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Abstract

A relation is shown between polygamma functions, expressed as c.f.s,
and the Riemann zeta function. Also the integral formulation of polygamma
functions is shown to be related to Euler numbers.
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1 Introduction

For the polygamma functions Shenton and Bowman, (1971) give the following
results:

¢m(z):(—1)m+1<(m_1)!+ m: >+(_1)m+10m(z2) (R() > 0)

Zm zmtl

for m = 0,1,---; also for m = 0, (;,,11)! is replaced by —In(z). Here the

polygamma function
dm—|—1

InT'(z),

wm(z) - dzm+1
¥(2) = 1ho(2z) being the psi(digamma) function. Moreover there is the c.f.
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where ¢ = (m + 1)!/12, and ¢{™ is given to s = 5; further values could

be found although there are complications (see Shenton and Bowman (1971,
p.553)). The c.f.s are
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Now 1)(z) is given by Stieltjes (1918, p385),
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where p;, = 51(;:21)’ qs = 5(45;;12)2, s =1,2,---. As far as we know this is the

only case for which all partial numerators are known. Indeed for the general
case from Shenton and Bowman (1971, p553),
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The fifth partial numerator involves 7g(m), not an attractive prospect. An-
other examples arises from the well known expression,
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and
a; =1/12, ay=1/30, a3=53/210,

ay = 195/371, a5 = 22999/22737,

the a; being positive. This was given by Stieltjes (1905, p351, letter of
1889). Wall (1948) gives ag and ay. These partial numerators do not seem
to subscribe to simple closed forms. But as already noted, by contrast, for
1o (z) all partial numerators are known in simple closed forms. Perhaps J.B.S.
Haldane would have remarked ”Mathematics is not only curious but more
curious than we can think”.

In this paper we use the recurrence I'(z + 1) = zI'(x) and its derivatives
to establish relations between polygamma functions and the Riemann zeta
function.

2 Polygamma functions and the Zeta func-

tion
We have
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Differentiating m times we have
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from §1. This we set up the tabulation of approximants to 7.
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Table 1. Bounds for Euler’s Constant with n = 1 and successive terms of

the c.f.

Using s partial numerators |Error|

s
1
2
3
4
3
6

0.5776861528
0.5771780227
0.5772207272
0.5772146373
0.5772159268
0.5772155823

0.0004704879
0.0000376422
0.0000050623
0.0000010276
0.0000002619
0.0000000826

The first approximant is 5/4 — In2 + 1/48, second is 5/4 — In 2 + 5/246.

Clearly the c.f. approximants are quite sharp, the odd convergents pro-
viding a set of decreasing bounds, the even a set of increasing bounds. Note
that in the 1971 paper we have provided that all partial numerators are posi-
tive. The general expression for v,,(1) may be used to set up similar bounds
for (i) 1 (1) which is related to the zeta function ¢ (2) = 72/6, (ii) 13(1) which
is related to /90, and (iii) 19,_1(1) which is related to ((2s) = %|B23|.

J.C. Adams (1878) computed vy, Euler’s constant to 264 decimal places.
His result being



E= 57721 56649 01532 86060 65120 90082 40243 10421 59335 93992
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92353 62535 00333 74293 73377 37673 94279 25952 58247 (09491
60087 35203 94816 56708 53233 15177 66115 28621 19950 15079
84793 74508 5697 (E=)

Adams had to compute the Bernoulli number Bgy; he gives an interesting
account of Euler’s use of divergent series. His value for +y is correct up to 261
digits according to the value computed on Maple.

In our 1971 paper on derivatives of the psi function we give the Stieltjes
transforms
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The general case will be
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where y = exp(27+/z), and ©,,(y) is perhaps a polynomial in y of degree m.
Now there is the asymptotic expansion
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This implies that
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where B, is a Bernoulli number.

3 An expression for ©,,(y) involving Euler num-
bers

Now in connection with a related problem, Shenton and Bowman (2001) used
the formula

Om(t) = (1 —e ™! (%) . _1€_t. (t>0,m=0,1,---)
For examples
O(t) =1, O(t) = e,
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t in the integrals of (3), there is agreement corresponding

to the forms in (1). Hence
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Returning to (3), the left side becomes, using 1/y = e,
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as it should.
The O,,(e”") polynomials turn up in expressions for the cumulants of a
geometric random variable.



4 Conclusion

At least formally when ,,(z) is expressed in terms of a Stieltjes integral (ex-
pression (1)), we have shown that the integrand has a polynomial component
whose coefficients are Euler numbers, such as
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Riordan (1958).
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