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Goal of This Talk

• Introduce basic concepts and vocabulary of 
component-based software engineering

• Highlight the special demands of high-performance 
scientific computing on component environments

• Provide a unifying context for the remaining talks
– And to consider what components might do for your 

applications

• Not to tout a particular component environment
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Modern Scientific Software 
Engineering Challenges

• Productivity
– Time to first solution (prototyping)
– Time to solution (“production”)
– Software infrastructure requirements

• Complexity
– Increasingly sophisticated models
– Model coupling – multi-scale, multi-physics, etc.
– “Interdisciplinarity”

• Performance
– Increasingly complex algorithms
– Increasingly complex computers
– Increasingly demanding applications
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Some Observations About 
Software…

• “Our failure to master the complexity of software 
results in projects that are late, over budget, and 
deficient in their stated requirements.” [Booch]

• “The complexity of software is an essential property, 
not an accidental one.” [Brooks]

• “A complex system that works is invariably found to 
have evolved from a simple system that worked… A 
complex system designed from scratch never works 
and cannot be patched up to make it work.” [Gall]
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A Random Example

• An example of what can lead to a crisis in software:
• At least 41 different Fast Fourier Transform (FFT) 

libraries:
– see, http://www.fftw.org/benchfft/doc/ffts.html

• Many (if not all) have different interfaces
– different procedure names and different input and output 

parameters
• SUBROUTINE FOUR1(DATA, NN, ISIGN)

– Replaces DATA by its discrete Fourier transform (if ISIGN is input 
as 1) or replaces DATA by NN times its inverse discrete Fourier 
transform (if ISIGN is input as -1).  DATA is a complex array of 
length NN or, equivalently, a real array of length 2*NN.  NN 
MUST be an integer power of 2 (this is not checked for!).
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More Observations…

• “The best software is code you don’t have to 
write” [Jobs]

• “Intracomponent linkages are generally 
stronger than intercomponent linkages.” 
[Simon]

• “Frequently, complexity takes the form of a 
hierarchy.” [Courtois]
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Component-Based Software 
Engineering

• CBSE methodology is emerging, especially from 
business and internet areas

• Software productivity
– Provides a “plug and play” application development 

environment
– Many components available “off the shelf”
– Facilitates reuse and interoperability of components

• Software complexity
– Components encapsulate much complexity into “black boxes”
– Plug and play approach simplifies applications
– Model coupling is natural in component-based approach

• Software performance (indirect)
– Plug and play approach and rich “off the shelf” component 

library simplify changes to accommodate different platforms
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What are Components?

• No universally accepted definition…yet

• A unit of software deployment/reuse 
– i.e. has interesting functionality
– Ideally, functionality someone else might be able to (re)use

• Interacts with the outside world only through well-
defined interfaces
– Implementation is opaque to the outside world
– Components may maintain state information
– But external access to state info must be through an interface (not a 

common block)

• Can be composed with other components
– “Plug and play” model to build applications
– Composition based on interfaces
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What is a Component 
Architecture?

• A set of standards that allows:
– Multiple groups to write units of software (components)…
– And have confidence that their components will work with 

other components written in the same architecture

• These standards define…
– The rights and responsibilities of a component
– How components express their interfaces
– The environment in which are composed to form an 

application and executed (framework)
– The rights and responsibilities of the framework
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A Simple Example: 
Numerical Integration Components
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Built from the Provided 
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Another Application…
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Application 3…
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And Many More…
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Dashed lines 
indicate alternate 

connections

Create different applications 
in "plug-and-play" fashion
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Typical Component Lifecycle

• Composition Phase
– Component is instantiated in framework
– Component interfaces are connected appropriately

• Execution Phase
– Code in components uses functions provided by another 

component

• Decomposition Phase
– Connections between component interfaces may be broken
– Component may be destroyed

Phases may be intermixed
Steps may be under human or software control
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Libraries vs Components
• Component environments 

rigorously enforce interfaces
• Can have several versions of 

a component loaded into a 
single application

• Component needs add’l
code to interact w/ 
framework
– Constructor and destructor 

methods
– Tell framework what ports it 

uses and provides
– Environmental queries

• Invoking methods on other 
components typically 
requires modifications to 
“library” code

Integrator

Integrator library code
(modified)

Framework interaction
code (new)
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Objects vs Components

• You can build components out of object 
classes
– (or out of Fortran procedures)

• But a component is more that just an object

• A component only exists in the context of a 
component standard and the environment it 
defines (framework)
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Interfaces, Interoperability, and 
Reuse

• Interfaces define how components interact…
• Therefore interfaces are key to interoperability and 

reuse of components

• In many cases, “any old interface” will do, but…
• General plug and play interoperability requires 

multiple implementations providing the same 
interface

• Reuse of components occurs when they provide 
interfaces (functionality) needed in multiple 
applications
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Designing for Reuse

• Designing for interoperability and reuse requires 
“standard” interfaces
– Typically domain-specific
– “Standard” need not imply a formal process, may mean 

“widely used”

• Generally means collaborating with others
• Higher initial development cost (amortized over 

multiple uses)
• Reuse implies longer-lived code

– thoroughly tested 
– highly optimized
– improved support for multiple platforms
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Special Needs of Scientific HPC

• Support for legacy software
– How much change required for component environment?

• Performance is important
– What overheads are imposed by the component 

environment?
• Both parallel and distributed computing are important

– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

• Support for languages, data types, and platforms
– Fortran?
– Complex numbers?  Arrays? (as first-class objects)
– Is it available on my parallel computer?
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Commodity Component Models

• CORBA, COM, Enterprise JavaBeans
– Arise from business/internet software world

• Componentization requirements can be high
• Can impose significant performance overheads
• No recognition of tightly-coupled parallelism
• May be platform specific 
• May have language constraints
• May not support common scientific data types
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Domain-Specific vs General 
Component Models

Domain-specific
• Provide a significant 

software infrastructure 
to support applications 
in a given domain

• Often attempts to 
generalize an existing 
large application

• Often hard to adapt to 
use outside the original 
domain

• Relatively common

General
• Provide the infrastructure 

to hook components 
together
– Domain-specific 

infrastructure can be built 
as more components

• Usable in many domains
– More opportunities for 

reuse

• Relatively rare at present
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Summary

• Components are a software engineering tool to help 
address software productivity and complexity

• Important concepts: components, interfaces, 
frameworks, composibility, reuse

• Scientific HPC imposes special demands on 
component environments
– Which commodity tools may have trouble with

• Scientific component environments come in “domain 
specific” and “general” flavors
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Coming Attractions

Monday (MS21)
• CCA-Component Based 

Simulation of Flows on 
Adaptively Refined 
Structured Meshes

• The BioPSE Software 
System: Releasing and 
Supporting an Open Source 
Problem Solving 
Environment

• Creating Grid-Enabled 
Applications through Cactus 
and GridLab

Tuesday (MS45)
• High Throughput Genome 

Analysis Environment
• A Migration Framework for 

Legacy Scientific 
Applicatications

• yourSky as a Prototype for 
the National Virtual 
Observatory Component 
Architecture

• A Common Component 
Architecture (CCA) Study

3:15-5:15 pm in Garden Room A


