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Abstract

Stieltjes transforms refer to integrals with integrand do(t)/(t + z), the
range from zero to co. Other continued fractions are related to this form and
appear in the form ¢ - 2 £ ... Second order continued fractions relate
to a definite integral with integrand do(t)/(t + 21)(t + 22). The Fibonacci
cf. is - 7= §r ---or F(z) = ;& - ;= --- with z = 1. The 2nd order
c.f., relates to —dF/dz |,,—,,—1. Based on these 2nd order c.f.s., results are
derived for properties of Fibonacci numbers and the squares of Fibonacci

numbers.
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1 Introduction

Fibonacci numbers 1,1,2,3,- - - are related to the continued fraction

where z = 1. In this case the c.f.

RN I T -

1+ 1+ 1+ 1+

has convergents X;/ws, both of which follow a recurrence relation of order 2.
For example
Wy = Ws_1 + Ws_2 (s=2,3,--+) (2)

with wy = 1, wy = 1. The characteristic equation is A2 — A — 1 = 0 with roots
A= (14++/5)/2, and Ay = (1 —/5)/2. In fact

s+1 s+1
AT A

Wy = 7 (s=0,1,--+)

and Ay = —1.

How is the 2nd order recurrence related to that of the Ist order c.f. given
in (2), and properties of the w; denominator of (1). First of all a brief account
of 2nd order c.f.s.

2 Second order c.f.s, basic formula

A continuant determinant has the form

ar b
bT a9 b2 .
AS = 0 b; as b3

with recurrence



linear and of order two. This determinant is asymmetric with elements only
in the main diagonal, the upper diagonal, and the lower diagonal. We may
use a notation reflecting this property such as K;(as, bs) when b% = b i.e. the
symmetric case. A generalization is now obvious leading to a determinant of
5 diagonals, one central, 2 upper, and 2 lower. Recurrence relations for this
case are considered in Shenton (1957, pp.167-188). We note in passing that
Ursell (1958) considered the recurrence for a set of s linear equations, the
coefficients being variable. As examples, he gave the following orders:

order 5(6) for the 5 diagonal determinant
15(20) for the 7 diagonal determinant
49(70) for the 9 diagonal determinant

)

604(924) for the 13 diagonal determinant

(Parenthetic entries refer to the asymptotic case).

It should be noted that although the order of a recurrence is known, it
may be another matter to find it.

An encouraging practical application of c.f.s is to be found in papers by
J.C. Shenton and L.R. Shenton (June 1960, November 1960, and September
1961) concerning harmonics in synchronous machines, and published by the
Royal Aircraft Establishment (Farnborough).

The fundamental equation, a difference expression in Laplace transforms,
this allowing the possible expansion by c.f.s. We find examples such as

Qn ai Gz Gz Qq
K 24+ 1+ z+ 1+
where
ags = 1/gs(n+25 —2),  ages1 = k*/gs(n + 25);
also
. 1 k? k?
Tl —itn— 1 —itnpi— 1 —itnso—

ﬁn (nzl,g’...)

3 Second order c.f.s. and definite integrals

A Stieltjes transform may be associated with a c.f. Thus

Fe)= [ W) w(z) > 0)

t+2’

3



z+ 1+ 2+ 2+
and its even part

Qo a1 a2
Z2+C— zZ+C— zZ+cC3—

A second order c.f. is defined by

_ o0 dO’(t)
F(z1, 29) _/o (t+ 21)(t + 22)

if it exists. The approximants are £k} and k, where

.k
F(z1,29) = Sllglo k_s’

and
k: = Ks—l(fyla /81’ 051), ks = Ks(’YO; /605 O[O)

these being 5 diagonal determinants, v in the central diagonal, 8 in the first
upper diagonal and first lower diagonal,  in the second upper diagonal and
second sub-diagonal, the orders being denoted by the subscripts s in K.

0 = /s 110512,

Bs=(p+copr + cs+2)\/m’

Vs = q+ PCor1 + Copy + a5 + ag41,
a, =as5>0, a;=0,

S
(t+z21)t+2)=t"+pt+q>0, z>0.

There is a similar form for a “third order” c.f. associated with the Stieltjes
integral

_ o0 dO’(t)
F(z1,22,23) = /0 (t+ 21)(t + 29)(t + 23)

with the assumption of existence. (Shenton, 1957, p.168)




4 A basic theorem

In Shenton (1957) there is the theorem concerning a S-fraction, namely, if
the Stieltjes moment problem is determined and

Poy= [THO bbb bbb @
0o t+z z+ 1+ 2+ 14+ 24+ 1+
then L L Flz) — F(z)
. 55 .k 29) — F(z
l-Z-S-sﬁwk—; = slg{.lok—s = ﬁa (21 # 22)
where

e L} and k, follow, for s =2,3,---,
Was1 = 212Waso + g 1Was 3 — Bos 1Was 5 — 2120725 1Was6 +
025—1Was—7,
Was = Wos_1 + aosWos_o — BasWas—a — Y2sWas—5 + 02, Was_s.

o k5 =0, ki =k5 =0, ki=0,s<0,
]CO =1, ki = 21292, ko = Z1ZQ+b2(Z1+Zz+b3+b2), ks =0,s<0,

o oy = bs(zl + 22 + bs+1 + bs + bs—l)a /65 = bsbs—Zas—lv
Vs = b5b5_1b5_2b5_3, 55 = bsbs—1b§_2b3—3bs—4;

o (t+21)(t+22) >0 for z > 0.

It may be established that ‘odd’ part kj,_;/kos—1 arises from the second
order c.f. associated with the integral in the expression

a (FEREE) - [

where tdi)(t) is taken as the weight function. The ‘odd’ part of the sequence,
unlike that of a Stieltjes c.f., does not in general provide a set of decreasing
upper bounds.



5 A recurrence for w; (wy=1,wi=1,wy =2, w3=
3)

From (1) ws is a sth Fibonacci number and
why = (Bwas—n — Was—a)” = Qwi_p + Wi, 4 — Bwas—owa—a. (5=2,3,---) (4)

But wos owos 4 = was 4(3was 4 — wes ) and substituting from (4) we have
the recurrence

w%s - 8“‘)5572 + 8(“);574 - w%sffi =0 (S = 3’ o ) (5)

Let
(1)25 = w;s - 7“‘)%3—2 + U‘)gs—4' (S > 1)
Then from equation (5)
®yy — Py, =10 (S:2a)

Thus
Gy, =Py =52 —-7-2241=-2.

Hence
2
w%s - 7‘*’3572 + wy_ g = —2. (s=3,--)

0) = CLJ2 — ;UJ2 -+ w2
2s+1 2s+1 2s—1 2s—3

along with
w§s+1 - 8('055—1 + 8(")55—3 - wgs—5 =0 (8 = 37 o )

then

leading to
Doy = D3 =(21)2-7-82+32=2.

Together, then
w%s - 70‘)3572 + w%sf4 = -2 (8 = 2’ ot )

wgs—}-l - 7(“)%5—1 + w;s—3 =42 (8 = 27 o ) (6)
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By a completely different approach, Rajesh (2004) has provided the first
of the equations. The equation (6) may be regarded as a number theorem
problem. For example find solutions in integer (> 0) such that

— Tn +nj = £2,

a type of Diophantine analysis. Note that the zeros of 22 — 7z + 1 are
= (7+3v/5)/2, and x5, = (7—3+/5)/2 and in terms of Fibonacci parameters

(55 e

6 Second order c.f.s, simultaneous recurrences

6.1 Details of the basic theorem

Returning to the basic theorem in §4, we take z; = 1, 2o = 1 so that (3)
becomes

P L 111
z+ 1+ 2+ 1+
and F(1) refers to the Fibonacci case. Note that when z; = 2z, we are
considering
dy(t) Vit -1
dz/o t+z dz27r/ itz
where

z > 0)

1 J1+4/z
F(z)= —3 + % (
so that the derivative is

4/7*
4,/1+4/2
and in particular —F'(1) = 1//5.

The second order c.f. sequences are derived from (k%) and (ks) where

F'(z) = —

these follow the recurrences

Wos—1 = Wos_o + 5Wos_5 — 5Wos_5 — Wos_g + Was_7,
Wos = Wos_1 + 9Wos_g — 5Wog_s — Wos_5 + Wos_s (7)
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with kf =0, ki =k =1, kg =1, ky =1, ke =5, with £} =0, s < 0,
ks =0, s < 0. Further values are given in Table 1. The approximants k¥ /k,
form an enveloping sequence (see Shenton, 1957, p184), showing that even
convergents k3. /kos form a monotonic increasing set of lower bounds, whereas
the sequence k3, | /kas;1 forms a monotonic decreasing set of upper bounds.
This characteristic is analogous to the situation for first order c.f. such as
bi by b3

il R provided by, by, b3 - - - are positive values.

Table 1. k* and k, for approximants to 1/4/5, a second order c.f.
s k; ks t, s k; ks ts
1 1 1.0 11 10866 24276 0.4476
2 5 0.2 12 28416 63565 0.4470
3 10 0.6 13 74431 166405 0.447288
4 11 30 0.37 14 194821 435665 0.447181
5 36 74 0.49 15 510096 1140574  0.447227
6 8 199 0.43 16 1385395 2986074 0.447208
7 235 515 0.456 17 3496170 7817630 0.447218
8 600 1355 0.443 18 9153025 20466835 0.4472125
9 1590 3540 0.449 19 23963005 53582855 0.4472140
10 4140 9276 0.4463 20 62735880 140281751 0.4472134
00 0.4472136

We have

6.2 Expression for k; — ks_o

From Shenton (1957, p.180), we have

_ 2
{ kos — kos—o = Wag

_ 2
k25+1 — kos—1 = Wog_1

(8)

since by = by = b3 = 1. Using (6), these lead to the recurrences (non-
homogeneous)

kos — 8kos_o + 8kos—4 — kas_6 = —2 (s=3,---)
k25+1 - 8k25—1 + 8k25—3 - k25—5 = +2 (S = 3a o )

8



Note that for the homogeneous part of (7), the characteristic equation
3 — 82 +8t—-1=0,

has roots given by
t—1)*=Tt+1) =0,

4 4
ort; =1, = (1+2\/‘?’) , by = (1’2—‘/3) suggesting a solution of the form

2 2

4s 4s
1 3 1-+/5
A0+A1$+A2< +\/_> +A3< f) .

where A; = +A;.

6.3 ky, as a Fibonacci number

From equation (8)
k?s - k25—2 = w%s

_ 2
kos—o — kos—4 = Wog_9

kg — ko = w%
By addition
B(kas — ko) = (AT = 0577 + (AT = A8 o+ (AT - )
=25+ AT AT T R DT T )

NOE=1) | MO4—1)

.
S v— M1

But
No1= (2= 1)(A2+1) = M +2) = X5,

since A2 = \; + 1. Similarly,
M-1=02-1)M2+1) = +2) = -\25,

Hence
5(kas — ko) = 25 4+ wast3 — ws.



SO
5]{325 = 2(8 + 1) + W4s+3- (8 = O, ]., . ) (10)

Similarly using (8) for kys.1 we find the relation

5k25+1 =-25s—3+ W4s+5- (S = O, 1, . )

Examples
]{325 :

5kg=2+3=5

Sk =4+21=25

5k, = 6 + 144 = 150

S5kip = 12 4+ wo3 = 12 4 46368 = 46380,
k25+1 :

ok =—-3+8=5

Sks = =7+ 377 =370, ks =74

oky = =9+ 2584 = 2575, k; =515

dko = —11 + woy; = =11 417711 = 17700, kg = 3540

* : 2
6.4 k5, in terms of w;

A study of Table 1 provides numeral evidence that
k3sp1 — kag_y = kas.
A proof of this is given in an Appendix. We have, from (10),
S(k3er1 — k35 1) = 2(s +1) + wasys,
5(k3sm1 — k3s—3) = 25+ was—1,
5(k; — ].GI).Z.ZQ.—F wr.
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By addition
1)(s +4
(15,0 - k) =2 (DD 1)y,

where
P Gy VAP Tt AP
V5 V5 V5

A+ AT -+ 2D AT 4+ )

V5 v
_R0E-1) MO -1

VEOE—1) VB - 1)’

where A\¥ — 1 =A2\/5, and \j — 1 = —\2v/5. Hence
_NOE 1) X0 1)
) ) ’
s s 2 2
ey (e
Vb Vb

_ 2 2
= Wogyo — Ws.

P

It follows that
Skyei1 =5+ (s—1)(s+2)—2—4+ws,_,,
=85 +3s+ 14w

a strange form compared to the case for 5kys and kos 1 given in (10).

6.5 k3, in terms of w?

Again from the appendix
k;s - k;s—Q = k2s—1-
This leads to the scheme:
5(ky, — k5s o) = —25 — 1 4+ wWast1
5(k;sf2 - k;sf4) =—-25s—-1+ W4s—3
5(1{;;5—4 - kés—G) =-2s—1+ Wys—7
5(k; — k%) = —5 + wo.
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Adding,

/\11134—2 o )\%3—1—2 N /\1113—3 o )\33—3 ey )\%0 _ /\%0
/5 5 /5
MO — 1) A - 1)
VB —1) VB —1)

5(kyy —k3) =—(s+1)(s+3) +

=—(s+1)(s+3)+

so finally
5k3s = —(s + 1)2 + W§s+1-

Example of 5k3,.

s=0; bki=—1+1=0, kj=0
s=1; bky=—-44+9=5, ky=1
s=2 5ki=—9+64=55 k=11
s =3; bky=—16+441 =425, ki =285

7 Conclusion

Properties of Fibonacci numbers are derived based on the second order c.f.
corresponding to F'(z) = ﬁ ﬁ % -+ -, the second order c.f. refers to —% Z=1-

It is therefore possible that series of the results may be new.
Note that, for example

5k, _ —(s+ 1)2 + wgsﬂ

5kas 2(s+ 1) + wysy3

SO as § — 00,
@ ~ w%s—f—l ~ (A%S—H/\/E)Q,
kos  wWasts AP /5

i.e. the limitsis 1/ V5, as it should. A similar result holds for lim,_, Zj:—ﬁ
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Appendix

. * * * *
Al. Concerning k5, — k3, o and k5, ; — k5, 4

From Shenton (1957, pl74, equation (18)) we have, adjusting the notation
to our present study

k;s = 10k5,_o — 25ky, 4 + 25k, o — 10k5, ¢ + ko, 19 (S =5, ) (11)
and
k;sz = 10k;sf4 - 25k5576 + 25]{:;578 - 10]“;3710 + k;stQ (S = 65 o )

Subtract and deduce an expression for k5, — k3,_, on the left side; the right
hand side becomes,

10ka,_5 — 25kas_5 + 25ka_7 — 10kas_g + kay_11 (12)

if the assumption in (11) is correct. But (11) is also true for kg, the only
difference being in initial values. Hence (12) predicts the value ko, ;. This
approach provides an inductive proof for the assumption in (A1l).

A2. A linear equation for w,
From equation (8), elimination leads to
kos — 9kos_o + 16kos 4 — Ykos ¢ + kos s =0, (s=2,4,---)
and similarly for ko, 1. But, for example,
kos =2(s+1) +wasy3  (s=0,1,---)
In this way, we can set up the linear relations for Fibonacci numbers,

Was+19 — was 15 + 16wast11 — wasi7 + wasy3 =0 (s =0,1,---)

Was+17 — wast13 + 16Was1g — wasys + wasp1 = 0. (s =0,1,--+)

13



A3. w, and divisibility by 5
Consider equations such as

Skos = 2(s + 1) + wisys3,
0kosi1 = —28 — 3 + Wys+5,
5kyei1 =8 +3s+ 1+ ws, o,

ks = —(s+ 1) + w§s+1'

These will be divisibility by 5 if the first term on the right is divisible by 5.
For example, (s+ 1)? is divisible by 5 if s = 4, 9, 14, ---. Checking each case
in this way leads to a proof that w,, the Fibonacci number, is divisible by 5
fors=4,9, 14, ---.
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