Cross-Platform Performance of a Portable
Communication Module and the NASA Finite
Volume General Circulation Model

William M. Putman ®*, Shian-Jiann Lin ", Bo-Wen Shen ¢2

aNASA Goddard Space Flight Center
PNOAA Geophysical Fluid Dynamics Laboratory
¢Science Applications International Corporation (SAIC)

Abstract

The NASA finite volume general circulation model (fvGCM) is a global atmo-
spheric model, originally developed for long-term climate simulations. Recently, the
NASA fvGCM has been applied in a variety of weather prediction applications in-
cluding hurricane and winter storm forecasts. Achieving efficient throughput on a
variety of computational platforms is essential to meet the needs of the climate
and weather prediction community. We have developed a scalable and portable
climate/weather prediction system by applying a portable communication module
within a fast numerical algorithm that exceeds the current community demands
for computational performance on a variety of high performance computing plat-
forms. The low-level communication module, Mod_Comm, simplifies inter-process
communication within general circulation models (GCMs) and provides an efficient
means of communicating between decomposed global domains using a variety of
single-threaded and multi-threaded data communication paradigms (MPI-1, MPI-2,
SHMEM, and MLP). Mod_Comm has been implemented within the NASA finite-
volume GCM (fvGCM) and the community atmosphere model (CAM) at NCAR. It
is shown that the optimal choice of data communication paradigm varies from sys-
tem to system, and can have a significant impact on the overall model performance.
Performance studies with the NASA fvGCM reveal substantial improvements in
the computational performance when using this low-level communication module,
throughput improvements of 40 percent or more have been observed on various
platforms including the SGI Altix 3700, SGI Origin 3000, Compaq AlphaServerSC,
IBM SP, and Cray.

Key words: Finite-Volume GCM, Communication Library, Scalability,
Portability, Benchmark, MPI-1, MPI-2, SHMEM, MLP
PACS:

Preprint submitted to IJHPC 17 May 2005

1 Introduction

The NASA fvGCM was developed as a joint effort between the NASA Data
Assimilation Office (DAO) and the National Center for Atmospheric Research
(NCAR). Originally developed for climate applications and data assimilation,
the NASA fvGCM has recently been applied in various numerical weather
prediction (NWP) applications in at 0.5-degree horizontal resolution (55km).
These NWP applications include 5-10 day weather forecasting, hurricane pre-
diction, and atmospheric chemistry (forecasting of ozone concentrations and
transport of a variety of chemical/biological /radioactive species). The NASA
fvGCM resolves the atmosphere in the form of finite control volumes that
cover the earth from pole-to-pole and surface-to-thermosphere (80 km above
the ground). Each control volume contains all of the dynamic state variables
(wind, temperature, moisture and pressure) to model the atmosphere[1-5].
The physics and land components of the NASA fvGCM are based on commu-
nity built parameterizations developed at NCAR encompassing clouds, solar
heating, infrared cooling, evaporation/condensation of moisture, and others[6].

Parallelization is achieved through a hybrid distributed memory and multi-
threaded parallelism approach. The global domain is decomposed over lati-
tudes for single program multiple data (SPMD) parallelism. Further paral-
lelism is attained via multi-threading directives using OpenMP in the verti-
cal direction in the dynamics (the physics uses OpenMP directives over the
decomposed latitudes). Efficient data communication is acheived via a low-
level general communication module (Mod-Comm) developed for the NASA
fvGCM. This module provides a simple interface to common communication
operations within the NASA fvGCM and allows for compile-time switching
among a variety of single-threaded and multi-threaded data communication
paradigms (MPI-1[7], MPI-2[8], SHMEM][9], and MLP [10]) commonly used
on today’s high-end computers. The ability to easily switch between data
communication paradigms provides a level of portablility critical to acheiving
scalable performance across a variety of platforms.

In this article, we describe the development of Mod_Comm within the NASA
fvGCM. The performance of various data communication paradigms within
Mod_Comm for typical communication operations is examined for a variety of
problem sizes on SGI, Compaq, and IBM systems. The overall performance of
the NASA fvGCM is described across these systems, and the communication
versus computational efficiency is explored in detail for each computational
platform. These performance measures are obtained for a typical high reso-

* Corresponding author.

Email addresses: William.M.Putman®@nasa.gov (William M. Putman),
Shian-Jiann.Lin®@noaa.gov (Shian-Jiann Lin), bshen@gmao.gsfc.nasa.gov
(Bo-Wen Shen).

lution weather forcasting scenario and a lower resolution climate prediction
case.

2 The Evolution of Mod_Comm

We have developed a general communication module, written in fortan90, to
control all SPMD parallelism within the NASA fvGCM. This module was
designed to isolate all communication operations in one complete and concise
module keeping the main source code easy to read and update for the scientific
developers, while also providing the highest possible communication perfor-
mance across all applicable computing platforms. This was accomplished by
defining two levels of routines within Mod_Comm, a user interface level and
a low-level set of routines to perform all data communication and synchro-
nization. The design allows for easy and efficient overlap of computation with
communication, and performs all synchronization within Mod_Comm provid-
ing an absolute minimum number of global synchronizations which can dra-
matically degrade overall model performance. In addition, by seperating the
data communication routines from the user interface level we were able to
effectively resuse common code minimizing the total lines of code and simpi-
fying the process of updating the communication module to include other data
communication paradigms.

Mod_Comm currently supports MPI-1, MPI-2, SHMEM and MLP (multi-
level parallelism, an SGI Origin specific inter-process communication paradigm
developed at NASA Ames Research Center which uses the shared memory
features of SGI Origin systems to perform all communication). In addition to
general data communication, a set of simple parallel input/output routines
have been implemented to allow a user to read/write from multiple SPMD
processes to a single IEEE binary file. These routines have been implemented
using MPI-10, an MPI-2 specific feature. The ability to easily switch between
these data communication paradigms using C preprocessor tokens at compile-
time allows us to effectively use the most efficient data communication calls
which can vary considerably from platform to platform.

2.1 The User Interface Level

Often times, a science developer working on a GCM is not familiar with the
technical demands of data communication in a parallel programming environ-
ment. Modifying code, and performing common communication operations for
such a developer may take an extensive period of time. The user interface level
of Mod_Comm was written to simplify this process to relieve the demands on a

science developer to understand all aspects of parallel computing from process
management to synchronization.

The user interface level provides functionality for process initialization and
finalization, domain decompostion, halo exchanges (ghosting), global reduc-
tions, scatter/gather operations, and parallel input/output (I/O) operations.
Simple calls to mp_init and y_decomp perform all process initialization, do-
main decompostition, and allocate memory required to perform all data com-
munication tasks throughout the simulation of the GCM. These tasks are
performed based on the simple user input of global domain sizes and the de-
sired number of computational processes. After initialization, an implementor
is only required to understand where a communication operation is required
(ie, when data is needed from another process) and what type of operation is
necessary (ghosting, collective, etc.). Synchronization, one of the most criti-
cal aspects of parallel computing in terms of potential performance impacts,
is completely controlled within Mod_-Comm. A developer will never need to
perform a synchronization operation from the main source code when using
Mod_Comm; this is optimally controlled to effectively reduce the CPU (central
processing unit) time spent waiting in unecessary barrier calls.

Ghosting and collective communication operations are provided with a simple
interface requiring the user to supply the appropriate decomposed and global
arrays and extents. The communication module then performs any synchro-
nization required, packs all data into appropriate buffers and sends the mes-
sages to the appropriate destinations. For most operations, the user does not
need to know which processor should receive the data, this is controlled based
on the dimensions supplied through the argument lists. In addition, these op-
erations allow for effective overlapping of computation with communication.
A user can initiate a series of send calls, perform any overlapping work, and
then return to receive the appropriate data once the computation completes.
This overlaying of computation during communication can substantially mask
the impact of communication on the total run time of the application.

2.2 The Low-Level Communication Routines

The user interface routines within Mod_Comm essentially perform all of the
organizational tasks required for the communcation operations; a series of
low-level communication routines within Mod_Comm do most of the work re-
quired in sending, receiving and synchronizing the messages involved and are
called from the user interface routines. The low-level routines are coded based
on a global array design. The intent of the global array design is to provide
a series of routines for communicating with various datatypes (real*8, real*4,
integer®4) using predefined buffers that, depending on the data communi-

cation paradigm, are truly globally accessible by all other processes, or em-
mulate global accessibility through direct message-passing between processes.
Each of the buffers are partitioned based on the domain decomposition and
a predefined maximum number of consecutive communication calls allowed.
This partitioning ensures that required data is not overwritten during a com-
munication event, and also aides in minimizing the total amount of global
synchronizations required. All communication operations pass through these
global array routines effectively reducing the total lines of code required by
reusing common code segments. The global array routines also greatly reduce
the work required to implement new data communication paradigms within
Mod_Comm.

The global array approach is based on communication windows and epochs as
defined in the MPI-2 documentation. A communication epoch is defined as a
data communication event, beginning with the initial request to send and/or
receive data to the final synchronization or confirmation of delivery /receipt.
Communication windows are defined as direct pathways to a specific mem-
ory location on another process. For data communication paradigms which
perform one-sided message-passing communication (ie, PUT/GET) this is an
obvious definition, for those that require a send/receive handshake (ie, MPI-1)
the window is setup as complimentary buffers which exist on all processes but
do not directly share memory locations.

2.8 The Message-Passing Paradigms

Our MPI-2 implementation uses solely the MPI_PUT one-sided communication
operations. A call to MPI_PUT sends data through a supplied MPI-2 window
directly into the memory space of the receiving process. The MPI-2 imple-
mentation uses active target synchronization; the receiving process is actively
involved in the communcation during the window synchronization step by
calling the MPI_WIN_FENCE routine (it does not need to perform a receive
call, and thus it is a one-sided communication). On applicable systems, a
set of assertions are used to determine the level of synchronization required.
These assertions can greatly reduce the cost of the MPI_WIN_FENCE synchro-
nization. In addition, the thread-safe capabilities of MPI-2 are exploited on
shared memory systems by breaking up large messages based on the number
OpenMP threads being used and multi-threading the calls to MPI_PUT. This
multi-threaded message-passing[11] provides a substantial increase in perfor-
mance on SGI Origin systems, allowing the MPI-2 implementation to consid-
erably outperform the MPI-1 implementation. It is noted that multi-threading
of communication is not supported on the SGI Altix systems, and can degrade
performance on certain platforms such as the IBM and Compaq systems.

The SHMEM implementation is very similar to MPI-2. It uses the one-sided
SHMEM_PUT operation, and all processes are actively involved in the commu-
nication by calls to the SHMEM_BARRIER routines. Windows are not explicity
defined within shmem, the global arrays are set up as shared memory accessi-
ble regions during the memory allocation process. The SHMEM routines are
also safely multi-threaded, further improving the SHMEM performance.

MLP (multi-level parallelism) is a unique communication paradigm. It is a
shared memory inter-process communication paradigm developed at NASA
Ames Research Center, and is an SGI Origin specific implementation. MLP
uses the shared memory features of the UNIX system to define globally acces-
sible arrays that can be accessed directly by all SPMD processes. The main
benefit of this method is a very simple coding style in which data communica-
tion events are coded simply as copies in/out of the global memory locations.
The performance of MLP on SGI Origin systems is subtantially better than
MPI-1, however falls short of MPI-2 as will be described in later sections of
this article.

The MPI-1 implementation is the most portable of those within Mod_Comm.
It utilizes exclusively non-blocking MPI_ISEND and MPI_IRECV routines. All
message synchronization within Mod_Comm for MPI-1 is performed with
MPI_WAIT routines. The MPI_WAIT routines are called to wait for message de-
livery or completion at the ideal time when it is needed, thus optimally reduc-
ing the total time spent waiting on communication (global MPT_BARRIER calls
are never needed for the MPI-1 implementation within Mod_Comm). This
weak synchronization feature of our MPI-1 implementation provides subtan-
tial gains on distributed memory systems where global synchronizations can
be extremely costly, or load imbalances caused by a poor choice of CPU con-
figurations or the computational aspects of the model significantly impact the
overall runtime. The impact of load imbalances will be expanded upon in later
sections.

2.4 A Ghosting Performance Example

To benchmark the performance of the various paradigms implemented within
Mod_Comm a simple communication epoch which performs a north/south
ghosting operation on two 3-dimensional arrays is iterated 500 times to pro-
duce an average communication rate. The size of the global domain is grad-
ually increased up to the resolution of a typical numerical weather prediction
run of 0.5x0.625 degree horizontal resolution with 55 vertical levels. Results
are included for four platforms (Table 1): Columbia, an SGI Altix 3700 lo-
cated at the NASA Advanced Supercomputing Division (NAS) at the NASA
Ames Research Center; Daley, an SGI Origin 3000 located at the NASA

Center for Computational Sciences (NCCS) at Goddard Space Flight Cen-
ter (GSFC); Halem, a Compaq AlphaServerSC located at NCCS; and Ea-
gle, an IBM RS/6000 SP located at the Center for Computational Sciences
(CCS) at Oak Ridge National Laboratory (ORNL). Columbia is an SGI Al-
tix 3700 cluster. The Columbia cluster consists of 20 nodes each with 512
processors providing global shared memory within a node via the SGI non-
uniform memory access (NUMAlink) interconnect. The SGI Message-Passing
Toolkit (MPT) version 1.9.1.0 is used to provide the standard message-passing
libraries on Columbia throughout this article. Daley is a 512 processor SGI
Origin NUMA system; the system runs a single IRIX operating system and
memory is distributed over the processors but shows a single memory image
to the user. The SGI MPT version 1.4.0.3 is used to provide the standard
message-passing libraries on Daley throughout this article. Halem and Ea-
gle are both distibuted memory systems with 4-way symetric multiprocessing
(SMP) interconnected nodes. Halem’s SMP nodes are connected to the single
rail Quadrics QsNet network switch through an ELAN PCI adaptor. Eagle’s
SMP nodes are connected over a scalable parallel (SP) switch using the user
space protocol in non-shared mode. Each system is benchmarked with a 32
processor configuration using 8 SPMD processes and 4 OpenMP threads.

The cost of communication varies greatly across the sample platforms, and can
be significantly impacted by the choice of data communication paradigm. The
communication rates (Fig. 1) for the sample ghosting vary the most on the SGI
Origin. The SGI Origin provides the largest choice of implementations allowing
us to test all four data communication paradigms within Mod_Comm (MPI-1,
MPI-2, SHMEM, and MLP). The observed rate for the MPI-2 implementation
on the SGI Origin is greatest at about 1400 MB per second. This is a huge
improvement over the MPI-1 implementation which levels off at about 350 MB
per second. A closer look at the speedup (T,,/Tnpr—2, where T, is the time
for MPI-1, SHMEM, or MLP, and T)ysp;_ is the time for MPI-2) in the actual
times for the MPI-2 implementation on the SGI Origin (Fig. 2) show the MPI-2
implementation is 3.8 times faster than MPI-1, 2.9 times faster than SHMEM
and 1.5 times faster than MLP. The improvements over MPI-1 were expected
due to the one-sided operations and multi-threading of the communication,
however similar features are used with SHMEM and MLP. A possible reason
for the poor performance of the SHMEM and MLP implementations are their
use of global synchronization routines where MPI-2 allows special assertions
to be made that can decrease the cost of synchronization.

The communication performance on the IBM and Compaq do not vary as
much as the SGI Origin. The Compaq produces nearly equal rates for MPI-1
and MPI-2 and only very slight improvements with SHMEM. The same is
true for the IBM, although MPI-1 is slightly better than MPI-2. The barrier
synchronization assertions mentioned on the SGI Origin have not been imple-
mented on either of these systems; this may account for the nearly identical

performance of MPI-1 and MPI-2 on these systems. On the SGI Altix, the
MPI-1 performance is significantly better for small message sizes (5mb), after
this peak the performance is comparable for both MPI-1 and MPI-2. In ad-

dition, none of these systems were able to handle the multi-threaded features
of MPI-2.

The downfall of MPI-2 on the Compaq and IBM appears to be that the
WIN_FENCE operation on these systems is a strong synchronization function
(essentially a global barrier synchronization), all processes must wait at the
fence until every MPI process has reached that point (this is not the case on
the SGI Origin). Thus, many processes are held up much longer than needed
during ghosting exchanges when really they just need to wait on their nearest
neighbors. MPI-1, as implemented in Mod_Comm, is entirely non-blocking and
based on a weak synchronization technique, so each process just waits for it’s
nearest neighbor data, and then resumes. This is amplified by fabricating a
load imbalance during the overlapped computation between send and receive
calls for the ghosting example. A 5 second pause is passed from process 0 to
process 7 at each iteration for a total of 16 iterations, during each iteration only
one process waits in the fabricated load imbalance. Vampir [12], a message-
passing performance visualization tool, is used to visualize the impact of the
load imbalance using MPI-1 and MPI-2 on the Compaq (Figs. 3 and 4). For
MPI-1, where processes only wait on their neighbors the total execution time
is 11.976 seconds, 10 seconds for each processes two 5 second pauses, plus the
communication costs. With MPI-2, since each process needs to wait for the
slowest process, the total execution time is 81.427 seconds, a considerable im-
pact due to the strong nature of the WIN_FENCE synchronization. Therefore any
gain from the one-sided communication is lost in synchronization overhead.

3 The NASA fvGCM Performance

3.1 0.5 Degree NWP Ezperiments

A typical 7-day NWP forecast is benchmarked on the three test systems us-
ing all available data communication paradigms. The NWP run is performed
at 0.5x0.625 degree horizontal resolution with 32 vertical levels, a total of
6,653,952 grid points. Performance numbers are provided for the test systems
using the best performing data communication paradigm and CPU configu-
ration for each system. For both the Compaq and IBM we are restricted to
4 CPUs per node and thus all runs use 4 OpenMP threads within a node.
The SGI systems do not restrict the number of OpenMP threads we can use,
therefore optimal configurations were chosen based on the model resolution.
It is noted that optimal OpenMP performance is obtained on the SGI Altix

when restricting to 4 threads, thus all configurations for this system use only
4 OpenMP threads per process. Overall performance is described in terms of
model throughput (Fig. 5), defined as the total number of forecasted days
possible per wall clock day (Days/day).

Due to the varying processor speeds on these systems, a direct comparison
of throughput is not possible. The throughput is proportional to the system
processor speed. The throughput does provide a measure of overall computing
capability with the NASA fvGCM. Using 240 CPUs of Columbia, the NASA
fvGCM completes more than 900 simulated days per wall-clock day. This
equates to about 10 minutes to complete a 7-day NWP forecast with 240
CPUs, well within the range of acceptability for a production NWP forecast
where model updates every 6 hours are required. On the Compaq, the NASA
fvGCM is capable of about 1 simulation year per day using 120 CPUs at
the NWP resolution, and 521 Days/day using 288 CPUs; roughly 30 minutes
of wall-clock time to complete a 7-day NWP forecast with 120 CPUs, again
within an acceptable range for production NWP forecasts. The throughput is
cut almost in half on the SGI Origin and IBM, due to the slower processor
speeds.

Speedup and efficiency can be used to compare the scalability of the NASA
fvGCM across the three systems (Fig. 6). Speedup (Eq. 1) and efficiency (Eq.
2) are defined as:

S, = Tsa/T), (1)

E,=5,/(n/32) (2)

where T}, is the total time using n CPUs and T3 is the total time using 32
CPUs. This equation for speedup is modified from the standard definition in
which 77 is used instead of T3, due to the large problem size of this benchmark
experiment. The time and memory required to complete the NWP simulation
using 1 CPU is unreasonable for this problem.

For processor counts less than 120 CPUs the Compaq and SGI speedups are
very similar; each of these systems outperform the IBM. The SGI Origin scales
much better than the SGI Altix and Compaq as we move to larger CPU con-
figurations, where the SGI Origin continues to improve reaching a speedup
of 6.51 at 304 CPUs versus a speedup of only 4.17 for the Compaq at 288
CPUs and 4.49 for the SGI Altix for 360 CPUs. In terms of efficiency, the
SGI Origin remains better than 80 percent up to 200 CPUs, and about 70
percent for 300 CPUs. The SGI Altix and Compaq efficiency drop off dra-
matically to less than 60 percent at 200 CPUs and about 46 percent at 300
CPUs. This is due in-part to the ability to chose ideal CPU configurations
based on the domain resolution. Choosing an optimal domain decomposition

can avoid computational load imbalances that may impact the overall model
performance. In addition, the superior communication performance of the SGI
Origin, as shown in section 2, effectively reduces the percent of the total time
spent in communication on the SGI Origin (Fig. 7), where at 128 CPUs the
SGI Origin run spends 24 percent of the total execution time in communi-
cation opertations and barriers as opposed to 35 and 42 percent on the SGI
Altix and Compaq with 120 CPUs. As processors are added, the percent of
time spent in communication increases rapidly on the Compaq, reaching nearly
60 percent as the total CPUs approach 300; the increase on the SGI Altix is
less severe. This increase is due to growing message volume as we are forced
to use 72 SPMD processors due to the node structure of the Compaq and
OpenMP performance on the SGI Altix. On the SGI Origin we are able to
efficiently use more OpenMP threads to scale up to 300 CPUs and beyond,
and keep the impact on total communication time low, only 29 percent for
304 total CPUs (19 MPI processes and 16 OpenMP threads). In addition, the
16 OpenMP threads for this configuration on the SGI also participate in the
data communication further improving the communication time.

The difference in model throughput with different data communication paradigms
is most dramatic on the SGI Origin. MPI-2 outperforms all other paradigms
on the SGI Origin, where as on the SGI Altix, IBM, and Compaq MPI-1 is
still the top performer. MPI-1 is 10 percent faster then MPI-2 on the IBM,
and less than 5 percent faster then MPI-2 on the Compaq. This is further sup-
port for providing a general communication module such as Mod_Comm that
allows easy swapping among data communication paradigms. On the SGI Ori-
gin, the MPI-2 performance is significantly greater than MPI-1. Overall model
performance is more than 20 percent faster with MPI-2, and the communica-
tion time speeds up by about 90 percent as the CPU count increases (Fig. 8)
indicating that the MPI-2 communication scales better than MPI-1. MPI-2
outperforms SHMEM by 10 percent and MLP by 6 percent, in terms of total
model throughput.

3.2 Lower Resolution Climate Runs

Climate simulations are typically low resolution long-term runs spanning decadal
to century time-scales. For the climate benchmarks, we have examined the
2x2.5 degree horizontal resolution with 55 vertical levels. The NASA fvGCM
is capable of simulating more than 1 decade per day using only 92 CPUs on
the Compaq (Fig. 9). This level of performance provides a huge scientific ca-
pability for climate researchers allowing 1000 year simulations to complete in
about 3 months, and inter-decadal studies to complete in a matter of days.
The throughput across platforms again mirrors the processor speeds on each
system, and the speedup and communication efficiency results are consistant

10

with the NWP benchmarks.

4 Summary

The optimal choice of data communication paradigm can vary substantially
across computational platforms. The development of Mod_Comm, a portable
communication module for the NASA fvGCM, combined with a fast numeri-
cal algorithm and a hybrid parallelism approach allow the NASA fvGCM to
maintain scalable performance across a variety of computational platforms.
The one-sided communication features of MPI-2, along with a unique multi-
threading implementation within Mod_Comm produce significant improve-
ments over the standard MPI-1 communication operations on SGI systems.
The MPI-2 implementations on other systems (SGI Altix, IBM, and Com-
paq) currently do not perform up to expected levels, however, the flexibilty
of Mod_Comm permits the NASA fvGCM to use the most efficient commu-
nication paradigm for each platform and maintain sufficent scalability across
platforms. The NASA fvGCM is capable of producing 7-day NWP forecasts
at 55 km horizontal resolution in about 10 minutes using 240 CPUs of the
SGI Altix, and 30 minutes using 120 CPUs on the Compaq AlphaServerSC.
Climate simulations at 200 km horizontal resolution are capable of completing
more than a decade in a single wall clock day. This computational throughput
exceeds the current demands of the climate and weather prediction commu-
nity.

5 Acknowledgment

The authors would like to thank Dr. Robert Atlas for his support during the
development and evaluation of the finite-volume general circulation model.

References

[1] S.-J. Lin, A "vertically lagrangian” finite-volume dynamical core for global
models, Submitted to Mon. Wea. Rev. .

[2] S.-J. Lin, R. Rood, A flux-form semi-lagrangian general circulation model with
a lagrangian control-volume vertical coordinate, The Rossby-100 symposium,
1998.

[3] S.-J. Lin, A finite-volume integration method for computing pressure gradient
forces in general vertical coordinates, Q. J. Roy. Met. Soc. 123 (1997) 1749-1762.

11

S.-J. Lin, R. Rood, An explicit flux-form semi-lagrangian shallow water model
on the sphere, Q. J. Roy. Met. Soc. 123 (1997) 2477-2498.

S.-J. Lin, R. Rood, Multidimensional flux form semi-lagrangian transport
schemes, Mon. Wea. Rev. 124 (1996) 2046-2070.

J. Kiehl, J. Hack, G. Bonan, B. Boville, B. Briegleb, D. Williamson, P. Rasch,
Description of the NCAR community climate model (CCM3), Tech. Rep.
NCAR/TN-420+STR, Boulder, CO (1996).

W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming
with the Message-Passing Interface, The MIT Press, Cambridge, Massachusetts,
1999.

W. Gropp, E. Lusk, R. Thakur, Using MPI-2: Advanced Features of the
Message-Passing Interface, The MIT Press, Cambridge, Massachusetts, 1999.

Quadrics, SHMEM Programming Manual, Quadrics Supercomputers World
Ltd., QSW Limited One Bridewell Street Bristol, United Kingdom, 2001.

[10] J. Taft, Multi-level parallelism, a simple highly scalable approach to parallelism

for CFD, HPCCP/CAS Workshop 98 Preceedings, 1998.

[11] B. V. Protopopov, A multithreaded message passing interface (MPI)

architecture: Performance and program issues, Journal of Parallel and
Distributed Computing 61 (2001) 449-466.

[12] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, K. Solchenbach, VAMPIR:

Visualization and analysis of MPI resources, Supercomputer XII (1) (1996) 69—
80.

12

Computer Manufacturer/Model Processor (Speed) Total CPUs (Nodes)

Columbia SGI Altix 3700 Intel Itanium-2 (1.5 GHz) 10,240 (20)

Halem Compaq AlphaServer SC45 Alpha-EV68 (1.25 GHz) 1388 (347)

Daley SGI Origin 3000 R14000 (0.5 GHz) 512 (1)

Eagle IBM RS/6000 SP Power3-11 (0.375 GHz) 704 (176)
Table 1

Description of the computational platforms used in testing communication and the
overall model performance of the NASA fvGCM.

13

Fig. 1 The communication rates for 2 ghosting events with Mod_Comm using
8 SPMD processes and 4 OpenMP threads on SGI, Compaq and IBM systems.

Fig. 2 The communication times and speedup with MPI-2 for 2 ghosting events
with Mod_Comm on the SGI Origin 3000.

Fig. 3 Vampir timeline for the MPI-1 execution of a fabricated load imbalance
test on the Compaq AlphaSeverSC. Areas of red or orange represent time spent
in communication or synchronization operations, areas of green represent time
spent in the fabricated computation.

Fig. 4 Same as Fig. 3 except MPI-2 is used for data communication.

Fig. 5 Throughput, forecasted days per wall clock day, of the NASA fvGCM
for a typical NWP forecast at 0.5x0.625 degree horizontal resolution with 32
vertical levels.

Fig. 6 Speedup, T32/T,, of the NASA fvGCM for a typical NWP forecast at
0.5x0.625 degree horizontal resolution with 32 vertical levels.

Fig. 7 Percent of the total execution time spent in communication for a typical
NWP forecast with the NASA fvGCM at 0.5x0.625 degree horizontal resolu-
tion with 32 vertical levels.

Fig. 8 The total communication time in seconds for the NWP test case on the
SGI Origin 3000 using MPI-2 and MPI-1, and the effective speedup of MPI-2
over MPI-1.

Fig. 9 The throughput (modeled days per wall clock day) of the NASA fvGCM
for a 2x2.5 degree 55 level climate simulation on the SGI Origin 3000, Compaq
AlphaServerSC, and IBM RS6000/SP.

14

Rate (MegaBytes/second)

SPMD Communication Rates for 2 ghosting events with mod_comm
Using 8 SPMD Processes and 4 OpenMP Processes
Data size increases up to D55 resolution
Columbia - SGI Altix 3700
Daley - SGI Origin 3000
Halem - Compaq AlphaServerSC45
Eagle - IBM RS/6000 SP

2500

2000

1500

1000

500

0 5 10 15 20 25
Data Volume (MegaBytes)

Fig. 1.

15

a Columbia MPI-1

« Columbia MPI-2

x Columbia SHMEM
» Daley MPI-2

= Daley MLP

x Daley SHMEM

a Daley MPI-1

a Halem MPI-1

« Halem MPI-2

x Halem SHMEM

a Eagle MPI-1

« Eagle MPI-2

Time (Seconds)

SPMD Communication Times for 500 Iterations of 2 ghosting events with mod_comm
Using 8 SPMD Processes and 4 OpenP Processes
Data size increases up to D55 (0.5x0.625x55L) resolution
Daley - SGI Origin 3000

30
Average Speedup in Ghosting
Communication Performance with MP1.2
25 4
20
y + Daley MP[-2
vs MLP vs SHMEM vs MPI1 y
15 u Daley MLP
* Daley SHMVEM
* Daley MPI-1

.y
o

0 5 10 15 20

26
Data Volume (MegaBytes)

Fig. 2.

16

Process 0 N
ICOMM_TOTAL
COMPUTATION
Process
Process
Process
Process
Process §
4 L — §
| e S | |
Process B
| —
Al Wl
Process 7

17

1:20.0
!

WCOHH_TOTAL

COMPOTATION

Process
Process
Process
Process
Process
Process

Process

Process

18

Day)

Days per

NASA fvGCM d32 (0.5x0.625 32L) NWP Throughput
Columbia - SGI Altix 3700 - 1.5 GHz
Halem - Compaq AlphaServerSC45 - 1.25 GHz
Daley - SG/ Origin 3000 - 0.5 Ghz
Eagle - IBM RS/6000 SP - 0.375 GHz

1000

900

800

700

600

—=— Columbia MPI-1
—a— Halem MPI-1
—e—Daley MPI-2
—s—Eagle MPI-1

500

400

300

200

100

0 50 100 150 200 250 300 350
Total CPUs Used

Fig. 5.

19

Speedup

NASA fvGCM d32 (0.5x0.625 32L) NWP Speedup
Columbia - SGI Altix 3700 - 1.5 GHz
Halem - Compaq AlphaServerSC45 - 1.25 GHz
Daley - SG/ Origin 3000 - 0.5 Ghz
Eagle - IBM RS/6000 SP - 0.375 GHz

—e— Columbia MPI-1
—a— Halem MPI-1
—e—Daley MPI-2
—s=— Eagle MPI-1

200 250 300 350 400
Total CPUs Used

0 50 100 150

Fig. 6.

20

Comm. Eff. (Comm. Time)/(Total Run Time)

NASA fvGCM d32 (0.5x0.625 32L) NWP Communication Efficiency
Columbia - SGI Altix 3700 - 1.5 GHz
Halem - Compaq AlphaServerSC45 - 1.25 GHz
Daley - SGI Origin 3000 - 0.5 Ghz
Eagle - IBM RS/6000 SP - 0.375 GHz

70%

60%

50%

40%

30%

20%

10%

0%
0 50 100 150 200 250 300 350 400

Total CPUs Used

Fig. 7.

21

—=— Columbia MPI-1
—a— Halem MPI-1
—e—Daley MPI-2
—s—Eagle MPI-1

Seconds of Communication Time

NASA fvGCM d32 (0.5x0.625 32L) NWP Total Communication Time
Run on Daley - SGi Origin 3000 - 0.6 GHz

2500

‘Speedup of Total Communication Time Using
MPI2 versus MPL1
100%
0%
2000 aontg | g

40%

- 20%
\ B 0%
1500 . RS 4 128 160
- T 140 Humber of CPUs

1000

500

50 100 150 200 250 300 350
Total CPUs Used

Fig. 8.

22

NASA fvGCM b55 (2x2.5 55L) Throughput
Halem - Compag AlphaServersC45 - 1.26 GHz
Daley - SGI Origin 3000 - 0.6 Ghz
Eagle - 18M RS/6000 SF - 0.376 GHz

5000 -
4500
4000
3500

3000

—&— Halem MPI-1
—e— Daley MP-2
—=—Eagle MPI-1

2500

2000

Model Days per Wallclock Day

1500
1000

500

0 20 40 60 80 100 120 140 160
Total CPUs Used

Fig. 9.

23

