2055 0.21794
13 0.9980 3.2102 7.3484 1.0040 2.2089 0.21750
14 0.9984 3.2097 7.3462 1.0025 2.2117 0.21715
15 0.9988 3.2095 7.3444 1.0016 2.2140 0.21689
16 0.9991 3.2095 7.3430 1.0010 2.2157 0.21669
17 0.9993 3.2096 7.3420 1.0007 2.2170 0.21655
18 0.9995 3.2097 7.3412 1.0006 2.2179 0.21645
19 09997 3.2099 7.3406 1.0005 2.2186 0.21638
20  0.9998 3.2100 7.3402 1.0005 2.2191 0.21633
21 09999 3.2102 7.3399 1.0006 2.2194 0.21630
2209999 3.2103 7.3397 1.0007 2.2196 0.21628
23 1.0000 3.2104 7.3396 1.0007 2.2198 0.21627
24 1.0000 3.2105 7.3395 1.0008 2.2198 0.21626
25 1.0000 3.2105 7.3395 1.0008 2.2198 0.21626
26  1.0000 3.2106 7.3394 1.0009 2.2199 0.21626
27 1.0000 3.2106 7.3394 1.0009 2.2199 0.21626
28 1.0000 3.2106 7.3394 1.0009 2.2199 0.21626
29  1.0000 3.2106 7.3394 1.0010 2.2199 0.21626
30  1.0000 3.2106 7.3394 1.0010 2.2199 0.21627
31 1.0000 3.2107 7.3394 1.0010 2.2199 0.21627
32 1.0000 3.2107 7.3394 1.0010 2.2199 0.21627
33 1.0000 3.2107 7.3394 1.0010 2.2199 0.21627
34 1.0000 3.2107 7.3394 1.0010 2.2199 0.21627
35 1.0000 3.2107 7.3394 1.0010 2.2199 0.21627




Table 6. Solutions by Hasselblad and Bowman & Shenton, and
asymptotic low order moments of maximum likelihood estimators

A1 Ao 52 o2 1
Hasselblad 3.210 7.339  1.000  2.220  0.2162
Hald 3.1 7.2 0.64 2.25 0.20

B&S 3.2107 7.3395 1.0010 2.2198 0.2163
Low order moments of mle N = 430

Bias 0.0107 0.0055 -0.0058 -0.0069 0.0020

s.d. 0.1954 0.1219 0.1321 0.0911 0.0325

VB 0.4217 -0.0115 0.4504 0.0903 0.2528

Note: The sample size is used for these moments. The smallness of the asymptotic skewness
values is remarkable.

The fit of the theoretical distribution (two component normal mixture) in Table 7 is
so good, perhaps too good. Take a look at the penultimate values of ash content, where
discrepancies are usually discussed. For z = 0.75% content, the comparison is 1 against
0.9; for z = 10.75% content the comparison is 4 against 3.29. Using the frequencies as they
are stated in Table 7, yields a x? value of 5.74 with degree of freedom v =23 —1 —5 = 17.
There is therefore a one in a hundred chance of a value less than 5.74. If the first three,
and last two frequencies are combined then the degrees of freedom are reduced but the final
assessment of goodness of fit is about the same as the unabridged.

It seems to us quite remarkable that although Hasselblad’s study is often quoted as a
reference, we have not found one which deploys the goodness of fit table, surely a grave

omission.
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Table 7. The ash content data frequency and fits

Ash percent Frequency Fit by BS Fit by Hasselblad

0.25 1 0.23 0.23
0.75 1 0.90 0.90
1.25 2 2.73 2.72
1.75 5 6.43 6.43
2.25 12 11.83 11.83
2.75 18 17.07 17.08
3.25 20 19.57 19.57
3.75 19 18.51 18.51
4.25 16 16.07 16.06
4.75 14 15.64 15.64
5.25 20 19.22 19.20
5.7 25 26.28 26.29
6.25 35 34.72 34.73
6.75 43 41.76 41.76
7.25 48 45.04 45.05
7.75 45 43.44 43.44
8.25 35 37.43 37.43
8.75 26 28.82 28.82
9.25 17 19.83 19.82
9.75 13 12.19 12.18
10.25 9 6.69 6.69
10.75 4 3.29 3.28
11.25 2 1.44 1.44
Total 430 429.11 429.11
Test (df14) 5.47 5.48
Test (df17) 5.74 5.74

11
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Figure 3: Data and fits of Ash contents

3.4 Hald’s (1952, p155), 466 measurement of the release time of a relay

From the histogram of the release time data, Hald suggest that a two component normal

mixture should be appropriate with ¢y = o9 approximately, m; = w9 approximately, and

Ay — A1 = 0.08 second.

Table 8 The distribution of 466 measurements of release time of a relay and fit

Frequency mle fit Frequency mle fit

1.00 1 b7 112 12 14.92
1.01 0 1.99 1.13 28 21.15
1.02 2 5.68 1.14 20 28.14
1.03 20 13.18 1.15 27 32.17
1.04 23 24.85 1.16 39 31.05
1.05 49  38.12 1.17 30 25.21
1.06 41 4756 1.18 14 17.20
1.07 43  48.32 1.19 8 9.87
1.08 39 40.12 1.20 6 4.76
1.09 27 2775 1.21 1 1.93
1.10 21 1741 1.22 0 0.66
1.11 14 12.98 1.23 1 0.19
Total 466  465.78

The moments of the data are mean=1.1022, standard deviation=0.0488, v/b; = 0.2846, and
bo = 1.84. We used initial input A\; = 1.07, Ao = 1.16, o1 = 0.05, 02 = 0.03, and ™ = 0.6
from the plot of data points.

Our maximum likelihood estimators, and their low asymptotic moments are shown in

the Table 9.
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Table 9 Maximum likelihood estimators and their asymptotic moments
A1 A2 a1 o) T

m.de. 1.0657 1.1530 0.0220 0.0240 0.5818

Bias  -0.0000 -0.0000 -0.0001 -0.0001 -0.0003

s.d. 0.0017 0.0023 0.0013 0.0018 0.0269

VB 0.0667 -0.1662 0.1482 0.2265 -0.0376

466 samples (Hall)

50

(0]
o
|

frequency

0 'bos 1 1.05 1.1 1.15 1.2 1.25
class in 0.01 sec.

Figure 4: Data and fits of Hald’s example

Goodness of fit x?-test is 28.64 with degree of freedom 18 and x2%_, 5 = 28.87.

We quote from Hald (1952, p155) “A more detailed examination of the relay led to
the following explanation of the heterogeneity: When the current through the coil of the
relay is closed, a worm, which is connected with an induction break disc, meshes with a
toothed sector, which causes the release key to close. The above difference of 0.08 second
corresponds to two positions, separated from each other by one tooth. If the relative position
of the worm and the toothed sector has not been adjusted with extreme accuracy, which
of these two positions is taken up depends on the position at which the induction break
disc has stopped at the end of the previous operation. The relay was adjusted, and a new
distribution was observed in which by far the greater number of the measurements belonged
to the distribution with the larger mean. Further adjustment of the relay would no doubt

have removed the heterogeneity completely.”

4 Maximum likelihood equations for gamma mixtures

P(X = z) = m Pi(z; a1, p1) + maPa(z5 02, p2) = P(z) = P (4)
and
e~ /ai (z/a;)Pi~t

P, =
! a;T'(p;)
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where 0 < m; <1, 0, >0,0a; >0,2=1,2, 0 < z < 0.

For the iterative maximum likelihood solutions: given an initial set (a1, p1, ag, p2,71)

~ - nmPI
newTl = T Z N =
z:ONP
SO newT2 = 1 —pew 713
1 ¢~ ne Py 1y~ le P

T———=, ag = x =~ .
plz:O NP e p2z:0 NP

new@1 =

Now for p; solve the equations

Py

Ploewpt) = 3 "l (i) i} PBloewds) = 3 i (i) %.

z=0 a1

In connection with these two equations, note that

/Ooo e ?/%(z/a)P " dz = aT'(p), (a,p > 0)

so that differentiating with respect to p (when valid) leads to

Eln(z/a) = ¢(p),

which supports the sample expansion in (5). This iterative scheme, in our experience only,

produces convergence when the initial input is very close to the exact solution.
Examples:

We have found a study of maximum likelihood methods for two component gamma mix-

tures (location known) in Kanno (1982). The author uses Newton-Raphson to search for a

solution, noting that initial values for the 5 parameters 71, a1, p1, a2, p2 play an important

role.

Kanno’s Table 4 (our Table 10), using a random number generator, creates samples of
sizes N = 120, N = 250, and N = 500, for three sets of values of the 5 parameters. The

results are based on 100 sets of data for each example.
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Table 10 Means and Variances of ML-estimates obtained by the Switching Technique
(a) m = 0.6, a1 = 1.0, az = 3.0, p; = 10.0, p = 10.0
Sample Size Mean  Variance Convergence Ratio*

n =120 m  0.612814  0.003202
a1 0.983195  0.058104
as  2.656232  0.516423 84/100
p1 10.843501  5.873739
po 12373497 14.241284
n = 250 m  0.600321  0.001453
a1 0.972326  0.030718
as  2.856105  0.359719 92/100
p1 10.602929  2.675162
p2  11.069730  7.065392
n = 500 m 0.599084  0.000991
a1 0.979151  0.017180
as  2.978927  0.220518 98/100
p1 10.366122  1.458317
p2 10.341305  3.369693

*The convergence ratio gives the number of times the iteration converged over the number
of cases examined. For definition of switching see Kanno (1982).

(b) ™ = 0.4, a] = 1.0, a9 = 2.0, pP1 = 8.0, P2 = 12.0

Sample Size Mean  Variance Convergence Ratio
N =120 m 0.420285  0.003288
al 1.011345 0.162246

ae  1.786265  0.084904 85/100
p1 9.037800  9.081267
p2  14.414256 12,762469
N = 250 m  0.405259  0.000845
a1 0.970729  0.052691

az  1.886898  0.084904 91/100
p1 8.694442  3.675052
p2  13.120551  5.645092
N =500 m  0.405259  0.000845
a;  0.996611  0.023584

az  1.953517  0.050870 94/100
p1 8.237146  1.366583
po  12.482812  2.453989

15



(C) m = 0.3, a1 = 1.0, ap = 1.5, pP1 = 8.0, P2 = 12.0
(sample size N = 500)
Mean Variance Convergence Ratio
Complete NR-method
m 0.397078 0.030406
a1 1.370825 0.342409
az  1.372027 0.163267 30/100
p1 7.146651 2.084019
p2 13.934228 8,870050
Switching Technique
m  0.405259 0.000845
a1 1.291289 0.052691
az  1.886898 0.080272 42/100
p1 6.973615 1.002152
p2  14.136263 4.443573

In this case, the convergence ratio of the NR-method increased to 30/100 compared with
1/100 for case (1), and for 10/100 for case (2), but it was less than that of switching
technique. From the sample means and variances in Table 4(c), it seems that the complete
NR-method is not better than the switching technique even if the difference between two
scale parameters is fairly small.

In Table 11 we list the asymptotic low oder maximum likelihood moments, with a
comparison to Kanno’s findings in the case of bias and variance (first order terms). Briefly
the notation for a statistic ¢ is:

Bias  E(f —t) ~ pl/N + ply/N* +--- (N — o0)
Var(t)  pa(f) ~ por/N + poo/N? + -
Skewness /1 ~ us3/ ug/ ® location and scale free

and /B11 is the coefficient of 1/+/N in the skewness. For the three sample values the

obvious choice for an asymptotic study is to take the case N = 500. For three cases
involving 3 sets of 5 parameters (Table 10 and Table 11) compares the results of Kanno
with our asymptotic values derived from our Maple code approach, the comparisons relating
to relative bias, and first order variance; in addition we record the asymptotic standard
deviation, and asymptotic skewness for the 5 estimators a1, p1, d2, p2 and 7.
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Table 11 Asymptotic low order moments of 5 parameters with sample size N = 500

Case ay p1 as P2 g1
Case 1 ), /(Ng,)  -0.0021 0.0150 0.0014 0.0271 -0.0018
Kanno -0.0209 0.0366 -0.0070 0.0341 0.0015
,U21/N 0.0152 1.1611 0.2402 3.2846  0.0009
Kanno 0.0172 1,4583 0.2205 3.3697 0.0010
s.d. 0.1233 1.0776  0.4901 1.8123 0.0302

VBi/VN 03300 0.4071 0.5928 0.3534 -0.1591
Case 2 p);/(Nuj)  0.0010 0.0237 -0.0027 0.0195 0.0008

Kanno -0.0034 0.0296 -0.0233 0.0411 0.0133
po1 /N 0.0289 1.2791 0.0617 2.6237  0.0009
Kanno 0.0236 1.3666 0.0509 2.4540  0.0008
s.d. 0.1700 1.1310 0.2484 1.6198 0.0304

VB/VN 05499 0.4949  0.3339 0.4027  0.0413
Case 3 p),/(Np))  0.0394 0.0576 -0.0094 0.0462 0.0410

Kanno 0.2913 -0.1283 -0.1093 0.1780  0.2063
po1 /N 0.1190 3.6842 0.0598 5.4897  0.0059
Kanno 0.0903 1.0022 0.0312 4.4436  0.0053
s.d. 0.3450 1.9194 0.2446 2.3430 0.0771

VBi1/sqrtN 13865 0.7212  0.1966 0.9113  0.9878

Discussion:

(i) The relative bias (u};/u}) is in general quite small, an exception being the one of
the proportion 7.

(ii) The variances are in good agreement except for case 3 and a1 (41).

(iii) Asymptotic skewness is in general less than unity in value, a quite acceptable result
in practice. There is an exception for case 3, for which \/f11(a;) = 1.4, and \/B11 (71) = 0.99.

(iv) For the three cases graphs of the sample data against theory are exhibited. Case 2
is clearly a bimodal distribution, whereas for case 1 the second component is muted.
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5 Conclusion

In this paper the Maple code implementation of low order asymptotic moments of maximum
likelihood estimators applied to normal and gamma mixture distributions receives further
support from the examples studied. Including starting values in iterative solutions play an
important role.
In a recent paper by Karlis and Xekalaki (2005), the references cite 155 papers. Our
work suggests one direction for further research.
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Figure 5: Gamma mixture of Kanno’s 3 examples
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