
SIAM Computational Science and Engineering 1SIAM Computational Science and Engineering10 February 2003 110 February 2003

Components for Scientific
Computing: An Introduction

David E. Bernholdt
Computer Science and Mathematics Division

Oak Ridge National Laboratory
bernholdtde@ornl.gov

Research supported by the Computer Science and Mathematics Division of Oak Ridge National Laboratory,
managed by UT-Battelle, LLC for the US Dept. of Energy under contract DE-AC-05-00OR22725

SIAM Computational Science and Engineering 210 February 2003

Goal of This Talk

• Introduce basic concepts and vocabulary of
component-based software engineering

• Highlight the special demands of high-performance
scientific computing on component environments

• Provide a unifying context for the remaining talks
– And to consider what components might do for your

applications

• Not to tout a particular component environment

SIAM Computational Science and Engineering 310 February 2003

Modern Scientific Software
Engineering Challenges

• Productivity
– Time to first solution (prototyping)
– Time to solution (“production”)
– Software infrastructure requirements

• Complexity
– Increasingly sophisticated models
– Model coupling – multi-scale, multi-physics, etc.
– “Interdisciplinarity”

• Performance
– Increasingly complex algorithms
– Increasingly complex computers
– Increasingly demanding applications

SIAM Computational Science and Engineering 410 February 2003

Some Observations About
Software…

• “Our failure to master the complexity of software
results in projects that are late, over budget, and
deficient in their stated requirements.” [Booch]

• “The complexity of software is an essential property,
not an accidental one.” [Brooks]

• “A complex system that works is invariably found to
have evolved from a simple system that worked… A
complex system designed from scratch never works
and cannot be patched up to make it work.” [Gall]

SIAM Computational Science and Engineering 510 February 2003

A Random Example

• An example of what can lead to a crisis in software:
• At least 41 different Fast Fourier Transform (FFT)

libraries:
– see, http://www.fftw.org/benchfft/doc/ffts.html

• Many (if not all) have different interfaces
– different procedure names and different input and output

parameters
• SUBROUTINE FOUR1(DATA, NN, ISIGN)

– Replaces DATA by its discrete Fourier transform (if ISIGN is input
as 1) or replaces DATA by NN times its inverse discrete Fourier
transform (if ISIGN is input as -1). DATA is a complex array of
length NN or, equivalently, a real array of length 2*NN. NN
MUST be an integer power of 2 (this is not checked for!).

SIAM Computational Science and Engineering 610 February 2003

More Observations…

• “The best software is code you don’t have to
write” [Jobs]

• “Intracomponent linkages are generally
stronger than intercomponent linkages.”
[Simon]

• “Frequently, complexity takes the form of a
hierarchy.” [Courtois]

SIAM Computational Science and Engineering 710 February 2003

Component-Based Software
Engineering

• CBSE methodology is emerging, especially from
business and internet areas

• Software productivity
– Provides a “plug and play” application development

environment
– Many components available “off the shelf”
– Facilitates reuse and interoperability of components

• Software complexity
– Components encapsulate much complexity into “black boxes”
– Plug and play approach simplifies applications
– Model coupling is natural in component-based approach

• Software performance (indirect)
– Plug and play approach and rich “off the shelf” component

library simplify changes to accommodate different platforms

SIAM Computational Science and Engineering 810 February 2003

What are Components?

• No universally accepted definition…yet

• A unit of software deployment/reuse
– i.e. has interesting functionality
– Ideally, functionality someone else might be able to (re)use

• Interacts with the outside world only through well-
defined interfaces
– Implementation is opaque to the outside world
– Components may maintain state information
– But external access to state info must be through an interface (not a

common block)

• Can be composed with other components
– “Plug and play” model to build applications
– Composition based on interfaces

SIAM Computational Science and Engineering 910 February 2003

What is a Component
Architecture?

• A set of standards that allows:
– Multiple groups to write units of software (components)…
– And have confidence that their components will work with

other components written in the same architecture

• These standards define…
– The rights and responsibilities of a component
– How components express their interfaces
– The environment in which are composed to form an

application and executed (framework)
– The rights and responsibilities of the framework

SIAM Computational Science and Engineering 1010 February 2003

A Simple Example:
Numerical Integration Components

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

SIAM Computational Science and Engineering 1110 February 2003

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

An Application
Built from the Provided

Components

SIAM Computational Science and Engineering 1210 February 2003

Another Application…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

SIAM Computational Science and Engineering 1310 February 2003

Application 3…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

SIAM Computational Science and Engineering 1410 February 2003

And Many More…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

SIAM Computational Science and Engineering 1510 February 2003

Typical Component Lifecycle

• Composition Phase
– Component is instantiated in framework
– Component interfaces are connected appropriately

• Execution Phase
– Code in components uses functions provided by another

component

• Decomposition Phase
– Connections between component interfaces may be broken
– Component may be destroyed

Phases may be intermixed
Steps may be under human or software control

SIAM Computational Science and Engineering 1610 February 2003

Libraries vs Components
• Component environments

rigorously enforce interfaces
• Can have several versions of

a component loaded into a
single application

• Component needs add’l
code to interact w/
framework
– Constructor and destructor

methods
– Tell framework what ports it

uses and provides
– Environmental queries

• Invoking methods on other
components typically
requires modifications to
“library” code

Integrator

Integrator library code
(modified)

Framework interaction
code (new)

SIAM Computational Science and Engineering 1710 February 2003

Objects vs Components

• You can build components out of object
classes
– (or out of Fortran procedures)

• But a component is more that just an object

• A component only exists in the context of a
component standard and the environment it
defines (framework)

SIAM Computational Science and Engineering 1810 February 2003

Interfaces, Interoperability, and
Reuse

• Interfaces define how components interact…
• Therefore interfaces are key to interoperability and

reuse of components

• In many cases, “any old interface” will do, but…
• General plug and play interoperability requires

multiple implementations providing the same
interface

• Reuse of components occurs when they provide
interfaces (functionality) needed in multiple
applications

SIAM Computational Science and Engineering 1910 February 2003

Designing for Reuse

• Designing for interoperability and reuse requires
“standard” interfaces
– Typically domain-specific
– “Standard” need not imply a formal process, may mean

“widely used”

• Generally means collaborating with others
• Higher initial development cost (amortized over

multiple uses)
• Reuse implies longer-lived code

– thoroughly tested
– highly optimized
– improved support for multiple platforms

SIAM Computational Science and Engineering 2010 February 2003

Special Needs of Scientific HPC

• Support for legacy software
– How much change required for component environment?

• Performance is important
– What overheads are imposed by the component

environment?
• Both parallel and distributed computing are important

– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

• Support for languages, data types, and platforms
– Fortran?
– Complex numbers? Arrays? (as first-class objects)
– Is it available on my parallel computer?

SIAM Computational Science and Engineering 2110 February 2003

Commodity Component Models

• CORBA, COM, Enterprise JavaBeans
– Arise from business/internet software world

• Componentization requirements can be high
• Can impose significant performance overheads
• No recognition of tightly-coupled parallelism
• May be platform specific
• May have language constraints
• May not support common scientific data types

SIAM Computational Science and Engineering 2210 February 2003

Domain-Specific vs General
Component Models

Domain-specific
• Provide a significant

software infrastructure
to support applications
in a given domain

• Often attempts to
generalize an existing
large application

• Often hard to adapt to
use outside the original
domain

• Relatively common

General
• Provide the infrastructure

to hook components
together
– Domain-specific

infrastructure can be built
as more components

• Usable in many domains
– More opportunities for

reuse

• Relatively rare at present

SIAM Computational Science and Engineering 2310 February 2003

Summary

• Components are a software engineering tool to help
address software productivity and complexity

• Important concepts: components, interfaces,
frameworks, composibility, reuse

• Scientific HPC imposes special demands on
component environments
– Which commodity tools may have trouble with

• Scientific component environments come in “domain
specific” and “general” flavors

SIAM Computational Science and Engineering 2410 February 2003

Coming Attractions

Monday (MS21)
• CCA-Component Based

Simulation of Flows on
Adaptively Refined
Structured Meshes

• The BioPSE Software
System: Releasing and
Supporting an Open Source
Problem Solving
Environment

• Creating Grid-Enabled
Applications through Cactus
and GridLab

Tuesday (MS45)
• High Throughput Genome

Analysis Environment
• A Migration Framework for

Legacy Scientific
Applicatications

• yourSky as a Prototype for
the National Virtual
Observatory Component
Architecture

• A Common Component
Architecture (CCA) Study

3:15-5:15 pm in Garden Room A

