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ABSTRACT

The shallow water equations in a spherical geometry are solved using a 3-dimensional Carte-
sian method. Spatial discretization of the 2-dimensional, horizontal di�erential operators is
based on the Cartesian trivariate polynomial form of the spherical harmonics and an icosahedral
(spherical) grid. Second thru �fth order methods are obtained by inclusion of the approporiate
spherical harmonics. A family of symmetric time integration schemes indexed by the parameter
� which includes the explicit leapfrog, the implicit Simpson's and trapezoidal rules are inves-
tigated in conjunction with the spatial discretizations. Reasonable stability properties and the
ability to perform long integrations of the nonlinear equations are documented for the implicit
methods. Error measures and conservation properties of the method are reported for 
ow over
a mountain and a real data case from a test suite for shallow water equation models.
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1 INTRODUCTION

Several early papers investigated the use of icosahedral- triangular meshes [13, 14, 22, 23,

24, 25]. The barotropic vorticity equation and the shallow water equations on the sphere served

as the primary equation sets for testing the numerical methods because of their relevance in

atmospheric 
ow models. A review article [26] gives further references of early work.

More recently icosahedral meshes have been used with a method based on the stream func-

tion and velocity potential formulation of the shallow water equations with a control volume

discretization [11]. The method was re�ned and tested on a standard set of cases [27] by Heikes

and Randall in [7, 8]. Other icosahedral methods have also been proposed in [1].

The Cartesian form of the shallow water equations was proposed by Swarztrauber in [27] and

further developed in [20]. This alternative formulation avoids the singularity in the velocity at

the pole by expressing velocities in a 3-D Cartesian form instead of in spherical coordinates. The

introduction of 3-D velocities necessitates a change of the form of the shallow water equations.

At �rst sight this form appears more complicated and probably more expensive computationally.

But a closer examination shows the Cartesian formulation to be compact and computationally

simple.

The Cartesian geometry of the sphere and the discretization of the sphere using the points

of an icosahedral triangular mesh lead to a computational economy at the poles. The distances

between points of this mesh are nearly uniform and thus there is not a CFL restriction on

timestep arising from a longitudinal concentration of points near the pole. There is no need to

�lter the solution near the poles, a step that can be costly for some methods and that introduces

errors on all scales.

The Cartesian formulation was used with the calculation of derivatives using a spectral

vector harmonic method in [19]. In this paper we consider the Cartesian formulation with a

local calculation of derivatives using a stencil of points located on an icosahedral grid. The

derivative approximations might be characterized as locally spectral in that they are based on

spherical harmonics but only use a local stencil of points, essentially a �nite di�erence method.

We show by numerical experiments that the method of approximating di�erential operators on

the icosahedral mesh is accurate and converges as the mesh is re�ned. Thus the discretizations

are consisent with the PDE's.

Since the number of points of the stencil and the number of spherical harmonics used in

the derivation of the di�erence formulae are somewhat arbitrary, high order methods are easily
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obtained. An earlier paper studied the performance of this method for a second order approx-

imation. Here we study stencils with up to 43 points and approximations up to 6th order.

Stability of the higher order methods is a major issue and is partially addressed with the use

of implicit time integration schemes. A family of symmetric time integration methods is used.

The family includes the explict leapfrog, trapezoidal rule and Simpson's methods.

The discretization is then applied to the shallow water equations on a sphere and tested on

two cases of a set of standard cases for shallow water equation solvers. These tests highlight

many of the positive properties of the method as well as expose some of its short comings. We

pay particular attention to the stability and accuracy properties of the method.
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2 THE SHALLOW WATER EQUATIONS ON A SPHERE

The momentum and mass continuity equations for shallow water 
ows can be written in

advective form
dv

dt
= �fk� v � grh+ Fv; (1)

and
dh�

dt
= �h�r � v+ Fh (2)

where the substantial derivative is given by

d

dt
( ) �

@

@t
( ) + v � r( ): (3)

The velocity is referred to a rotating Cartesian frame and the components of v = (u; v) are in

the longitudinal and latitudinal directions respectively. The height of the free surface is de�ned

h = h� + hs where h
� is the depth of the 
uid and. the bottom surface height is given by the

time invariant function hs. External forcing, if present, is included in Fv = (Fu; Fv) and Fh.

This form of the equation is not in conservative form and consequently the numerical methods

we develop will not be strictly conservative.

It may be advantageous to evaluate the horizontal (surface) derivatives using a Cartesian

form. This form was developed in detail in [20]. By extending the surface vector v = (u; v)T

to the three-dimensional vs = (w; v; u)T the shallow water equations can be embedded in the

system
@vs
@t

+ S(vs)vs + ���+ ��� + 


 + ÆÆÆ = 0; (4)

where

S(vs) =

0
BBBBB@

@w
@r

1

a (
@w
@� � v) 1

a cos � (
@w
@� � u cos �)

@v
@r

1

a(
@v
@� + w) 1

a cos � (
@v
@� � u sin �)

@u
@r

1

a
@u
@�

1

a cos � (
@u
@� � v sin � + w cos �)

1
CCCCCA
; (5)

r is the radial coordinate (r = a at the earth's surface) and

��� =

0
BBBB@

u2+v2

a

0

0

1
CCCCA ; (6)
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��� =

0
BBBB@

0

g
a
@h
@�

g
a cos �

@h
@�

1
CCCCA ; (7)




 =

0
BBB@

0

�Fv

�Fu

1
CCCA ; (8)

and

ÆÆÆ =

0
BBB@

0

fu

�fv

1
CCCA : (9)

If we de�ne V = (X;Y;Z)T as the velocity in Cartesian coordinates (x; y; z) then

vs = QV (10)

where

Q =

0
BBB@

cos � cos � cos � sin� sin �

� sin � cos � � sin � sin� cos �

� sin� cos � 0

1
CCCA : (11)

Substituting (62) into (57) and multiplying by QT we obtain the Cartesian form

@V

@t
+CV+QT (���+ ��� + 


 + ÆÆÆ) = 0: (12)

In this equation

C = QTSQ =

0
BBBBB@

@X
@x

@X
@y

@X
@z

@Y
@x

@Y
@y

@Y
@z

@Z
@x

@Z
@y

@Z
@z

1
CCCCCA
; (13)

QT��� =
1

a2

0
BBBB@

x(X2 + Y 2 + Z2)

y(X2 + Y 2 + Z2)

z(X2 + Y 2 + Z2)

1
CCCCA ; (14)
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QT ÆÆÆ =
2
z

a2

0
BBB@

0 �z y

z 0 �x

�y x 0

1
CCCA

0
BBB@

X

Y

Z

1
CCCA ; (15)

and

QT ��� = gPrch (16)

where

P =
1

a2

0
BBB@

a2 � x2 �xy �xz

�xy a2 � y2 �yz

�xz �yz a2 � z2

1
CCCA ; (17)

and

rch =

�
@h

@x
;
@h

@y
;
@h

@z

�T
: (18)

Similarly the continuity equation in Cartesian form is

@h�

@t
+VTPrch

� + h�rc �V = Fh: (19)

The matrix P projects an arbitrary Cartesian vector onto a plane that is tangent to the sphere

at the point (x; y; z).

Another form of the momentum equation can be developed around the vorticity and the

kinetic energy. The vorticity � is de�ned in the spherical coordinate system as � � k � r � v.

Using the vector identity

v � rv = r(
v � v

2
) + �k� v; (20)

the momentum equation can be written

@v

@t
= �(� + f)k� v�r(gh +

v � v

2
) + Fv: (21)

Changing variables to Cartesian velocities the resulting Cartesian equation is

@V

@t
+QT (���+ 


 + ���) = 0: (22)

In this equation

QT��� =
(� + 2
z)

a2

0
BBB@

0 �z y

z 0 �x

�y x 0

1
CCCA

0
BBB@

X

Y

Z

1
CCCA ; (23)
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and

QT��� = Prc(gh+
V �V

2
): (24)

Since the curl is invariant under coordinate transformation we have that � � k � rc �V where

k is the unit vector in the direction normal to the sphere at the point (x; y; z). That is, k = x

a .

(This notation in Cartesian coordinates should not be confused with the standard notation k

for the unit vector in the z-direction.) The Cartesian curl is the standard,

rc �V =

0
BBB@

@Z
@y �

@Y
@z

@X
@z �

@Z
@x

@Y
@x �

@X
@y

1
CCCA : (25)

These derivatives are available from the C matrix described above.
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3 LOCAL CARTESIAN SPECTRAL APPROXIMATION

The spherical harmonic functions form a basis for functions de�ned on the surface of the

sphere. They have long been used in climate and weather models as the basis for the spectral

method [10] and for the approximation of derivatives on the surface of the sphere [18]. The

spherical harmonic, Y m
n can be de�ned with the normalized associated Legendre functions Pm

n (�)

by

Y m
n (�; �) = eim� �Pm

n (�): (26)

The normalized associated Legendre polynomials can be de�ned from Rodrigues' formula [17]

�Pm
n (�) = (�1)m

�
2n+ 1

2

(n�m)!

(n+m)!

�1=2 1

2nn!
(sin �)m

dm+n

dzm+n
(z2 � 1)n (27)

where z = cos � and � is colatitude. (In this section only � refers to colatitude while in other

sections it refers to latitude.) Equations (26) and (27) are combined to give a formula for the

Cartesian representation of the spherical harmonics [21].

Y m
n (x; y; z) = Cm

n (x+ iy)m
dm+n

dzm+n
(z2 � 1)n; (28)

where

Cm
n =

(�1)m

2nn!

�
2n+ 1

2

(n�m)!

(n+m)!

�1=2
: (29)

Any linear operator L on functions on a sphere can be approximated directly by requiring

that the discrete operator act correctly on the selected basis functions. Given a cluster of points

fplg, l = 0; :::; npts � 1 on the surface of the sphere and a tabulation of a function U , fU(pl)g

about the point p0, we wish to determine coeÆcients cl such that

L(U)(p0) �
npts�1X
l=0

clU(pl): (30)

(The sense of the approximation (�) must be described.) We require (30) to hold locally at p0

for all spherical harmonics through some number N ,

L(rnY m
n )(p0) �=

npts�1X
l=0

clr
nY m

n (pl): (31)

The spherical harmonics Y m
n are ordered so that with increasing number the degree increases,
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Equation (31) is solved for the cl at each each point p0. Thus a local spectral approximation is

obtained in the form of coeÆcients for a stencil of neighboring points. This approach is general

and is applicable to any distribution of points on the sphere.

The sense of the approximation in (30) is as a least squares problem for (31). The problem

can be stated in matrix form: �nd c which minimizes

kHc� dk22 (32)

where H is a N � npts matrix of spherical harmonics evaluated at points of the stencil and d

is the vector of the exact linear operator applied to the harmonics evaluated at the point. The

least squares problem can be solved elegantly using the singular value decomposition (SVD) [9].

Let H = USVT be the SVD. The matrix S =diag(�1; �2; : : : ; �npts) is the matrix of singular

values in descending order. The solution to the least squares problem is

c = VS�1U
T
d (33)

The choice of N and npts determine the formal accuracy and smoothness of the derivative

approximations. In general, we choose npts points nearly symmetric about the point p0. The

number of points used in the stencil will determine the eÆciency of the method because evalu-

ation of the derivatives requires a combination of values from these neighboring points. For the

icosahedral grid, each point has 5 or 6 immediate neighbors (npts = 7). (See Figure 1.) If all

the immediate neighbors of each of these are included in the stencil, then npts = 19. If only

neighbors common to two of the immediate neighbors are included (the six pointed star), then

a stencil with npts = 13 results. For higher order methods, we allow inclusion of immediate,

secondary or tertiary neighbors. Up to npts = 43 is admissible. These neighbors are identi�ed

using the icosahedral grid structure. This is the only function, however, for the grid. Otherwise,

the method might be considered meshless.

A smoothing parameter that can be introduced in the approximation is the truncation level

in the SVD solution. The diagonal matrix of singular values, S, can be used to smooth the least

squares solution when the system is underdetermined. By truncating the singular values that

are smaller than some tolerance, the minimum norm solution for c is obtained. This truncation

gives a solution regardless of the underdetermined or overdetermined nature of the least squares

problem. We have found it advantageous to use the same truncation at all points. For npts = 7,

we truncate at six because the primary points of the icosahedron have only �ve neighbors. The

8



coeÆcients are unique at these points and of minimum norm at the other points.

For the shallow water equations, the stencil coeÆcients are calculated for each of the linear

operators L(U) = @U
@x ;

@U
@y ;

@U
@z , and the Laplacian, �U . The derivative approximations when

combined form the gradient operator. Since the gradient of a function de�ned only on the

sphere is always tangent to the sphere, the approximation is projected onto the sphere.

The Laplacian is used to introduce arti�cial di�usion in order to enhance the stability of

the time integration. The discretization of the Laplacian follows the same approach as the

approximation of the derivative operators. Thus, it is not based on repeated application of the

derivatives.

The accuracy of the method is determined by the formal order of accuracy and the smoothing

properties of the least squares solution. We use the �rst 49 spherical harmonics to produce a

formally 6th order method. But depending on the choice of the number of points in the stencil,

the least squares problem is overdetermined or underdetermined. Numerical experimentation

has lead us to the choice of the parameters.

3.1 NUMERICAL RESULTS FOR THE GRADIENT APPROXIMATION

The basic icosahedral mesh consists of twenty triangles on 12 grid points. Each of the twelve

points of the mesh is connected to �ve neighboring points. The re�nements of this mesh are

subdivisions of the twenty base triangles. By placing three points on the edges of each large

triangle, one on each side and dividing each triangle into three subtriangles, the q = 0 mesh is

obtained by projection of the points (and edges) onto the surface of the sphere. Halving this

mesh results in the q = 1 mesh and again halving gives the q = 2 mesh. The number of points

in the mesh is given by the formula,

GP (q) = 5(22q+3) + 2 (34)

Table 1 gives geometric information about the di�erent icosahedral meshes.

To check the accuracy of the gradient approximations, a test function exhibiting all modes

was used,

�(x; y; z) = a(expx+ exp y + exp z) (35)

The errors in the following tables are derived from the Cartesian approximation to the gradient

of this function. The exact values of the function at the vertices of the icosahedral mesh are

computed and used in the di�erence formulas to approximate the Cartesian derivatives. The

9



q Grid Points Triangles hmin(km) hmax(km) have(km) hmin=hmax

- 12 20 6699.0 6699.0 6699.0 1.0000
0 42 80 3482.0 3938.0 3710.0 0.8843
1 162 320 1613.0 2070.0 1901.0 0.7792
2 642 1280 761.1 1049.0 956.2 0.7255
3 2562 5120 368.4 526.3 478.8 0.7001
4 10242 20480 181.2 263.4 239.5 0.6878
5 40962 20480 89.8 131.7 119.8 0.6818

Table 1: Geometric information for icosahedral grids

Cartesian gradient is then transformed to spherical coordinates and compared with the exact

gradient of �. The error reported is the l2-error over the points of the icosahedral mesh.

The number of spherical harmonics used will determine the order of the approximation. If

N = 9, then spherical harmonics of second order are used. If N = 16, then third order harmonics

are included. For N = 25, fourth order harmonics are included. These clusters de�ne the stencil

(see Figure 1 ) of the discrete operator.

18

0

1

2

4

5 6

3

7

8

9

10 12

11

13

14
15

16

17

Fig. 1: Approximation stencil for a regular point of an icosahedral grid.

Figure 2 is a plot of the gradient approximation error with a log-log scale. It shows the

convergence of the gradient approximation as the mesh size is decreased. The rate of convergence

is estimated from the amount of decrease in the error as the mesh size is halved. If the error is

proportional to hp, then by halving the mesh size the error will reduce by a factor of 2p. Using a

stencil of seven points (npts = 7) and the harmonics through second order (N = 9) yields second

10



order convergence (p = 2:0). With a stencil of 13 points and harmonics through third order we

get somewhat better than third order convergence. Fourth order convergence is obtained using

a ninteen point stencil and twenty �ve harmonics.

100.0 1000.0
h (km)

1.0e-08

1.0e-06

1.0e-04

1.0e-02
l2 

er
ro

r

a)  p = 2.0
b)  p = 3.7
c)  p = 4.0

Fig. 2: Convergence of the Gradient Approximations. Curves for a) npts=7, N=9; b)

npts=13, N=16; c) npts=19, N=25

The precision of the singular value computation becomes an issue for the higher order meth-

ods at resolutions above q = 4. By computing the stencil coeÆcients in extended precision

consistent results were obtained. A similar situation holds with regards to the computation of

Gaussian quadrature points for high resolution spectral methods. Since these calculations can

be performed once for each grid the computational cost is not of great concern.

The discretization method can be applied to other grids as well. A grid with variable resolu-

tion, focusing a high resolution grid over an area of interest, has shown promise in several studies

[4, 2, 3, 28]. A Schmidt [16] transformation of the uniform grid using a stretching factor of c = 2

was used to generate focused grids for the terrain case and the real data case. The stretch factor

of two implies a doubling of the distance between grid points away from the focused area, but

a halving of the mesh distances near the focused point.

3.2 SYMMETRIC TIME INTEGRATION METHOD

The explicit mid-point time integration scheme is commonly used for the integration of

the shallow water equations. Sanz-Serna [15] has shown why this rule is advantageous for the

11



integration of Hamiltonian systems and analyzed the nonlinear stability properties. The property

of symmetry de�ned by the ability to integrate either forward in time or backward in time, is

key. Here we use the family of symmetric ODE integration methods studied in [6] that includes

the explicit mid-point rule as well as the symmetric implicit trapezoidal rule.

The family solves the ODE y0 = f(t; y). It is indexed with a continuous free parameter �

and is de�ned by

yn+1 = yn�1 +�t[�fn+1 + 2(1� �)fn + �fn�1]: (36)

If � = 0, then the explicit leapfrog (mid-point) rule results. If � = 1, then the implicit

trapezoidal rule results. If � = 1

3
then the third order error terms of the midpoint and trapezoidal

rules cancel leaving Simpson's rule, which has a �fth order error term.

Analysis of this method [5] for integration of weakly stable limit cycle problems, suggests

that a value of � > 2

3
yields proper dynamical behavior. We have used the value � = 0:7 in this

study.

The update is organized as an explicit predictor followed by a corrector. The explicit pre-

dictor is the mid-point rule.

y� = yn�1 + 2�tfn; (37)

bn = y� +�t[�2�fn + �fn�1]: (38)

Then an iteration starting with k = 0; 1; :::, is performed to solve the remaining implicit equation

yk+1 = bn +�t�f(yk): (39)

The starting value of the iteration is y0 = y�.
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4 TEST CASES

A set of test cases for the shallow water equations on a sphere are detailed in [27]. These

cases provide a rigorous test of methods as well as allowing for comparison between methods.

4.1 STEADY, ZONAL FLOW TEST

Test case 2 is a steady, non-linear zonal 
ow rotated through an angle � = �
4
. It tests

the ability of the code to maintain a steady state solution independent of the grid orientation

and gives a good idea of the accuracy of the methods. The velocity and geopotential for this

test case are exactly representable with the spherical harmonics of second order. So the local

spherical harmonic approximations for the derivative operators are able to capture the steady

state solution extremely well. Figure 3 and 4 show the error, as a function of time, in the velocity

(using the relative RMS error with the exact steady solution) and the RMS error in the height

�eld, respectively. The q = 2; 3 integrations used a time step of 1200 seconds for the 5 day (120

hour) simulations while the q = 4 mesh used a 600 second timestep.
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Fig. 3: Relative RMS Error in velocity, Test Case 2, q = 2; 3; 4. Standard Form

Figure 5 and 6 show the velocity error and the height error for the Cartesian equations

also using the quadratic approximation on 6 or 7 neighbors. The error growth is much more

controlled.

The third order method on 13 points without �ltering for test case 2 gives errors as shown
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Fig. 4: Relative RMS Error in height, Test Case 2, q = 2; 3; 4. Standard Form
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Fig. 5: Relative RMS Error in Velocity, Test Case 2, q = 2; 3; 4. Rotational Form

14



0.0 50.0 100.0 150.0
Time (hours)

1.0e-08

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

re
ala

tiv
e 

RM
S 

er
ro

r (
h)

Fig. 6: Relative RMS Error in Height, Test Case 2, q = 2; 3; 4. Rotational Form

Grid q l1(�) l2(�) l1(V ) l2(V )

2 1.563E-04 1.707E-04 1.462E-03 9.357E-04
3 1.007E-05 1.102E-05 9.744E-05 6.352E-05
4 5.414E-05 5.671E-06 3.668E-05 5.486E-06

Table 2: Final Error in Case 2 for q = 2; 3; 4. N=16, npts=13

in Table 2.

The fourth order method on 16-19 points without di�usion for test case 2 gives errors as

shown in Table 3.

4.2 ZONAL FLOW OVER AN ISOLATED MOUNTAIN

This test case is the only one with orography. A 5400m mountain is given through the

surface height function, hs. No analytical solution is known for this case so the usefulness of the

case is in diagnosing the conservation properties of the numerical scheme. The simulation used

Grid q l1(�) l2(�) l1(V ) l2(V )

2 2.788E-04 3.025E-04 2.269E-03 1.550E-03
3 1.779E-05 1.947E-05 1.716E-04 1.120E-04
4 3.298E-06 1.806E-06 1.281E-05 7.614E-06

Table 3: Final Error in Case 2 for q = 2; 3; 4. N=25, npts=19
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a di�usion coeÆcient of epsV = 5:0� 105 with a timestep of 600 seconds for the q = 4 mesh.

The following normalized integral quantities are presented as a function of time: mass, total

energy, potential enstrophy. The vorticity is presented as an integral without normalization in

Figure 7. The conservation properties of the Cartesian method are much better than expected

considering that the di�erence formula used to approximate the conservation of mass are not

in 
ux form and are not guaranteed to preserve the global mass. The excellent conservation of

enstrophy and vorticity are also a surprise. As normalized integrals it is not evident from Figure

7 that the integral of enstrophy maintains a value near machine zero (� 10�13 ) throughout the

simulation.
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Fig. 7: Conserved integral quantities. Test Case 5, q = 4. Rotational Form

A contor plot a wave generated by the intrusion of the orographic forcing on the initial

conditions is given in Figure 8. The plot shows the geopotential minus the initial condition so

that the wave is clearly visable. At 18 hours the wave has reached the antipole of the mountain in

the southern hemisphere. Figure 9 shows the development of the geopotential structure around

the mountain as well as the con
uence of the waves at the antipole. These cases used a 6th

order method (npts = 43 and N = 49) with momentum di�usion of �V = 5 � 105. The grid

used is the uniform icosahedral q = 5. The next experiment used a focused icosahedral grid

with a second order discretization compared with a uniform grid and a �fth order discretization.

Results are for day 15 of the integration. The low order focused (q = 4)-grid result Figure 10

compares favorably with the high order uniform (q = 5)-grid result Figure 11. Shown are the
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Fig. 8: Initial condition wave, Test Case 5, 6th order at 6 hrs
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Fig. 9: Initial wave, Test Case 5, 6th order at 18 hrs
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Fig. 10: Focused grid, 2nd order at 15 days
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Fig. 11: Uniform grid, 5th order at 15 days
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geopotential (less the surface geopotential) and the same �eld minus the initial condition. The

mature development of the lee wave is shown. The focused grid solution has a deeper trough

in front of the mountain than exhibited by the uniform grid solution. The di�erence plots also

show a greater de�nition of the wave structure in the focused grid solution.

4.3 ANALYZED 500mb INITIAL CONDITIONS

The real data initial conditions di�er in smoothness from the previous cases exhibiting much

�ner scale structure and sharper gradients. For non-linear calculations there will be stronger

interaction of modes and more active dispersive phenomena.

The �rst test case using analyzed atmospheric conditions is for 000GMT 21 December 1978.

The spectral non-linear normal mode analysis has been used to �lter gravity waves from this

data. The NCAR netCDF �le \REF0077.cdf" was used for initial conditions of both geopotential

and velocity at the icosahedral grid points. The strong 
ow over the north pole has been useful

in diagnosing pole problems for several numerical schemes.

Figure 12 shows the conserved quantities of mass, energy, enstrophy as normalized integrals

and the conserved integral of vorticity through the simulation.
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Fig. 12: Conserved integral quantities. Test Case 7a, q = 5.

Figure 13 shows the reference solution at 5 days generated by the NCAR spectral transform

shallow water model [12].
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Fig. 13: Reference Solution at 5 Days
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The high order Cartesian method solution is compared with the reference solution in Figure

14 The Cartesian solution was unable to isolate the small low at the zeroth meridian. The

Fig. 14: Cartesian Solution at day 5, Fifth order, uniform (q = 5)-grid

method is overly di�usive and the solution has smoothed much of the relevant detail.

Stability of the high order methods for this test case was problematic. A smooth approxima-

tion for the derivatives, based on an underdetermined least squares produced the best results.

For the �fth order method, a we choose npts = 43 and N = 35. The failure modes of the

overdetermined approximations exhibited an error growth around the icosahedral grids base

points. Figure 15 shows an unstable solution of a second order (N = 9, npts = 7) method using

a focused grid after 2 days. Clearly visible are the (red) base points as the solution falls apart.

This instability is controlled by using the underdetermined second order approximation (N = 9,

npts = 13). Figure 16 shows the focused grid solution at 5 days. This is comparable to the

uniform high order solution.

Another mode of instability on the focused grid arises from the selection of a di�usion
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Fig. 15: Instability of overdetermined, focused approximation, (q = 4)-grid
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Fig. 16: Underdetermined, focused approximation, (q = 4)-grid
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coeÆcient that is appropriate for the grid scales. Not enough di�usion (or too much) on the

coarse portion of the grid will cause the solution to become unstable. Figure 17 shows the

focused grid solution at 4 days for a �fth order (overdetermined) method. The error growth is

occuring outside the high resolution area of the focused grid.

Fig. 17: Focused approximation, Fifth order, (q = 4)-grid

The error in the geopotential, measured globally, is compared as a function of time for

several methods in Figure 18. The legend uses an \x" for the focused grids and the 33 or 65

refers to the q = 4; 5 girds. The order of the method is also indicated as either 2 or 5. What

we observe is that the 5th order methods (solid lines) are generally more accurate globally than

the second order methods. The focused grids appear to be worse in this measure, because the

coarse resolution portion of the globe has a larger error. If the error measure is restricted to only

northern hemisphere points, then the situation is reversed. Focused grid integrations are more

accurate than their uniform grid counterparts. In fact, the focused (q = 4)-grid is as accurate

as the uniform (q = 5)-grid.
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Fig. 18: Global Mean Absolute Error Comparison
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Fig. 19: Northern Hemisphere Mean Absolute Error Comparison
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5 CONCLUSIONS

Numerical methods for the shallow water equations on the sphere are faced with three

hurdles. First, the accuracy of the geostrophic wind balance. The numerical approximation

for the gradient of the geopotential must balance the Coriolis term well. Since the Coriolis

term does not involve derivatives the gradient approximation is crucial to achieve a reasonable

balance. Second, the pole problem. Since the spherical coordinate representation of the velocity

is singular at the poles, derivatives must be approximated with care. The third hurdle is stability.

In our work, the �rst hurdle has been passed by adopting a co-located velocity and gradient

approximation. The collocation method with accurate approximations for the derivatives gives

an excellent balance of the geostrophic wind terms. The Cartesian method is free of the pole

problem since velocities are continuous at the poles. The higher order approximations must

be stabilized for long integrations. First, arti�cal di�usion was added by the inclusion of a

Laplacian term to the momentum equation. Second, an implicit method was adopted which has

shown some promise for symmetric time integrations. Finally, the smoothness of the derivative

approximations was adjusted.

Stable integrations of two of the shallow water test cases were described for a variety of

approximation orders and icosahedral grids. We concluded that the high order methods are

overly di�usive when stabilized for long integrations. Other stabilization techniques are required

to realize the bene�ts of the high order approximations.
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