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Abstract

The paper considers second order continued fractions associated with (I) the Psi

function ψ(z), (II) the continued fraction component in ln Γ(z) due to Stieltjes. The

second order sequences k∗s/ks provide approximants, some of which are remarkably

close. In addition a series form for the convergent χs/ωs associated with a contin-

ued fraction provides an expression for the derivatives of a continued fraction. The

implementation uses a Maple code for derivatives.
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1 Introduction

We have discussed this subject in our paper Shenton and Bowman (2005, p.21). For

a continued fraction it is assumed that

b1
z+

b2
1+

b3
z+

b4
1+

· · · =
∫ ∞

0

dσ(u)

u+ z
(<(z) > 0)

the integral of Stieltjes form, the partial numerators being real and positive. The

notation for the continued fraction is

b1

z + b2
z + b3

z + b4
z + · · ·

.

In general the partial numerators are positive reals.

In this paper we introduce new examples of second order continued fractions. We

are given a series
c0
z
− c1
z2

+
c3
z2

− c4
z4

+ · · ·

which in some domain may be convergent or divergent. A good reference is given in

Borel (1928); see also Bowman and Shenton (1989).

To high light the basic procedures we give a simple example. For the Psi function

ψ(·) we have the continued fraction expression

ψ(z) = ln z − 1

2z
− a0

z2+

a1

1+

a2

z2+
· · · (<(z) > 0) (1)

where

a0 =
1

12
, a1 =

1

10
, a2 =

79

210
, a3 =

1205

1659
, a4 =

262445

209429
, a5 =

2643428417511

1429053441530
.

There are other interesting forms of (1).

(a) Integral form

ψ(z) = ln z − 1

2z
−
∫ ∞

0

du

(z2 + u)(e2π
√

u − 1)

given by Shenton and Bowman (1971, p.552). The integral is Stieltjes and subscribes

to the form
∫ ∞

0

dσ(u)

u+ z2
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which arises for a class of continued fraction (Wall, 1948). It suggests a continued

fraction
d1

z2+

d2

1+

d3

z2+

d4

1+
· · · .

(b) Asymptotic series

ψ(z) = ln z − 1

2z
−

∞
∑

n=1

B2n

2nz2n
(z → ∞ in [arg] < π)

and in more detail

ψ(z) ∼ ln z − 1

2z
− 1

12z2
+

1

20z4
− 1

252z6
+

1

210z8
− 1

12z10
· · · ,

this series, extended, may be used to set up the continued fraction using Wall.s

algorithm (Wall, 1948, p.194).

We now return to expression (1) for ψ(z) and differentiate with respect to z,

finding for the derivative of ψ(z)

ψ1(z) =
1

z
+

1

2z2
− d

dz

(

a0

z2+

a1

1+

a2

z2+

a3

1+
· · ·
)

.

Thus

ψ1(z) −
1

z
− 1

2z2
= − d

dz

(

a0

z2+

a1

1+

a2

z2+

a3

1+
· · ·
)

so that the second order continued fraction

d

dω

(

a0

ω+

a1

1+

a2

ω+

a3

1+
· · ·
)

has convergent k∗s(ω)/ks(ω), s = 1, 2, · · ·, to the function F (z) where

F (z) =
1

2z

{

ψ1(z) −
1

z
− 1

2z2

}

.

We shall define F (z) to be the limiting value of the 2nd order continued function

sequence k∗s/ks. The algorithm of deriving k∗s/ks is given in Shenton (1957), and

Shenton and Bowman (2005).

For examples, if z = 1, then k∗s(1)/ks(1), s = 1, 2, · · ·. converges to 1
2

(

π2

6
− 3

2

)

=

0.072. Moreover k∗0 = 0, k∗1 = k∗2 = 1/12. k1 = 1, k2 = 1 + 1
10

(

2 + 1
10

+ 79
210

)

. The

approximants are k∗1/k1 = 0.08333 · · ·, k∗2/k2 = 0.067.
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Table 1 Approximants for ψ1(1), values of k∗s/ks

s 1 2 3 4 5 converges to

k∗s/ks 0.08333 0.06679 0.07492 0.07088 0.07336 1
2

(

π2

6
− 3

2

)

or 0.07247

ψ1(1) 1.66667 1.35889 1.64984 1.64175 1.64671 1.64493

In the table the odd convergents corresponding to 1, 3, 5, form a monotonic decreasing

sequence; similarly the even convergents, corresponding to 2, 4 form a monotonic

increasing sequence. Altogether the approximations are very satisfactory.

2 Examples

Example 1

In Shenton and Bowman (1971) we have given continued fractions for derivatives

of the Psi functions ψm(z), m = 0, 1, 2, · · ·, with ψ(z) = d ln Γ(z)/dz. For ψm(z) itself

the first those partial numerators C
(m)
1 , C

(m)
2 , C

(m)
3 we stated explicitly. Looking at

the continued fractions listed, it turns out that only one, that of ψ2(z) has all partial

numerators defined. Thus the continued fraction is

1

z2+

p1

1+

q1
z2+

p2

1+

q2
z2+

· · ·

where

ps =
s2(s+ 1)

4s+ 2
, qs =

s(s+ 1)2

4s+ 2
.

The example is due to Stieltjes (1918, p.388) An obvious question is why ψ2(z) and

its continued fraction? ‘

ψ2(z) = − 1

z2
− 1

z3
− 1

2z2

{

1

z2+

p1

1+

q1
z2+

p2

1+

q2
z2+

· · ·
}

(<(z) > 0) (2)

(Note: There is a typo error in Shenton and Bowman (1971, p.548, (7b)); the first

term on the right should be negative).

From (2),
(

ψ2(z) +
1

z2
+

1

z3

)

2z2 = − 1

z2+

p1

1+

q1
z2+

· · ·

differentiate with respect to z

2
d

dz

(

z2ψ2(z) + 1 +
1

z

)

= 2z
d

dω

(

1

ω+

p1

1+

q1
ω+

p2

1+

q2
ω+

· · ·
)

(ω = z2)

resulting
(

2ψ2(z) + zψ3(z) −
1

z3

)

= lim
k∗s(ω)

ks(ω)
(ω = z2)
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and
k∗1
k1

=
1

ω2
,
k∗2
k2

=
1

ω2 + p1(2ω + q1 + p1)
,

the first should be an upper bound and the second is a lower bound. Examples are

given in Table 2.

Table 2 Values of k∗s/ks of example 1

z 1 2 3 4 5 converges to

1/2 16.0000000 1.7777778 12.6137566 3.0634024 10.9613493 7.046952

1 1.0000000 0.5000000 0.7916666 0.7322530 0.6134259 0.685711

2 0.0625000 0.0526316 0.0552326 0.0544314 0.0547382 0.054651

Example 2

ln Γ(z) =
(

z − 1

2

)

ln z − z +
1

2
ln(2π) +

a0

z+

a1

z+

a2

z+
· · · (<(z) > 0)

where a0 to a6, are given in Wall (1948).

The continued fraction may be written

α1z

z2+

α2

1+

α3

z2+

α4

1+

α5

z2+

α6

1+
· · · (<(z) > 0),

so we write

1

z

{

ln Γ(z) −
(

z − 1

2

)

ln z + z − ln(2π)

2

}

=
α1

ω+

α2

1+

α3

ω+

α4

1+
· · · (ω = z2)

and the right hand side is in the correct form to agree with the 2nd order continued

fraction. Differentiate with respect to z, we have

d

dz

1

z

{

ln Γ(z) −
(

z − 1

2

)

ln z + z − ln(2π)

2

}

= 2z
d

dω

{

α1

ω+

α2

1+

α3

ω+

α4

1+
· · ·
}

.

Allowing for a change in sign when we consider derivatives, the sequences k∗s/ks are

approximants to

− 1

2z

d

dz

{

ln Γ(z)

z
−
(

1 − 1

2z

)

ln z + 1 − ln(2π)

2z

}

= − 1

2z

{

ψ1(z)

z
− ln Γ(z)

z2
− ln(z)

2z2
−
(

1

z
− 1

2z2

)

+
ln(2π)

2z2

}

with

k1∗ = 1/12 = k∗2, k1 = ω2, k2 = ω2 + α2(2ω + α3 + α2).
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and when z = 1/2 becomes

−
{

2ψ1(
1

2
) + 4 ln 2

}

= 2γ

Take z = 1. The 2nd order continued fraction (k∗s/ks) converges to the function

F (1) = −1

2

{

ψ(1) −
(

1 − 1

2

)

− ln(2π)

2

}

= 0.07908

Table 3 Values of k∗s/ks of example 2

z 1 2 3 4 5 converges to

1/2 1.3333333 0.9395973 1.2501182 1.0464910 1.1833200 2γ

1 0.0833333 0.0774363 0.0797778 0.0787481 0.0792193 0.07908

2 0.0052083 0.0051200 0.0051306 0.0051288 0.0051292 0.0051291

3 A determinantal reduction formula for contin-

ued fractions

Consider the continued fraction c0
z+

c1
z+

c2
z+

· · · with convergents χs

ωs

, s = 1, 2, · · ·. Then,

for example,

χ1 = c0, χ2 = zc1,

ω1 = z, ω2 = z + c1. (χ0 = 0, ω0 = 1).

We may therefore consider the determinant

∣

∣

∣

∣

∣

∣

χs χs+1

ωs ωs+1

∣

∣

∣

∣

∣

∣

using the recurrence formulas. Expanding the determinant leads to

χs

ωs

=
χ0

ω0
+
(

χ1

ω1
− χ0

ω0

)

+ · · · +
(

χs

ωs

− χs−1

ωs−1

)

+ · · ·+

at least formally. Hence

χs

ωs

=
c0
ω0ω1

+
c0c1
ω1ω2

+
c0c1c2
ω2ω3

. (3)

Example 3
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The Laplace continued fraction is

1

z+

1

z+

2

z+

3

z+
· · · (z > 0)

so ω1 = z, ω2 = z2 + z, ω3 = z3 + 3z, ω4 = z4 + 6z2 + 3. A simple formula is

ωs = e−
1

2
d2

xx2 the polynomial being Hermite.

Now using (3) we may set up an expression for derivatives of a continued fraction

using the Maple symbolic code.

4 Conclusion

We now pay attention to the function F (z) which represents the value to which the

2nd order continued fractions converges. If z is real and positive is F (z) positive?

For the first example we knew (Shenton and Bowman, 1971)

F (z) =
1

2z

{

ψ1(z) −
1

z
− 1

2z2

}

=
1

2z

2π

3

∫ ∞

0

y
√
xdx

xz2(y − 1)2
(y = e2π

√
x)

which is positive for z > 0.

Now consider the expression for F (z) arising from the continued fraction from

ln Γ(z). In the sequel for this case

F (z) = − 1

2z

d

dz

{

ln Γ(z)

z
−
(

1 − 1

2z

)

ln z + 1 − ln(2π)

2z

}

= − 1

2z

{

ψ(z)

z
− ln Γ(z)

z2
− ln z

2z2
−
(

1

z
− 1

2z2

)

− ln(2π)

2z2

}

We have been unable to prove this is positive, for z real and positive. So we test

out several cases.

Case with z = 1
2
:

F (z) = {−2ψ(2) − 2 lnπ − 2 ln
1

2
+ 2 ln(2π)} = 2γ (γ = Euler′s constant).

The upper bound is 4/3. It is quite remarkable that in the Handbook of Mathematical

Functions.... section 6.3.3, we have the single entry (also see ”dlmf.nist.gov”, 5.4.13)

ψ
(

1

2

)

= −γ − 2 ln 2 = 1.9635100260....
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As far as we can tell it is not referenced. What a remarkable piece of luck?

Now take F (1): We have

F (1) = −1

2

{

−γ − 1

2
+

ln(2π)

2

}

= 0.0058.

The upper bound is 1/12.

For z = 2,

F (2) = −1

4

{

−ψ(2)

2
− ln 2

8
− 3

8
+

ln(2π)

8

}

= −1

4

{

1

2
(1 − γ) − 3

8
+

ln(2π)

8

}

= 0.0051 · · · .

The upper bound is 0.0208.
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