
August 16, 2001 1

Application of Software Engineering Practices in
Computational Science

W. T. Swain

August 16, 2001

Prepared for the UT/ORNL Science Alliance

Application of Software Engineering Practices in
Computational Science

Abstract

This report characterizes the application of software engineering in computational science.
A small fraction of software engineering research has focused specifically on computa-
tional science. Important foundational work has been reported in the following areas:

• overall process definition

• empirical studies of computational software reliability

• effective code inspection techniques

• formal specification methods for parallel implementations

The empirical studies have documented the need for more effective application of soft-
ware engineering. Other research has produced a number of practices and methods tai-
lored to computational applications.

In the modeling and simulation R&D community, a general recognition of the need for
more effective software engineering is emerging; but no broad consensus is evident in
terms of process and methods. Software engineering is present but not conspicuous at
major conferences related to computational science. The DoD has documented a compre-
hensive body of procedures and methods for use in modeling and simulation. Some mem-
bers of the scientific community are advocating an open source approach to scientific
software to promote peer review of source code.

Draco/DCPS and CCSM are examples of projects where the need for a more formal pro-
cess has been recognized and addressed internally. The Draco/DCPS development process
reflects thorough coverage of the product life cycle. The primary opportunities for
improvement are in more rigorous specification and more quantitative testing methods.

The CCSM process is somewhat less mature and generally reflects a typical initial effort
to get control of a large software project. The process foundation elements are all present.
However a number of weaknesses typical of a first-pass software engineering process are
apparent.

The overall conclusion from this investigation is that software engineering principles and
techniques are underutilized in the current practice of computational science. A number of
opportunities exist for improving computational software quality and developer produc-
tivity. To exploit these opportunities work is needed in the following areas:

• collection and analysis of process metrics as development processes mature

• systematic methods to account for numerical effects at specification time

• development of rigorous specification techniques tailored to computational software

• adaptation of model based statistical testing to computational applications
Application of Software Engineering Practices in Computational Science August 16, 2001 2

1.0 Introduction

Over the past decade the combination of increasing microprocessor speed and the advent
of massively parallel architectures has enabled a corresponding expansion in the role of
modeling and simulation in scientific research. The complexity of the models that are now
computationally feasible is such that serious concerns can be raised about the integrity and
fidelity of their software implementations. Effective application of software engineering is
necessary to assess the fidelity of model implementations and to maximize software pro-
ductivity. Specifically software engineering technology can provide

1. rigorous specification methods to ensure code traceability to model requirements

2. testing methods that provide quantitative measures of code reliability

3. software development processes that combine 1 and 2 with documentation standards
and peer review to optimize overall productivity

This report provides an assessment of the current utilization of software engineering in
computational science. Although the supporting investigation cannot be characterized as
exhaustive, it does reflect an intensive effort to identify projects and organizations where
software engineering is being applied to computational science. The investigation started
with a search for publications where the terms “computational science” and “software
engineering” appear in the same context. The resulting information threads were then fol-
lowed to referenced publications, associated organizations, and individual practitioners.

2.0 Software Engineering Research

This section gives examples of software engineering research addressing computational
science in a number of university computer science departments. The publications cited
cover a time span from 1981 to 1999.

2.1 Process Overview

In [1] through [4], Stevenson provides a broad philosophical overview of computational
science and the associated role of software engineering. In the references cited, Stevenson
defines the need for software engineering input to computational applications from vari-
ous perspectives. The need is based on both the nature of the problem and some prominent
historical software failures. In [1], he asserts that the key technical element of the problem
is the potential for numerical effects to compromise the validity of the physical model.
This factor is of course compounded by the potential for human error at all stages of the
process. In [4], he describes a high level strategy for verification, validation, and accredi-
tation of computational software. An additional level of detail is provided in [3] where he
identifies the component objectives of validation as correctness, computability, and error
bounds.

In [9], Howden describes a comprehensive software validation process oriented toward
scientific computations in Fortran. The paper defines functionally oriented static analysis
Application of Software Engineering Practices in Computational Science August 16, 2001 3

and testing methods (as opposed to formal proofs) for validation. It asserts that the more
conventional validation methods are appropriate for scientific applications since scientific
programs typically lack complex data abstractions and real time interactions. The paper
emphasizes the importance of thorough specification and design as the basis for both ana-
lytical validation and test case generation. In spite of the paper’s age (published in 1982)
and the straightforward approach, the process standard defined is probably more rigorous
than the current norm for scientific software.

2.2 Empirical Studies

In [5] and [6], Hopkins and Barnes applied code analysis tools to libraries used in compu-
tational software to assess software quality. The objective in [5] was to determine whether
the design and coding practices improved from 1976 to 1996 with respect to maintainabil-
ity and testability. Fortran Code in the Eispack/Linpack/Lapack family was found to
reflect some improvement via simplification of control flow, but a number of large and
complex routines were added or retained in Lapack. On average, modules added to the
Collected Algorithms from the ACM (CALGO) over the same 20-year period did not
reflect any improvement in coding practices.

The analysis in [6] used data from the development history of Lapack to establish a corre-
lation between module complexity and the number of faults detected. The paper presents
strong evidence that a path count metric is a good indicator of which modules contain
errors. Additionally an evaluation of the Lapack test suite was performed. The evaluation
concluded that the test suite could be improved to guarantee 100% coverage, while requir-
ing less CPU time.

A large scale series of experiments, known as the T-Experiments, is described in [7]. In
the first phase of the T-Experiments, static code analysis was performed on 123 software
packages from 40 industries. The static code analysis compared C and Fortran in terms of
frequency of statically detectable faults and error prone practices. The results of the study
indicated that the frequency of serious faults was higher in Fortran (~12 faults/KLOC)
than in C (~8 faults/KLOC). However it was further observed that the improvements in C
relative to Fortran had been compromised somewhat by introduction of deficiencies in C
not found in Fortran.

In the second phase of the T-Experiments, a package of computational algorithms (FFT,
tridiagonal matrix inversion, etc.) for geophysics was specified for implementation in
Fortran77 by nine independent organizations. The implementations were compared at 14
primary and 20 secondary calibration points in a series of tests using identical input
streams and processing parameters. In spite of six significant figure agreement in the
input, the output of the nine versions agreed to only one significant figure. Geoscientists
asked to evaluate the results drew greatly varying conclusions from the results produced
by different versions. Detailed analysis of the results showed that the differences were
almost exclusively the results of software faults.
Application of Software Engineering Practices in Computational Science August 16, 2001 4

The following were among the overall conclusions reported from the T-Experiments:

• current expectations for the accuracy of complex scientific software are “far too high”

• detailed specifications, quality assurance procedures, formal testing, and double preci-
sion arithmetic are only part of the solution

• specifications with anything less than formal mathematical definitions lead to uncer-
tainty that is several times worse than the current best case

• choice of language does not make much difference

• useful techniques for reducing uncertainty include safe subsets of languages, compre-
hensive objective testing, formal methods, and manual inspections

• N-version programming is an effective diagnostic

2.3 Inspection

An inspection procedure for assuring the accuracy and trustworthiness of computer pro-
grams, based on models of physical phenomena, is presented in [8]. The paper delineates
the potential sources of error in such a program:

1. an inappropriate physical model

2. incorrect representation of the model in the program

3. numerically unstable algorithms

4. programmer failure to consider the complete parameter space

5. errors interfacing component models

6. errors in preprocessing or preconditioning data

Then a comprehensive inspection procedure is presented that addresses all the error
sources above by building on established approaches to mitigate 1,3, and 4 above.

2.4 Formal Specification Methods

Considering to the overall limited application of software engineering in computational
science, there is a surprisingly active and diverse international community focused on
applying formal methods to parallel computing. The degree of relevance ranges from
purely theoretical algebraic specification research to elaboration of innovative practical
programming models for parallel architectures.

References [10] through [13] typify the spectrum of formal methods research relevant to
computational applications of parallel computing. In [10] the logical semantics of the
CafeOBJ algebraic specification language are specified. CafeOBJ extends the OBJ
specification language to address concurrent systems, object orientation, and behavioral
specification. Based on the literature, CafeOBJ appears to be the most mature
specification language for parallel computing but is still several steps from mainstream
application.
Application of Software Engineering Practices in Computational Science August 16, 2001 5

While being clearly at the theoretical end of the spectrum, [11] addresses two issues of
critical importance for specifying concurrent systems: non-determinism and probabilistic
behavior. This paper contributes to the theoretical underpinnings of parallel computation
specifications by providing an algebraic formalism that handles both issues.

In [12] the authors describe application of formal specification and verification techniques
for a specific parallel discrete event simulation (PDES) protocol. The “Time Warp” proto-
col is a strategy for synchronizing a virtual time line with the computational steps in a sim-
ulation. Time Warp is considered an “optimistic” PDES protocol since it allows causality
errors but implements a recovery mechanism. The paper discusses mechanizing the speci-
fication of Time Warp using the Prototype Verification System (PVS), a general purpose
theorem proving framework. Additionally PVS extensions are used to verify various opti-
mizations of Time Warp.

Of the papers cited here, the research in [13] has the most direct applicability to scientific
computation on super computers. The author combines a formal specification framework
for sequential programs with parallel programming models to support composition and
verification of parallel realizations of nominally sequential problems.

3.0 General R&D Community Resources and Activities

3.1 Conferences

This section summarizes two conferences where software engineering is addressed as a
component of computational science.

The International Parallel & Distributed Processing Symposium (IPDPS) includes a work-
shop on Formal Methods for Parallel Programming: Theory and Applications (FMPPTA).
While not exclusively focused on computational science, this workshop is concerned with
a key enabling technology. It explores application of formal methods to building and
applying parallel computing architectures. Some representative papers applicable to com-
putational science ([11], [12], and [13]) were discussed in Section 2.4.

The First SIAM Conference on Computational Science and Engineering was held Septem-
ber 21-24, 2000. Out of 83 technical sessions, there were two sessions dedicated to soft-
ware quality, verification, and validation. Although small in number, the topics presented
in these sessions were generally relevant to a variety of current computational science
applications. Unfortunately no proceedings were published, and copies of the papers have
been difficult to obtain.

3.2 Defense Modeling and Simulation Organization (DMSO)

The DMSO Verification, Validation, and Accreditation Recommended Practices Guide
[14] is a noteworthy resource for defining or managing development of large scale simula-
tions. While intended for a DoD audience, it is general enough to apply to essentially any
complex modeling and simulation project. It maps a compendium of verification, valida-
Application of Software Engineering Practices in Computational Science August 16, 2001 6

tion, and accreditation activities onto a system development life cycle. The guide provides
views of the development tailored to five major roles: manager, user, developer, V&V
agent, and accreditor. Each of these views can be further specialized to focus on new sys-
tems, system upgrades, or “federation” of several component systems. As examples of the
exhaustive nature of the guide, it catalogs 45 verification and testing techniques and
approximately 60 commercial or open source tools useful for software validation.

3.3 The OpenScience Project

The OpenScience Project [15] is an effort to move scientific software development toward
the Open Source model exemplified by Linux, Java, etc. The significance in a software
engineering context is the reliance of the open source model on intensive peer review to
ensure validity and correctness. Another potential benefit of making scientific source code
public is to accelerate improvement in performance and robustness by virtue of
contributions from a variety of disciplines. This consequence is particularly promising for
tools that may be useful in diverse scientific fields. As an incentive mechanism, the
OpenScience movement advocates publication of source code in a context similar to that
of technical papers.

4.0 Current State of Practice

Through personal contacts, an attempt was made to characterize the nature of current prac-
tice in scientific software development. Two projects were identified where formal appli-
cation of software engineering practices is beginning to take hold.

4.1 Draco Computational Physics System (DCPS)

DCPS [16] is a radiation-transport oriented software engineering system in the Computer
and Computational Sciences (CCS) Division at Los Alamos National Laboratory (LANL).
Draco is a comprehensive library that provides reusable components for both serial and
parallel computational physics codes.

Development and maintenance of the Draco system is conducted under a documented
software engineering process using a set of clearly identified software engineering prac-
tices and standards. Some of the more significant practices and standards include the fol-
lowing:

• Levelized Design - defining a hierarchy of modules within the library such that depen-
dencies are clearly defined and modularity reduces complexity at each level of the hier-
archy.

• Assertions and Design-by-Contract - requiring mathematically precise specification of
algorithms, inputs, and outputs and using the assertion facility in the programming lan-
guage to perform in-line validation of key specification elements.

• Unit Testing Framework - inclusion of automatic testing as part of the library.
Application of Software Engineering Practices in Computational Science August 16, 2001 7

• Generic Programming - use of a standard template library to implement numerical algorithms
in a way that decouples algorithm, data type, and indexing information to facilitate reuse.

• C++ and Object Oriented Design - using the object oriented features of C++ to facili-
tate reuse and extensibility of the Draco software.

• Technical Review - review of all contributions to Draco by members of the develop-
ment team and outside consultants.

• Documentation - Requiring all documentation products to be maintained under CVS
and providing LaTeX templates for relevant technical documents.

• Revision Control - requiring Draco releases to be accessed through the CVS tag utility.

• Insure++ - requiring all code to be checked for memory leaks with Insure++.

• Context Sensitive Editors - using the context sensitive editors Gnu emacs and Xemacs
to help avoid syntax errors.

• Defect Tracking - use of Gnu Gnats to track resolution of defects during development
and after release.

As of October 2000, the Draco team was beginning implementation of a formal software
engineering process. The team intends to use the Software Engineering Institute’s Capa-
bility Maturity Model (CMM) as a guide to progressive process improvement.

The practices and standards above are mandated for use in the appropriate phases of the
current process. The initial process defines the following activities to be performed on
each project:

• Requirements definition - production of a requirements document verified by formal
technical review.

• Code design - production of a design document, user manual, technical background
document, and testing plan, all verified by formal technical review.

• Code implementation - generation of code and test suites conforming to the design, all
verified by formal technical review and subjected to a controlled build process.

• Testing - automated nightly component testing with assertions enabled and running
Insure++ on all code.

• Maintenance - error tracking with Gnats as described above.

These actions are all to be conducted as part of a project planning and tracking strategy
that recognizes the need for incremental development and release.

4.2 Community Climate System Model (CCSM)
CCSM is a fully-coupled, global climate model that provides state-of-the-art computer
simulations of the Earth's past, present, and future climate states. In November 1999 the
CCSM Software Engineering Working Group (SEWG) was formed. The SEWG objective
is to define a software development process to support more effective joint development
by the organizations contributing to CCSM.
Application of Software Engineering Practices in Computational Science August 16, 2001 8

To date the SEWG has produced a plan of action [17] and a developer’s guide [18]. The
action plan outlines a strategy to
• improve software management,

• restructure CCSM software subsystems,

• introduce software engineering practices, and

• enhance user support.

The central recommendation for improving software management is to create a Software
Engineering Manager position within the CCSM project. As a minimum this position and
a support staff would bring centralized control to configuration management, validation,
testing, and release coordination.

Software restructuring is required to incorporate enhanced model features, increase porta-
bility, and improve performance, particularly on parallel machines. Additionally the
restructuring effort will begin the process of converging the existing Coupler with the
Earth System Modeling Framework (ESMF) proposed by NASA.

To introduce software engineering practices, the following sequence of actions is pro-
posed:

• initiation of a dialog within the CCSM community to identify practices that are both
relevant and palatable,

• publication of a CCSM Software Developer's Guide,

• reassessment and refinement of practices by the software engineering manager, and

• identifying training needed to improve staff capabilities and support the practices
adopted.

The plan proposes to enhance user support by establishing a centralized contact for techni-
cal support, creating a User’s Guide, and initiating a project to put a graphical user inter-
face (GUI) on the model.

Since publication of [17], the SEWG has published the CCSM Software Developer’s
Guide. The content of the guide addresses four general areas:

• development process overview

• programming conventions

• configuration management

• verification and testing

The suggested development process is called the “Staged Delivery Model”. This process
is similar to most incremental development models except that requirements definition
and architectural design are completed in the first pass and not automatically revisited in
subsequent increments. The process description sections also define key management
roles and document format guidelines.
Application of Software Engineering Practices in Computational Science August 16, 2001 9

In addition to source code style guidelines, programmer conventions include guidelines
for signal handling, diagnostic output, and ASCII output file formats. The configuration
management sections prescribe conventions for using CVS and for building the CCSM
distribution.

Verification and testing is addressed at two levels. At the component model level, recom-
mendations are made for unit test, functional test, and code review. Relatively specific
guidelines are provided for each activity; but everything is presented as recommendations,
rather than requirements, for component model developers.

System level tests are defined in rather precise terms and are mandatory. The scope of sys-
tem level tests includes

• model tests to verify model startup, restart, signal trapping, diagnostics, and perfor-
mance

• validation tests to compare quantitative output against previous versions and “real
world” data

• port tests to confirm that identical models implemented on different machines differ
only by the effects of machine precision differences

The model tests are intended to verify program mechanics only and are run frequently.
Validation tests are run for each CCSM minor version release or on the request of CCSM
scientists or working groups. Validation tests for a particular release are based on ad hoc
experiments defined in collaboration with CCSM scientists. The tests must demonstrate
agreement with previous versions and with observed climate based on analysis and review
by the participating scientists.

Port tests compare error growth for execution of a selected problem on two different
machines with the error growth for two different runs on one machine. Inputs for the two
runs on a single machine are perturbed by values on the order of the machine epsilon. The
acceptance criteria requires that

• In the first few time steps, differences between results on the two machines are within
one or two orders of magnitude of machine epsilon, and

• Longer term differences between the two machines do not exceed the error growth
between the base and perturbed runs on a single machine.

5.0 Summary and Recommendations

The foregoing gives a clear indication that software engineering is underutilized relative
to the need in computational science. Enough empirical computer science research has
been done to establish the motivation to apply more rigorous software development meth-
ods. To extend the current best practices in software engineering to computational science,
the following must receive special consideration:

• anticipating and quantifying numerical effects
Application of Software Engineering Practices in Computational Science August 16, 2001 10

• mathematical rigor in specifications

• specification for parallel implementation

• separability of model validation and system verification

• compatibility of component physical models

• testing strategy (input space coverage vs. code coverage vs. usage)

Candidate methods for addressing these issues can be found in the software engineering
research community and in segments of the larger scientific R&D community. However
application of state-of-the-art software engineering is relatively limited and tentative at
present.

Draco/DCPS and CCSM are examples of projects where the need for a more formal pro-
cess has been recognized and addressed internally. As defined, the Draco/DCPS process is
relatively thorough. The only immediately apparent areas for improvement are introduc-
tion of mathematically rigorous specification methods and a more quantitative testing
methodology. Current information regarding process compliance or effectiveness is not
available. However the process description implied that it is still maturing in terms of
practitioner understanding and acceptance.

The CCSM process is somewhat less mature and generally reflects a typical initial effort
to get control of a large software project. The process foundation elements - configuration
control, design documentation, peer review, and formal testing - are all present. However
the following weaknesses, often found in a first-pass software engineering process, are
apparent.

• extensive definition of code level practices without comparable detail in system defini-
tion activities

• lack of rigorous methods for ensuring complete, consistent, and traceably correct spec-
ifications

• lack of detailed content requirements and objective approval criteria for design docu-
ments

• making compliance essentially voluntary in critical areas (e.g., component model
development)

• weak peer review procedures, especially for code

• a system testing strategy based on limited functional criteria without quantitative reli-
ability considerations

As in the case of Draco/DCPS, there is no published information on results of applying the
CCSM software engineering guidelines. In fact the CCSM process is only in the beginning
stages of implementation. This fact may actually provide a valuable opportunity to mea-
sure the benefit of specific software engineering practices in computational science. To
realize this benefit a number of process metrics need to be defined and measured as pro-
cess implementation proceeds.
Application of Software Engineering Practices in Computational Science August 16, 2001 11

While existing software engineering principles and methods are underutilized in computa-
tional science, there are also areas where additional software engineering is needed to
address issues specific to computational science. For example error bounds associated
with numerical effects are recognized as an important issue and are formally evaluated by
testing. However it would be desirable to develop a systematic way to anticipate and con-
trol numerical effects at specification time.

Additionally there is a general need to bring rigorous specification techniques into the
mainstream of computational software development. The specification process should
address not only algorithm definition, but also the programming model required for the
target computer architecture(s).

Testing of computational software is currently characterized by unit testing of library
modules and anecdotal functional tests at the system level. Where unit tests are automated,
combining them with assertion statements and code review may be cost effective at the
module level. However some measurement and study is desirable to determine the opti-
mum mix.

At the system level a more quantitative approach is needed to establish a mathematical
basis for software credibility. In other software applications usage model based statistical
testing has provided the desired quantitative basis. Superficially usage models for compu-
tational science applications appear to be trivial compared to interactive or real time soft-
ware. However architectural factors, such as numerical effects and parallel
implementations, are likely to require careful analysis to adapt statistical testing methods
effectively to computational science.

6.0 Bibliography
[1] D. E. Stevenson, Science, Computational Science, and Computer Science: At a

Crossroads, August 16, 1993.

[2] D. E. Stevenson, A Critical Look at Design, Verification, and Validation of Large
Scale Simulations, IEEE manuscript #107243.

[3] D. E. Stevenson, A Foundation for Validation, Submitted to European Simulation
Multiconference, Warsaw, Poland.

[4] D. E. Stevenson, A Primer on Validation and Accreditation, May 10, 2000.

[5] T. R. Hopkins, Is the Quality of Numerical Subroutine Code Improving?, Modern
Software Tools for Scientific Computing, ed. Arge, Bruaset, and Langtangen,
Birkhauser Boston, 1997, ISBN 0-8176-3974-8.

[6] David Barnes and Tim Hopkins, The Evolution and Testing of a Medium Sized
Numerical Package, February 18, 2000.

[7] L. Hatton, The T-experiments in Quality of Numerical Software, Assessment and
Enhancement, IEEE Computational Science & Engineering, 4(2), 1997, 27-38.
Application of Software Engineering Practices in Computational Science August 16, 2001 12

[8] K. Kreyman, D. L. Parnas, S. Qiao, Inspection Procedures for Critical Programs that
Model Physical Phenomena.

[9] W. E. Howden, Validation of Scientific Programs, ACM Computing Surveys, Volume
14, Number 2, June 1982.

[10] R¢azvan Diaconescu, and Kokichi, Futatsugi, Logical Semantics for CafeOBJ,
JAIST Research Report IS-RR-96-0024S.

[11] Michael Mislove, Models Supporting Nondeterminism and Probabilistic Choice; 6th
International Workshop on Formal Methods for Parallel Programming: Theory and
Applications, May 5, 2000.

[12] Victoria Chernyakhovsky, Peter Frey, Radharamanan, Radhakrishnan, Philip A. Wil-
sey, Perry Alexander, and Harold W. Carter, A Formal Framework for Specifying
and Verifying Time Warp Optimizations; 5th International Workshop on Formal
Methods for Parallel Programming: Theory and Applications, April, 2000.

[13] Berna L. Massingill, A Structured Approach to Parallel Programming: Methodology
and Models, 5th International Workshop on Formal Methods for Parallel Program-
ming: Theory and Applications, April, 2000.

[14] Defense Modeling And Simulation Office. 1996. Verification, Validation and Accred-
itation (VV&A) Recommended Practices Guide. Defense Modeling and Simulation
Office.

[15] J. Daniel Gezelter, Catalyzing Open Source development in science: The Open-
Science Project, http://www.openscience.org/talks/bnl/OSOS.htm, presented at the
OpenSource/OpenScience Conference at Brookhaven National Laboratory, October
2, 1999.

[16] Draco Computational Physics System Home Page, http://www.ccs.lanl.gov/rad/
htdocs/XTM/radtran/draco_www/draco/index.html, Computer and Computational
Sciences Division, Los Alamos National Laboratory.

[17] Cecelia DeLuca, J. Walter Larson, Lawrence Buja, Anthony Craig, John Drake,
Community Climate System Model Software Engineering Plan 2000-2005; Novem-
ber 2000.

[18] Brian Kauffman, Tom Bettge, Lawrence Buja, Anthony Craig, Cecelia DeLuca,
Brian Eaton, Matthew Hecht, Erik Kluzek, Jim Rosinski, Marianna Vertenstein,
Community Climate System Model Software Developer’s Guide; June 2001.
Application of Software Engineering Practices in Computational Science August 16, 2001 13

	Application of Software Engineering Practices in Computational Science
	Application of Software Engineering Practices in Computational Science
	1.0 Introduction
	2.0 Software Engineering Research
	2.1 Process Overview
	2.2 Empirical Studies
	2.3 Inspection
	2.4 Formal Specification Methods

	3.0 General R&D Community Resources and Activities
	3.1 Conferences
	3.2 Defense Modeling and Simulation Organization (DMSO)
	3.3 The OpenScience Project

	4.0 Current State of Practice
	4.1 Draco Computational Physics System (DCPS)
	4.2 Community Climate System Model (CCSM)

	5.0 Summary and Recommendations
	6.0 Bibliography

