
Los Alamos National Laboratory LA-UR 01-6629

12/6/2001 1

A Face-Lift for Aging FORTRAN Scientific Applications
Teri Roberts and Skip Egdorf

Abstract
Los Alamos National Laboratory has a rich legacy of physics-based modeling codes that
date back to the Manhattan Project in the 1940’s. As some of these codes have made the
transition from the early weapons context in which they were first developed to a
broader, industrial design and modeling context, they have retained constraints imposed
by the limited structure of those early computing environments. These physics modeling
codes represent decades of research and development. Advancement of the physics
modeling in these codes has outpaced adoption of advances in computing technology.
The availability of newer technologies such as parallel computing, distributed web
applications, and advanced design paradigms compels evolution of these codes. As these
codes evolve, their inherent value must be preserved and placed within the reach of a
broader scientific audience.

Constraints of Early Computing Environments
Compared to today’s standards, early computing systems were slow, expensive and
required large amounts of physical space. Economical use of precious resources dictated
the programming practices of the day. Optimizations at a micro level were extremely
important and common.

Typical coding styles were very terse. For example, all variables local to a routine might
be no more than two characters in length and all COMMON variables might be limited to
three to six characters in length. Common program structures were limited to arrays.
Massive use of EQUIVALENCE statements and offset indexing were often used to
handle dynamic memory limits and variable array sizes. Comments were sparse.

The concept of dynamic linking did not exist until introduced by Multics1 in the late
1960s and did not become common until its implementation in Windows and UNIX2

appeared in the late 1980s. Consequently, the common construction mechanism used to
build executable programs was static linking of all code references into one monolithic
image. Overlay mechanisms allowed these monolithic programs to run on severely
limited memory resources.

Integrating related programs was a challenge. Magnetic tapes or disk files were typically
used as the basis for integration. Initial inputs were often limited to a card-image model
of data. New capabilities were often added without full consideration of how the
collection formed a coherent product.

1 Organick, E. I., The Multics System: An Examination of its Structure, MIT Press, Cambridge MA, 1972.
ISBN 0-262-15012-3. 1972. Multics as it was in the 60s. Reprint available from MIT Press.
2 R. A. Gingell, M. Lee, X. T. Dang, and M. Weeks, "Shared Libraries in SunOS," in Proceedings of the
USENIX Summer Conference, USENIX Association, Phoenix, 1987.



Los Alamos National Laboratory LA-UR 01-6629

12/6/2001 2

These constraints lead to a structure that is hard to approach except by individuals who
are capable of grasping both the software structure inherent in the monolithic code and
the physics concepts being modeled by the code. Such individuals are rare.

Encouraging Removal of Constraints
Today’s computers are faster, resources such as disk and memory are cheaper, and far
less physical space is required than when these codes were first developed. It is possible
to construct massively parallel machines by harnessing a set of relatively inexpensive
workstations or personal computers. Human resources with appropriate scientific
computing knowledge and skill are far more expensive than computing platforms.
Optimizations at a macro level and improved interactions between program modules have
become more important than maximizing resource use at a micro level. An architectural
solution is needed that supports this different philosophy.

The size of the monolithic structure embodied in many scientific programs has reached a
scale where very few scientists have an overall view of the parts as a whole. The
development community for these codes is thus very small. To achieve an architecture
that is approachable by a larger development community, we must create a cohesive set
of smaller, modular components that can be composed to achieve the same effect as the
huge monolithic program.

Terminology
In the subsequent discussion of both existing and suggested approaches, we will use three
key terms.

1. Objects
Objects are the fundamental unit of software design and implementation. Objects are
used when software engineers model individual entities within a single program.

A distinction is drawn between object-based design and implementation models and
object-oriented design and implementation models. Object-based design and
implementation techniques typically require only that the program design or
implementation be structured out of entities that encapsulate processing and storage for
each entity. Object-oriented design and implementation techniques typically add
inheritance, polymorphism, and various other structuring facilities onto the object-based
system.

Organizing scientific codes as a set of objects may be done either as a new development
or as a re-design of an existing legacy code. For the purposes of component architectures,
it is sufficient that the software design have characteristics of encapsulation and isolation
of entities so that these objects may be grouped into modules. It is often the case that
existing codes break these requirements, as they may have been designed years before
current technology existed, and may have been in continual use and modification since.



Los Alamos National Laboratory LA-UR 01-6629

12/6/2001 3

The process of modular decomposition of these codes is primarily the application of these
object-based encapsulation requirements to the existing codes to produce objects
sufficient for grouping into modules.

Our requirements for an object in software design and implementation are simpler than
that of a full object-oriented design; we require no inheritance, polymorphism,
encapsulation, or any other capabilities currently in vogue for objects. From the point of
view of component architectures, the type of analysis, design, and programming
technologies used for individual programs is simply not a concern.

The main reason for discussing objects here is to note that the common terms dealing
with object-oriented analysis, design, and programming and all the lifecycle tools and
technologies built around these concepts do not affect our discussions of component
architectures. This is not to discourage the use such technology as it will certainly aid the
construction of correct codes at the single-program level and may simplify the migration
of classic monolithic architectures to the modular architectures needed to build
components.

2. Modules
Modules are the fundamental unit of software distribution. Modules are used when
describing the structure of individual programs or program libraries. Modules are
groupings of freely interacting objects that are self contained and bounded. Interactions
with objects in other modules are allowed only through well-defined interfaces. To other
objects, a module is a black box whose only visible effects are those provided by the
well-defined interfaces of the module. Modules are self-contained when they
communicate with other modules only through these interfaces. Modules are bounded
when objects outside the module only interact with the objects inside the module via the
defined interface.

A great deal of work is underway to modernize old scientific codes or produce new
scientific codes at this level. Common techniques at this level include converting existing
programs or writing new programs that use FORTRAN 90/95 modules or that use C++
class libraries.

3. Components
Components are the fundamental unit of software marketing and commerce. Components
are used when describing different organizations cooperating to produce specialized
software capabilities that inter-operate across different individual programs.

Components are groupings of modules with two additional constraints. First, the well-
defined interface for the modules that compose the component is defined and enforced by
computer tools. This means an Interface Definition Language (IDL), which is processed
to automatically enforce modular containment and bounding, formally defines the
interface. Second, a mechanism is added to allow control and discovery of the modules
that make up the component and to control access to the modules within the component.



Los Alamos National Laboratory LA-UR 01-6629

12/6/2001 4

This may be as simplistic as the system’s mechanism for finding and linking dynamic
libraries, or as complex as a network interconnected request broker system.

Existing Approaches
Both the object and module approaches described above have been used with varying
degrees of success to modernize the scientific codes that reside in the Laboratory.

Language Issues
One approach to the modernization problem is to rewrite the applications in newer
languages such as C or C++ and newer FORTRAN versions such as FORTRAN 95.
This language rewrite approach introduces integration problems when two or more
modeling capabilities implemented in different languages must be coordinated to work
together. We need solutions that go beyond a simple language upgrade. The various
developers of the codes will never agree upon a single language.

We are aware of several examples of this language issue. They include two variants of
one code that are both moving from FORTRAN 77 to FORTRAN 90, one code written
entirely in C++, one code written in FORTRAN 90 with a C++ main routine that is
moving toward more C++, one FORTRAN 90 code with a C++ simulation module, and
one code written in a hand-crafted object-oriented FORTRAN.

Clearly, any attempt at integration of such disparate codes would have to go beyond a
language-based solution.

Complexity Issues
A natural tendency, given expanded computer resources, is to add more complex data
structures and functionality to the existing codes to support broader design and modeling
contexts. Problems arise when the low level of abstraction (global variables and shared
common data) present in many of the legacy codes introduces difficulties in identifying
interfaces and integration points.

Examples of this complexity expansion include programs whose structure still reflects the
set of overlays from memory starved machines and programs that are the merger of two
or more early programs that communicated with tapes and disk files.

We need solutions that transcend the monolithic structure present in these codes. A limit
has been reached in the size and complexity of these structures.

Suggested Approaches
In addition to the object and module level approaches in use, an architecture that supports
the expansion of the community of users and developers is needed. This is and important
characteristic of a component architecture.

Object-oriented Techniques Alone Are Not Enough
While object-oriented analysis, design, and programming techniques are widely accepted
by the computing community as an efficient and robust method for software construction,



Los Alamos National Laboratory LA-UR 01-6629

12/6/2001 5

the resulting individual programs are not sufficient by themselves to support the needs of
a computing community. The ability of the community to extend old software and
develop new software is constrained largely by the amount of reuse of existing objects
that can be obtained and by how well existing programs can coexist and cooperate. By
themselves, the techniques of object-oriented programming are of little help for this
larger problem.

Modules Alone Are Not Sufficient
Modules represent a higher-level approach than objects. Typical module implementations
include subroutine libraries and class libraries. These libraries are common on most
current computing platforms. However, the discovery and dissemination of the module
content is limited to user documentation and ad hoc browsing tools. Consequently, there
is little or no enforcement of the use of the interfaces contained within the modules. This
limits the ability to dynamically discover and reuse the module content in a way that
enforces consistent and correct use. Modules of executable code are sufficient for
delivery of an interacting set of objects, but by themselves, do not contribute to the
dissemination of the interfaces provided by the modules.

Moving to a Component Architecture
Components add two things to module libraries. The definition and enforcement of
module interfaces using IDL specifications and IDL compilers forms the basis for correct
dissemination and use of module content. Using request broker facilities contributes to
the discovery and delivery of the module contents.

Once software is structured as components, the modules that make up the components
can be treated as commodity items that are purchased or traded and reused. This is
because of the two conditions of well-defined interfaces and run-time control of module
discovery that combine to allow implementation details to be hidden behind interface
definition and request broker facilities.

Our motivation for moving to component architectures is to allow for the development
and evolution of communities that can share and co-develop the software components in
a way that allows an economy to emerge. These communities can be based around
various economic models ranging from free trade to strict commercialization.

We are not suggesting that communities cannot form around module libraries. Examples
of such communities can be found,3 but with limitations.

In order to solve the language, complexity, and evolution of community of issues, a
component framework must be adopted that allows multi-language integration and
facilitates a modular decomposition and integration of large and complex codes. An
industry standard framework that addresses these two issues exists in the Common Object

3 Skip Egdorf, Teri Roberts, Component Architectures and the Future Structure of Physics Codes, LA-UR
01-4750, Los Alamos National Laboratory, 2001.



Los Alamos National Laboratory LA-UR 01-6629

12/6/2001 6

Request Broker Architecture (CORBA). Both an overview and detailed information can
be found at the CORBA web site at http://www.corba.org.

The CORBA framework has a standard Interface Definition Language (IDL) for
expressing public application interfaces that permit decomposition of large codes.
This mechanism also mitigates the language integration problem.

CORBA typically operates in a networked environment. This does not accommodate the
performance demands of physics modeling codes. Sufficient performance can be
achieved by using run-time loading of dynamic modules as an implementation of
CORBA objects while retaining the benefits of the CORBA framework. This framework
offers the desired multi-language interoperability, facilitates evolution of the code, and
retains the existing scientific value of the codes.

Additional Component Architecture Benefits
With a modular and dynamic framework in place, new user interface technology is
possible. These include adoption of newer input data specification languages such as
Extensible Markup Language (XML) and newer output representations like Java
components that make these codes more approachable by a broader user audience in a
web-based setting.

The program structures that process inputs are generally ad-hoc, dispersed throughout the
code, and tightly coupled to the low-level data abstractions. It is difficult to understand
and extend input processing in these codes. An architectural approach that localizes and
contains input processing allows us to extend and expand the types of data processed.

XML is particularly appealing because of the self-documenting structure that can be
achieved when using this kind of language to describe the various materials used in
physics modeling. XML processing modules for the various types of data used in the
modeling programs could then be used dynamically by the core modeling code when and
where necessary.

Historically, inputs were often limited to 80 column card images, with ad-hoc comment
conventions, special characters for field delimiters, continuations, and input terminators,
and multiple special case overloading interpreted by matching ad-hoc code.

As an example, a material specification might appear as:
m1 13027.40c 1
m2 26000.40c 1

Without referring to a manual, how does one know or remember that the 13027.40c is the
concatenation of atomic number, atomic mass, a separator, a library identifier, and a data
class specification?

XML describes a class of data objects and partially describes the behavior of computer
programs which process them.



Los Alamos National Laboratory LA-UR 01-6629

12/6/2001 7

A structured self-documenting material specification in XML might be:
<material>

<num>1</num>
<atomnum>130</atomnum><atommass>27</atommass>.<libraryid>40</libraryid>

<dataclass>c</dataclass>
<atomfraction>1</atomfraction>

</material>

Or if defined as an element with attributes:
<material num=”1” atomnum=”130” atommass=”27” libraryid=”40” dataclass=”c”
atomfraction=”1”>

While this looks formidable at first glance, keep in mind that these kinds of entries can
now be the result of choosing items from graphical displays and do not have to be hand-
written. Existing input files can be translated to XML syntax with by scripts written in
pattern matching languages.

There are utilities to render graphical representations of the data used in the physics
modeling codes. Often these are hand crafted two or three dimensional plotting packages
that are tightly coupled to the low-level data abstractions present in the codes. A
component approach would introduce a more independent and reusable visual
presentation capability with its own attributes, physical layout, and containment.

With input and output handling mechanisms such as the ones just described, the physics
modeling codes can now be deployed to a broad audience on a network and browser
based environment as well as a more traditional graphical user interface.

Assumptions and Conditions
Our suggested CORBA-based component approach is based on several assumptions.
We believe that optimizations at the Object Request Broker (ORB) level that recognize
shared address space interactions make these types of solutions reasonable. When both
the client and server appear in the same ORB address space, the need for marshalling-
transmit, then transmit-demarshalling of the parameters exchanged between the (client)
stub and (server) skeleton is eliminated. A simplified look-up mechanism similar to what
occurs for dynamic linking can be used. This optimized approach can be found, for
example, in the ORBit object request broker.

ORBit is a CORBA 2.2-compliant Object Request Broker (ORB) that is developed and
released as open source software under the GNU General Public License and GNU
Lesser General Public License (GPL/LGPL) and is supported by Red Hat and Ximian as
part of the GNOME project. ORBit is engineered for the desktop workstation
environment, with a focus on performance, low resource usage, and security.

A language binding defines how to use the IDL operations in a programming language.
The current content of the CORBA web site indicates that there is no IDL / Language



Los Alamos National Laboratory LA-UR 01-6629

12/6/2001 8

Mapping Specification for FORTRAN. We assume that a CORBA language binding for
FORTRAN can be developed based upon the Language Mapping Specification for C.
This is the trickiest part of implementing our component-based solution. Until a formal
language mapping is available for FORTRAN, we must manually write and handle the
code that an IDL compiler would generate.

Preservation of Existing Value
While the modernization of these scientific codes is underway, we must demonstrate that
we have not impacted or removed any existing physics modeling capability. This
assurance comes from the use of an automated regression testing mechanism that is run
on a nightly basis. Our current regression test mechanism encompasses a dozen different
networked computer hosts (referred to as our “test farm”) and exercises 10 different
combinations of hardware, operating systems, and compilers (our test farm). It also
exercises the static and dynamic construction and execution techniques.

A specially constructed set of roughly 40 to 50 different test problems are run against the
constructed executable code. These tests range from code coverage tests that exercise a
large percentage of the code through physics model validation tests that exercise specific
code features. A set of expected results is compared to the set of computed results. When
the answers are a close enough match, we declare that the tests “track” the existing
expected answers. Round-off errors on various platforms using different math library
versions sometimes prevent exact matches.

The testing proceeds as follows:
Step 1. Each night at a designated time, an operating system command activates the
regression test driver program. Using a special testing account, the regression test driver
program first assures that the most recent version of the code from the Concurrent
Versions System (CVS) repository is placed into a common shared file partition on one
of the test farm machines. This common file partition is exported on the network so it can
be accessed by all of the test farm host computers. This assures that the same source code
base is used on each of the various hardware platforms.

Step 2. The regression test driver program then performs a secure shell login to each of
the test farm machines, and runs a shell script to “configure” the source code for the
particular ‘hardware/operating system/Fortran compiler/C compiler’ combination being
tested. After a successful configure, the shell script “makes” the executable program and
performs a “make tests” command to activate the tests. These special “make” commands
are generated output of the configure step.

Step 3. All the generated output from the shell script execution is captured on each
machine that is tested. The following morning, the output on each platform is gathered
and examined.

Future development of this regression test capability includes an automated checking of
all of the generated output on each platform and generation of a web page that developers
can check.



Los Alamos National Laboratory LA-UR 01-6629

12/6/2001 9

Analysis
We are in the early stages of our modernization effort. We have demonstrated that
CORBA-like in-memory optimizations work and are usable. Existing ORBs such as
ORBit already implement and use this optimization. For our work at the Laboratory, as a
first step we have produced an independent implementation of a framework that
dynamically loads modules and uses an IDL syntax and compiler to generate non-
CORBA stub and skeleton code for efficient in-process communication. This structure
allows us to experiment with decomposition strategies for large scientific codes while
retaining compatibility with CORBA.

The correct decomposition of portions of the code that represent reasonable
approximations of architectural physics components must be determined, but we have the
necessary structure to begin experimentation. Interfaces for appropriate components must
be identified and developed. While the component structure is being discovered, the
existing capability in the code must not be compromised and is being assured with our
automated regression test mechanism.

Performance and/or Complexity Data
We are running the code both in its monolithic form and within the new dynamically
linked framework. Our timing statistics for execution of the regression tests are shown in
the accompanying Timing Table and range from little difference on the newer machines
to a larger difference on older machines. However, execution speed alone is not the only
metric to be considered. We believe the increased access to code capability and ease of
extension will guarantee its continued use and further development. We believe
“pluggable” physics modules can be attained using component architectures.

Result of the Work
The result of this work is not intended for commercial production. It is being undertaken
to protect an investment.



Los Alamos National Laboratory LA-UR 01-6629

12/6/2001 10

Timing Table

Platform & compilers Construction
Method

Make Tests
Seconds

% Difference vs
Static

Linux i686 pgf77 gcc static 1459.64
Linux i686 pgf77 gcc shared 1585.30
Difference 125.66 9 % slower

Linux sparc g77 gcc static 33092.21
Linux sparc g77 gcc shared 36455.07
Difference 3362.86 10 % slower

SunOS sun4m f77 cc static 66864.88
SunOS sun4m f77 cc shared 86557.35
Difference 19692.40 29 % slower

OSF1 (Tru64) alpha f77 cc static 1267.20
OSF1 (Tru64) alpha f77 cc shared 1295.60
Difference 28.40 2 % slower

HP-UX 9000/735 fort77 cc static 6964.80
HP-UX 9000/735 fort77 cc shared 7888.80
Difference 924.00 13 % slower


