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Abstract

The lnΓ(z) consists of three parts, (i) (z − 1
2) ln z − z, (ii) the constant ln

√
2π, and

(iii) the Stieltjes continued fraction J(z). The partial numerators for J(z) have been found

by Char (Mathematics of Computation, 34(150), 1980) and asymptotic forms are needed,

along with a conjecture of Stieltjes. Sequences of approximants are set up for ln
√

2π. In

another direction we use a second order continued fraction for the exponential function ez,

noting that d
dz e

z = ez so that a derivative of a continued fraction is involved.
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1 Clemshaw’s formula (1954)

In the Handbook of Mathematical Functions, (4.2.40) we have the continued fraction formu-
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attributed to Clemshaw (1954). By rearrangement of (2) we have the form

ez = 1 +
z
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z2/4 · 3
1+

z2/4 · 15
1+

z2/4 · 35
1+

· · ·

leading to

z

ez − 1
= 1 − z

2
+

z

1 − z
2 + z2/(4·3)

1+
z2/(4·15)

1+
z2/(4·35)

1+ · · ·
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in which also
z

ez − 1
=

∞
∑

n=0

Bnz
n

n!
(|z| < 2π).

with Bernoulli numbers B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30. The

relationship seems to have been overlooked.

Wall (1948, p348) derived expression (1) for ez using a more general function namely

Φ(1, c; z). Wall therefore verifies the series for ez given by Clemshaw, using a completely

different approach.

2 The continued fraction component in ln Γ(z) and a study

of Char

Basically

lnΓ(z) = (z − 1

2
) ln z − z +

1

2
ln(2π) + J(z) (z → ∞ in arg |z| < π).

From which Stieltjes (letter 172, 1905), (1918) gives the partial numerator components a1,

a2, · · ·, a5 as

a1 =
1

12
, a2 =

1

30
, a3 =

53

210
, a4 =

195

371
, a5 =

22999

22737
,

in the continued fraction

J(z) =
a1

z+

a2

z+
· · · (<(z) > 0).
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Wall (1948, p364) gave two additional terms a6 and a7.

a6 =
29944523

19733142
, a7 =

109535241009

48264275462
.

Now Char (1980), using a symbolic program to set up partial numerators in J(z) gave terms

to a40 (Table 1).

Table 1. Char’s Stieljes c.f. for the Gamma function

s as s as

0 0.083333 16 16.053551

1 0.033333 20 25.065847

2 0.252381 24 36.077689

3 0.525606 28 49.089255

4 1.011523 32 64.100423

8 4.026887 36 81.111403

12 9.040660 40 100.122178

Studying the coefficients it is clear that there is a regular pattern of as (s = 10 to 40) and

we point-out that the approximation is as/s
2 ∼ 1/16 (s→ ∞).

In (letter 173, p.354) Stieltjes (1905) states exactly this result as a conjecture that

as/s
2 ∼ 1/16. A result apparently overlooked in the literature. Stieltjes (letter 173, p352-

353; 1905) noted the arduous task of setting up a1, a2, · · ·, a5, in J(z), realty in, as later

turned out, that as ∼ s2/16. Stieltjes had in mind the continued fraction in

ψ

(

1 + a

2

)

− ψ

(

a+ 1

4

)

− ln(2) =
1

a+

12

a−
22

a+

32

a− · · · .

which we refer to in the sequel.

3 Approximants for ln
√

2π

From (2) we have for the constant ln
√

2π,

ln
√

2π

{

ln Γ(z) −
(

z − 1

2

)

ln z + z

}

+ J(z) (<(z) > 0)

where J(z) has partial numerators a1, a2,· · ·.
Three illustrative examples are given in Table 2; error terms are given in Table 3.
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Table 2. Approximants to ln
√

2π

Terms z = 1/2 z = 1 z = 10

1 0.905698 0.91666666 0.918935763304702280

2 0.925306 0.91935484 0.918938540156862671

3 0.916069 0.91882716 0.918938533168583255

4 0.920932 0.91898387 0.918938533517609271

5 0.917737 0.91891874 0.918938533514287047

6 0.919895 0.91894935 0.918938533204672871

7 0.918284 0.91893264 0.918938533204672754

ln
√

2π 0.918938533204672742

Table 3. Errors(%) for ln
√

2π

Terms z = 1/2 z = 1 z = 10

1 1.440821 0.24722726 0.0003014239

2 -0.692928 -0.04530287 -0.0000007565

3 0.312305 0.01211971 0.0000000039

4 -0.216955 -0.00493357 -0.0000000000

5 0.130791 0.00215358 0.0000000000

6 -0.104113 -0.00117745 -0.0000000000

7 0.071257 0.00064140 0.0000000000

Comments. Approximants are enveloping and improve as x gets larger.

There is a special case when x = 1/2. Here,

Γ

(

1

2

)

= 0 − 1

2
+ ln

√
2π +

a1
1
2−

a2
1
2−

a3
1
2−

· · · .

where Γ(1/2) =
√
π. Hence the term in

√
π disappears, leading to

ln 2 = 1 − 2a1
1
2+

a2
1
2+

a3
1
2+

· · · .

Thus ln 2 < 1, and ln 2 > 1 > 2/3.

4 The derivative of ez and the corresponding 2nd order c.fs

From

ez = 1 +
z

1 − z
2+

z2/(4 · 3)
1+

z2/(4 · 15)
1+

z2/(4 · 35)
1+

, (z > 0)

differentiation with respect to z and simplifying, we have

ez =
ez − 1

z
+

1

2z
(ez − 1)2 − (ez − 1)2

z

d

dz
C(z2), (3)
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where C(z2) = z2/(4·3)
1+

z2/(4·15)
1+ · · ·. In C(z2), replace z2 by 1/ω and carry out the equiva-

lence transformation, leading to

ez =
ez − 1

z
+

1

2z
(ez − 1)2 − 2

z4
(ez − 1)2

d

dz
C(ω),

C(ω) =
1/(4 · 3)
ω+

1/(4 · 15)
1+

1/(4 · 35)
ω+

1/(4 · 63)
1+

the partial numerator being 1/[4(4s2 − 1)], the partial denominator ω, 1, ω 1, etc, where

ω = 1/z2. A Stieltjes type continued fractions.

Now the denominator of a Stieltjes type c.f. has given in Shenton and Bowman (2005).

If

F (z) =

∫

∞

0

dσ(t)

t+ z
=

b1
z+

b2
1+

b3
z+

b4
1+

· · · ,

the integral being a Stieltjes transform, bs > 0, s = 1, 2, · · ·, then

l.i.s.
k∗2s

k2s
= lim

k∗s
ks

=
F (z2) − F (z1)

z1 − z2
,

• k∗s and ks follow, for s = 2, 3, · · · ,

W2s−1 = z1z2W2s−2 + α2s−1W2s−3 − β2s−1W2s−5 − z1z2γ2s−1W2s−6 + δ2s−1W2s−7,

W2s = W2s−1 + α2sW2s−2 − β2sW2s−4 − γ2sW2s−5 + δ2sW2s−6.

• k∗0 = 0, k∗1 = k∗2 = b1, k∗s = 0, s < 0,

k0 = 1, k1 = z1z2, k2 = z1z2 + b2(z1 + z2 + b3 + b2), ks = 0, s < 0,

• αs = bs(z1 + z2 + bs+1 + bs + bs−1), βs = bsbs−2αs−1,

γs = bsbs−1bs−2bs−3, δs = bsbs−1b
2
s−2bs−3bs−4;

• (t+ z1)(t+ z2) > 0 for x ≥ 0.

If z1 = z2 then we are considering the derivative at z = z1 or the derivative of a continued

fraction. A sequence of lower, and upper bounds will be found.

Example: z1 = z2 = 1, F (z) = e, bs = 1/[4(4s2 − 1)]. The first approximant is

k∗0 = 0, k∗1 = b1 = 1/12, k0 = 1, k1 = 1.

Approximant is

e− 1 +
1

2
(e− 1)2 − 2

12
(e− 1)2 = 2.702445975,

and is less than e. The second approximant is

k∗2 = b1, k2 = 1 +
1

60

(

2 +
1

60
+

1

140

)
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leading to

e ∼ (e− 1) +
1

2
(e− 1)2 − 2

12

(e− 1)2

1 + 1
30 + 1

3660 + 1
8400

= 2.718500142

which as expected, is grater than e (see table 4).

Table 4 Approximants to d
dz (ez)|z = 1 using c.f.

Approx. Approx.-e

1 2.70244597579658 -0.01583585266247

2 2.71850239662646 0.00022056816741

3 2.71828053050483 -0.00000129795422

4 2.71828183335584 0.00000000489679

5 2.71828182844768 -0.00000000001137

F 2.71828182845905

Also note the simple bounds implied in equation (1). For z real,

ez ≤ 1 +
z

1 − z
2 + z2

12

,

≥ 1 +
z

1 − z
2 + z2/12

1+z2/60

.

For z = 1, the approximants to e are 19/7 and 193/71; for approximant to 1/e the

approximants are 7/19 and 71/193.

We note that there is a generalization to the notation that ez · e−z = 1. Euler(1813)

gave what is equivalent to

1 −
(

1−z
1+z

)k

1 +
(

1−z
1+z

)k
=

kz

1 + (k2
−1)z2

3+
(k2

−4)z2

5+
(k2

−9)z2

7+···

.

Valid in the plane split from -1 to −∞, and +1 to +∞.

For another example consider

ψ

(

a+ 1

2

)

− ψ

(

a+ 1

4

)

− ln 2 =
1

a−
12

a−
22

a−
32

a− · · · (a > 0)

= C(a) say.

Note that the partial numerators are 1, 12, 22, · · ·, similar to those in J(z), in the latter

when s in as is large.

Using equivalence transformations,

C(a) = a

{

1

A+

12

1+

22

A+

32

1+

42

A+
· · ·

}

= aC∗(A). (A = a2)
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We look for an expression for

d

da
C∗(A) = 2a

d

dA
C∗(A),

and the corresponding 2nd order continued fraction. By differentiation

1

2
ψ1

(

a+ 1

2

)

− 1

4
ψ1

(

a+ 1

4

)

=
C(a)

a
+ a(2a)

d

dA
C∗(A).

The last term on the right is approximated by −k∗s/ks, where k∗0 = 0, k∗1 = k∗2 = 2a2, k0 = 1,

k1 = (a2)2 = a4, k2 = a4 + (2a2 + 5). Since b1 = 1, b2 = 12, b3 = 22 (b, numerators).

For simple particular case take a = 3 and use the identities,

ψ(1) = −γ, (γ is Euler′s constant

ψ(2) = 1 − γ

so that ψ(2) − ψ(1) = 1, ψ1(1) = π2/6, and ψ1(2) = π2/6 − 1. We are approximating

λ =
5

6
− ln 2

3
− π2

24
= 0.19105,

to second order continued fraction approximants, comparisons are given in Table 5.

Table 5. The derivatives of 1
a+

12

a+
22

a+ · · · when a = 3

s k∗s/ks s k∗s/ks

2 0.2222 3 0.1731

4 0.2042 4 0.1762

6 0.1970 7 0.1779

8 0.1933 9 0.1791

10 0.1912 10 0.1799

Note that the approximants are enveloping. Computations in Table 5 are based on a

simplified version of the recurrence scheme described in section 4. Briefly

ks = bs+1bs · · · b1Ks, k∗s = bs+1bs · · · b1K∗

s (s = 0, 1, · · ·)

Let

z1 + z2 + bs+1 + bs + bs−1 = Cs, (s ≥ 3),

z1 + z2 + b3 + b2 = C2.

Recurrence scheme,

b2sw2s−1 = z1z2w2s−2 + C2s−1w2s−3 −C2s−2w2s−5 − z1z2w2s−6 + b2s−3w2s−7,

b2s+1w2s = w2s−1 + C2sw2s−2 − C2s−1w2s−4 − w2s−5 + b2s−2w2s−6 (s = 2, 3, · · ·).
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5 Concluding remark on the asymptotic s2/16, for as in J(z)

Stieltjes had worked out terms in the continued fraction for J(z) up to and including a5.

Note then, that

Table 6. Continued fraction J(z)

s aa s2/16

3 0.526 0.562

4 1.011 1.000

5 1.517 1.516

6 2.270 2.250

Did Stieltjes project the asymptote from these cases. There may be clues in his letter 177.

For the case
a0

x
− a1

x2
+
a2

x3
+ · · · =

a0

x+

p1

x+

q1
x+

p2

x+

q2
x+

· · ·

he gives, using diagonal notation in the determinants

pn =
An−1Bn

AnBn−1
, qn =

An−1Bn−1

AnBn

with A0 = B0 = 1 and the persymetric quotient determinants

An = |a0, a2, · · · , a2n−2|, Bn = |a1, a3, · · · , a2n−1|.

The underlying series for our case J(z) is

J(z) =
∞
∑

pq

B2p

2p(2p− 1)

1

z2p−1
.

Using Bernoulli numbers B2 = 1/6, B3 = 0, B4 = 1/30. Stieltjes (letter 177, 1905) gives

example. The big problem relates to Anand Bn, and their quotient, each being persymetric.
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Stieltjes, T. J. (1918).Oeuvres Complétes, Tome 2, P. Noordhoff, Groningen.

Wall, H. S. (1948). Continued Fractions, Chelsea Publishing Co., Bronx, N.Y.

9


