
The Model Coupling Toolkit: A New
Fortran90 Toolkit for Building

Multiphysics Parallel Coupled Models

Jay Larson, Robert Jacob, and Everest Ong

April 27, 2005

Mathematics and Computer Science Division
Argonne National Laboratory

9700 S. Cass Ave., Argonne, IL 60439

Submitted to International Journal for High Performance Computing Applications



Running head:
Model Coupling Toolkit

Jay Larson
(Corresponding Author)
Argonne National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439
630-252-7806
630-252-6104 (fax)
larson@mcs.anl.gov

Robert L. Jacob
Argonne National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439
630-252-2983
630-252-5986 (fax)
jacob@mcs.anl.gov

Everest Ong
Argonne National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439
630-252-6586
630-252-6104 (fax)
eong@mcs.anl.gov

2



ABSTRACT

Many problems in science and engineering are best simulated as a set of mu-

tually interacting models, resulting in a coupled or multiphysics model. These

models present challenges stemming from their interdisciplinary nature and from

their computational and algorithmic complexities. The computational complex-

ity of individual models, combined with the popularity of the distributed-memory

parallel programming model used on commodity microprocessor-based clusters,

results in a parallel coupling problem when building a coupled model. We define

and elucidate this problem and how it results in a set of requirements for software

capable of simplifying the construction of parallel coupled models. We describe the

package we developed—the Model Coupling Toolkit (MCT)—to meet these general

requirements and the specific requirements of a parallel climate model. We present

the MCT programming model with illustrative code examples. We present repre-

sentative results that measure MCT’s scalability, performance portability, and a

proxy for coupling overhead.

3



1. Introduction

Complex systems comprising numerous, mutually interacting subsystems

abound in nature and engineering. These models are commonly called cou-

pled or multiphysics models. Examples include models of climate (?), space

weather (?), reactive flow (?), solid rockets (?) and fluid-structure interac-

tion (?).

A coupled climate model is an excellent example of a multiphysics model,

comprising interdependent models that simulate the Earth’s atmosphere,

ocean, cryosphere, and biosphere. Each of these models requires boundary

condition data from other models and, in turn, provides as output boundary

condition data for other models in the system. For example, the atmosphere

provides to the Earth’s surface downward radiative fluxes, momentum fluxes

in the form of wind stress, and fresh water flux in the form of precipitation.

Until recently, computer simulation of physical, chemical, biological, and

environmental systems has focused on individual subsystems that are part of

a greater whole. Study of the Earth’s climate system, for example, is under-

taken by scientists concentrating in one of the following fields: atmospheric

physics, oceanography, sea-ice modeling, and land-surface modeling. These

specialists work on models for their respective disciplines, and in the past

they ran their subsystem models in isolation, using prescribed data from cli-

matologies, reanalyses, output from the other disciplines’ models run off-line,

or data computed by using drastically simplified versions of the other sub-

systems (e.g., use of a mixed-layer ocean to provide ocean surface data for

use by an atmospheric GCM).

4



Parallel coupled models incur a high computational cost from running

numerous compute-intensive algorithms to integrate the equations of evo-

lution for each subsystem of the coupled system. In terms of the climate

system model as an example, atmosphere and ocean general circulation mod-

els (GCMs) are among the most computationally demanding applications in

computational science.

The software engineering of a parallel coupled model requires solutions to

many challenging problems in the implementation of a large system compris-

ing many mutually interacting and separately developed parts. In this paper,

we focus on the data interactions between the models, and consider issues

regarding build system and language interoperability beyond the scope of our

discussion. Data exchanged among the models typically resides on differing

spatial meshes, requiring interpolation between the source and target com-

ponents’ respective grids. The models may also differ in how they discretize

time, requiring some scheme to either interpolate or average/accumulate data

for translation between the source and target components’ time meshes.

The use of distributed-memory parallel programming in each component

has led to a parallel coupling problem: the challenge of connecting models that

not only have different internal data structures but may each have different

decompositions of those data structures each on different sets of processors.

Despite these obstacles, parallel coupled models have been created and

used successfully (?; ?; ?). Below we discuss in brief typical solutions em-

ployed in coupled model development.

In the past, parallel coupled model developers such as those mentioned

5



above have surmounted the parallel coupling problem by implementing ad

hoc application-specific solutions. Like language interoperability, the par-

allel coupling problem is a software barrier amenable to a generic software

solution. Parallel coupling at a minimum poses a challenge in parallel data

transfer between components—the so-called M-by-N (or M×N) problem (?).

A second, often-encountered requirement to implement parallel coupling is

the need for distributed intergrid interpolation algorithms. We describe here

a general solution to these and other problems in the form of a software

library with datatypes and methods for the most commonly encountered

problems in building parallel coupled models: the Model Coupling Toolkit

(MCT).

In Section ?? we discuss the parallel coupling problem, both in the gen-

eral case and the specific case of the Community Climate System Model

(CCSM). In Section ??, we describe MCT and explain how its kernels sup-

port parallel multiphysics coupling. A companion paper (?) gives details on

the parallel data transfer capabilities in MCT. In Section ??, we discuss the

MCT programming model and present pseudocode to illustrate its usage. A

companion paper (?) describes in detail how MCT was employed to create a

parallel coupling infrastructure for CCSM. In Section ??, we present perfor-

mance results. In Section ??, we present our conclusions and chart a possible

future course for MCT development.

2. The Parallel Coupling Problem

Versions of the Community Climate System Model (CCSM) through ver-

sion 2 (?) had a coupler with only shared-memory parallelism. Data was

6



exchanged with this coupler by single MPI messages between the coupler

and the root process of the parallel component models. To accommodate

the future development of CCSM, which envisions both increasing horizontal

resolution and adding more physics parameterizations, a parallel coupler was

needed.

The challenges posed in building a parallel coupler for CCSM led to a

general consideration of the software needs of parallel coupled models, which

in turn led to the creation of the Model Coupling Toolkit. This general

description of the problem is summarized in Section ?? and will be explored

further in a future paper. The specific challenges of CCSM are described in

Section ??.

2.1. The General Problem of Parallel Coupling

A parallel coupled model is a collection of N component models, or com-

ponents,1 each of which may employ distributed-memory parallelism. Each

component Ci (where i = 1, . . . , N) resides on Pi processing elements. Each

model may in principle have its own distinct discretization of space and time

and, possibly, multiple mesh schemes. Each model shares an interface with

one or more of the other N − 1 models and requires input field data from

and/or supplies output field data to these other models. We define the par-

allel coupling problem as the transmission and transformation of the various

distributed data between the component models comprising a parallel cou-

1Our use of the word component is from the viewpoint of scientists who develop com-
puter models. Its usage here is related to, but not identical to, the usage of the term in
component-based software engineering paradigms such as CORBA (?) or CCA (?).

7



pled system.

The parallel coupling problem has two major facets: coupled system ar-

chitecture and parallel data processing required to implement model interac-

tion.

The architectural aspects of the problem fall into two broad categories,

and originate either in scientific requirements or software implementation

choices.

The coupled model architectural aspects derived from scientific require-

ments are: (1) connectivity, the set all model-model interactions determined

by the physics and solution algorithms of the coupled system; (2) domain

overlap, the simulation space across which two or more models must ex-

change either driving or boundary condition data, which may be as simple

as subsets of physical meshes, or as complex as interactions across spectral

space or between Eulerian and Lagrangian models; (3) coupling cycle, the pe-

riod over which all models in the system have exchanged data at least once;

(4) coupling frequency, the temporal exchange rate for a given model pair;

and (5) tightness the ratio of the effort (e.g., wall-clock time) by a component

spent executing model-model interactions vs. integrating its own equations

of evolution.

The coupled model architectural aspects describing software implemen-

tation choices are: (1) component scheduling, the order of execution for the

individual models in the coupled system, which can be sequnential (Figure

??(a)), concurrent (Figures ??(b) and ??(c)), or a combination thereof (e.g.,

Figure ??(d)); (2) resource allocation the number of processors and threads

8



allocated to each component in the system; (3) number of executables, the

number of executable images in the coupled system—either single (Figures

??(a), ??(b), and ??(d)) or multiple (Figure ??(c)) executables; and (4) cou-

pling mechanism, the way models exchange information, either directly or

through an intermediate entity.

In a coupled model, the data exchanged by two components Ci and Cj re-

sides on their overlap domain Ωij, and in principle each component will have

its own discretization of Ωij. Thus, the parallel data processing challenge in

coupled model development comprises the description of each component’s

distributed mesh and field data on Ωij, its transfer between the processor

pools and/or decompositions on which Ci and Cj reside, and its transforma-

tion for use by the other component.

The data description problem for component interaction comprises four

elements: (1) each component’s spatial discretization of the overlap domain,

(2) decompositions of the discretizations over the processor pools on which

they reside, (3) lists of fields each component either sends or receives and how

these fields are bound to their respective distributed discretized domains, and

(4) time sampling of field data. The coupled model developer is confronted

with a choice for each of these four issues—either work with the native repre-

sentations used by each component, or impose standard descriptors on which

data representations used by the components must be converted.

The data transfer problem involves three basic operations: handshaking,

message packing and unpacking, and communication. Handshaking is the

process of creating communications schedulers from the sending and receiving

9



components’ domain decompositions. The message packing and unpacking

process is part of the transfer mechanism and must be interoperable with the

coupled system’s common field data storage mechanism. Communication is

the means of moving the needed data from one model to another.

The data transformation problem comprises two major elements: direct

transformation of fields between the source and target components’ spa-

tiotemporal meshes, and variable transformations, which includes compu-

tation of a needed set of physical quantities for the target component based

on a different set of physical quantities from the source component. Di-

rect transformation is the straightforward interpolation in space and/or time

between the source and target meshes and is most likely amenable to automa-

tion. Variable transformation is problem-specific and thus is best handled

by parallel coupled model implementers.

2.2. Parallel Coupling in CCSM

CCSM contained specific examples of the constraints and considerations

summarized in the previous section. We will summarize the aspects of the

parallel coupling problem raised by CCSM. A more complete discussion is

presented in ?).

CCSM imposed no requirements for internal data structures on its com-

ponents, leaving the separate development groups of the atmosphere and

ocean models to make their own choices. As a result, the models that make

up CCSM have very different internal parallel data structures, often using

Fortran90 derived types and nested derived types instead of arrays; the in-

terface to the parallel coupler must be able to handle these disparate data

10



types.

Most of the other architecture decisions were imposed: the new coupler

had to duplicate the architecture of its predecessor, including a central cou-

pler, and communicate with multiple MPI/OpenMP parallel executables.

The scientific requirements of the simulation determine the coupling cycle

and frequency and seldom change. In CCSM, the ocean model and coupler

communicate once per simulated day, while communications between the

atmosphere and coupler, land and coupler, and sea-ice and coupler occur

once per simulated hour. Each model blocks while waiting for data from the

coupler, thereby keeping the entire system synchronous in time within the

cycle of once per day.

Careful consideration of the data dependencies between the models allows

some overlap of communication with computation so that some of the models

are integrating simultaneously in the course of one coupling cycle (component

scheduling is concurrent execution).

The coupling frequency, cycle and component scheduling in CCSM are

considered part of the science of the coupled system, and thus are hard-coded

in the model. This eliminated any requirement for the new coupler or MCT

to provide methods for selecting arbitrary coupling frequencies for any model-

coupler pair. Nevertheless, there is some flexibility in choosing the length of

the “fast” frequency—the hourly coupling between the atmosphere, land, and

sea ice—in cpl6. And MCT does provide datatypes for time interpolation.

CCSM contained other requirements that the MCT software had to take

into account. First, CCSM was already a widely used model with a flexible

11



and proven architecture; the addition of distributed memory parallelism in

the coupler should not alter this system. Second, since the language of choice

for all physical models in CCSM is Fortran90, the new coupler software had to

have a Fortran interface. Third, the new coupler had to retain the portability

of the model. CCSM currently runs on a wide variety of high-performance

platforms, from commodity and microprocessor-based machines such as the

IBM p690, SGI Altix, and Linux Clusters to vector architectures such as the

Cray X1 and the Earth Simulator. CCSM has achieved this portability both

by coding within the Fortran90 standard and by limiting its external package

dependencies to only MPI and the NetCDF library. Fourth, CCSM is free

under an open-source style license; hence, new software added to CCSM must

also have no restrictions. Fifth, the new coupler had to allow continuation of

the CCSM development philosophy where each component can be developed

and used as a standalone executable by the subdiscipline developing the

model. The requirements for CCSM’s new coupler are described in more

detail in ?).

3. The Model Coupling Toolkit

The important aspects of the parallel coupling problem outlined in the

preceding section motivate a set of requirements for a software package to

support the needs of developers of parallel coupled models. We have con-

sidered these requirements in creating a software package called the Model

Coupling Toolkit (MCT), which can reduce dramatically the developer effort

required to construct message-passing parallel coupled models.

Before we describe in detail the elements of MCT, we discuss the main

12



design decisions we made regarding implementation language, parallelism

paradigm, and the reason we built a toolkit rather than a framework. Many

of our decisions were motivated by the requirements for a parallel coupler for

the CCSM described in Section ??. The choices we have made are intended to

balance the interests of supporting the widest possible variety of applications

with a fairly small and robust code base capable of achieving high perfor-

mance on commodity microprocessor-based platforms and vector computers.

Where possible, we have labored to provide developers using MCT maximum

flexibility to make appropriate architectural choices for their applications.

We chose to implement MCT in Fortran90 because Fortran (meaning f77

and its successors) remains the most widely used programming language in

scientific computing and is used in CCSM. We have adhered strictly to the

Fortran90 standard because, at present, it is universally supported in com-

mercially available compilers, whereas full support for the Fortran95 standard

is less common and support for the emerging Fortran2003 standard is nearly

nonexistent. Fortran90 has allowed us to implement MCT in a quasi-object-

oriented fashion because it supports or allows emulation of object-oriented

features such as encapsulation, data hiding, inheritance, and polymorphism

(?, ?). Throughout our discussion of MCT, we will use these object-oriented

terms, along with the terms classes and methods in this context.

The parallelization mechanism we have chosen to support in MCT is mes-

sage passing using the Message Passing Interface (MPI), specifically version

1 of this standard (?). We chose MPI-1 because it is the most widely used

approach for implementing parallelism in high-performance computing and

13



because most parallel platforms offer a vendor implementation of MPI as

part of the overall environment.

We chose to build a toolkit and library in order to allow a maximum of

flexibility to users with a minimum of modification to existing source code,

a design philosophy also used by CCSM. Calling frameworks such as Earth

System Modeling Framework (ESMF) (?) and the Common Component

Architecture (CCA) (?) require their users to make substantial structural

modifications to their legacy codes. In the case of CCA, one must write wrap-

per code to create components from each of the system’s components, and at

present CCA does not offer the variety of ready-to-use components required

to solve the parallel coupling problem. ESMF is still under development; and

in addition to the similar requirements imposed by CCA on potential users,

it is unable to support parallel coupling of multiple executable models.

The MCT consists of nine classes that support parallel coupling. Three of

these classes support data description, three support data transfer, and three

support data transformation. Figure ?? illustrates MCT’s class hierarchy.

MCT provides a library of routines that manipulate these objects to perform

parallel data transfer and transformation.

3.1. Utility Layer

The MCT is built on top of a utility package called Message Passing

Environment Utilities (MPEU). MPEU was developed by the NASA Data

Assimilation office to support their parallel operational data assimilation sys-

tem, in particular the Physical-space Statistical Analysis System (?). MPEU

supports Fortran90, MPI-based parallel codes by providing module-style ac-

14



cess to MPI, parallel support for stdout and stderr devices, parallel error

handling and application shutdown, and parallel timing facilities including

load imbalance metrics. MPEU also extends Fortran by providing some ser-

vices analogous to the C++ Standard Template Library (?), including String

and List datatypes and a MergeSort facility.

3.2. Data Description

The data description approach is based on the desire to represent a wide

variety of meshes and domain decompositions with a minimal set of classes.

MCT implements separate classes to encapsulate the domain decomposition,

field data storage, and mesh descriptions. This choice allows reuse of the

domain decomposition descriptor with multiple instantiations of the storage

object and with the mesh description. MCT linearizes multidimensional

meshes and field arrays, which simplified significantly the implementation of

MCT’s data model by allowing a one-dimensional representation of all data

exchanged in parallel coupling.

3.2.1) Domain Decomposition

Parallel domain decomposition in MCT is a combination of linearization

(?; ?) and explicit strategies. Linearization is mapping from an array ele-

ment’s multiple indices to a single unique index. We employ linearization to

yield a single unique index—a global ID number—referencing each element

in a global array. The explicit part of the decomposition strategy arises from

examination of how the local storage of the linearized array corresponds to

the list of global ID numbers for the elements, compressing this index list into

15



segments of runs of consecutive ID numbers. In our domain decomposition

strategy, we relax the requirement of other schemes that each element in the

distributed array must reside on one and only one processor. Relaxing this

requirement allows masking of elements and support for halo points. A point

is masked if it resides on no processor. Masking is particularly useful be-

cause it allows for compact representation of points relevant only to coupling

in situations where a component may organize data for an irregularly shaped

overlap domain by embedding it in a larger regular multidimensional mesh.

A point is haloed if it resides on more than one processor. MCT supports

parallel transfer of data into a decomposition with halo points. It does not

support transfer out of a haloed decomposition. MCT’s linearized-explicit

approach applies to arbitrary decompositions of arrays of any dimensionality.

This linearized-explicit decomposition strategy is embodied by MCT’s

GlobalSegMap class. The GlobalSegMap contains a global directory of seg-

ments of consecutive global ID numbers and the MPI process on which each

resides. It also contains the component ID number for which this decomposi-

tion applies. This class has numerous initialization methods supporting the

many fashions in which it is used in MCT, including initialization from index

data residing only on the component’s root process, distributed index data

spread across the the component’s processor pool, and index data replicated

across the processor pool. Also provided are methods for global-to-local and

local-to-global index translation, as well as query functions to determine to-

tal number of gridpoints stored globally, locally, or on a particular processor,

and look-up of process ID on which a particular gridpoint is stored.

16



3.2.2) Field Data Representation

The parallel coupling problem can be viewed as a collection of pointwise

operations involving multiple data fields. That is, values of multiple fields at

gridpoint locations within the overlap domain are sent and received, interpo-

lated, and otherwise transformed. MCT has a single field storage data object,

called an attribute vector, which is implemented by the AttrVect datatype.

This datatype is a fundamental type in MCT, forming a basis for other MCT

datatypes that encapsulate physical mesh description (the GeneralGrid), time

accumulation/averaging buffers (the Accumulator), and grid transformation

data (the SparseMatrix) (Figure ??).

The AttrVect stores real and integer field data in a pointwise fashion

within two two-dimensional arrays. The major index in both arrays is the

attribute index, and the minor one the location index. This storage order

places field data at a given location adjacent to each other in memory and

increases the likelihood they will reside on the same cache line, a feature crit-

ical to maximizing on-processor performance on commodity microprocessor-

based platforms. This storage order is not modified for vector platforms,

which are accomodated by a modest amount of additional code and compiler

directives in some of the manipulation methods for this class. Attributes

are referenced and accessed by using user-defined character tokens. This ap-

proach has a number of desirable characteristics. It is flexible because the

list of fields stored in the AttrVect can be set at run time. It allows for easy

extensibility of application code because the parallel coupled model developer

need only add a new field to a given AttrVect by adding an additional token

17



to the list of tokens supplied to its initialization call. Access to attributes

based on tokens makes the AttrVect indexable. This quality makes application

source code easier to read (because the tokens can be abbreviations of the

physical field names), eliminates the possibility of errors from mistaken user-

implemented indexing of field data, and enables automatic cross-indexing of

fields shared by two distinct AttrVects.

The AttrVect has initialization, destruction, query, and manipulation meth-

ods. The initialization methods create data storage space in the AttrVect

based on the number of integer and real attributes determined by lists of

tokens. The numerous query methods return the number of datapoints (or

length), the numbers of integer and real attributes, the data buffer index of

a given real or integer attribute, and lists of real and integer attribute to-

kens. Manipulation methods for the AttrVect include zeroing its attributes,

exporting (importing) a given attribute to (from) a one-dimensional array,

and copying one or more attributes from one AttrVect to another. There are

methods for sorting and permuting AttrVect entries by using a MergeSort

scheme keyed by one or more the attributes of the AttrVect. MCT also pro-

vides an attribute cross-indexing method for mapping attributes stored in

one AttrVect onto another. This cross-indexing method is used widely in the

MCT’s data transformation facilities.

MCT’s view of parallel coupling involves communication of data stored

in AttrVect format. Thus the AttrVect has a wide variety of communi-

cations methods, including point-to-point send and receive, and collective

communications such as broadcast and gather and scatter using the Glob-

18



alSegMap. The MCT also provides global reduction methods analogous to

MPI AllReduce().

3.2.3) Physical Mesh Representation

MCT’s linearized description of physical meshes requires a literal listing of

each mesh point’s coordinates and geometric attributes. This is encapsulated

in the GeneralGrid class. The GeneralGrid may be employed to store coordinate

grids of arbitrary dimension, as well as unstructured grids.

The GeneralGrid stores real and integer gridpoint attributes internally in

AttrVect form and inherits its query, access, and manipulation methods. Grid

attributes stored are, at a minimum, coordinates for each gridpoint and one

integer attribute—the global grid point number, which is a unique identifier

for each physical grid location under MCT’s linearization scheme. Examples

of real noncoordinate attributes that can be stored in the GeneralGrid include

grid cell length, cross-sectional area, and volume elements and projections of

local directional unit vectors onto Euclidian unit vectors. Commonly used

integer attributes that can be stored in the GeneralGrid include alternative

indexing schemes and indices for defining spatial regions. The GeneralGrid

allows storage of real and integer grid-masking information as attributes. An

integer mask can be used to exclude overlap domain grid points at which a

component is not generating data (e.g., points on an ocean grid that corre-

spond to large continental land masses). A real mask can be employed to

indicate which fraction of a mesh cell is occupied by the component (e.g.,

fraction of an ocean cell occupied by sea ice).

The GeneralGrid is used for storage of length, area, and volume element

19



sizes in MCT’s spatial integration and averaging facilities, described in Sec-

tion ??, and is also used as a source of mask data in MCT’s merging facility,

described in Section ??.

3.3. Data Transfer

The MCT solution to the M×N problem has three stages: registration of

components, handshaking of parallel data connections between components,

and execution of the transfer. In MCT three classes support M×N transfers in

parallel coupled models: a component registry (MCTWorld), communications

schedulers for one-way parallel data transfers (the Router), and two-way data

redistributions (the Rearranger).

A detailed discussion of MCT’s solution to the data transfer problem is

provided in ?) and is summarized here.

For a given grid decomposed over M and N processors, a GlobalSegMap

can be constructed for each decomposition. Given these two GlobalSegMaps,

one can build a communication table that lists, for a set of gridpoints in one

GlobalSegMap, the corresponding locations in the other GlobalSegMap. In

MCT, this table is stored in a Router datatype. For fixed grids, the Router

is initialized once at startup. The process of exchanging GlobalSegMaps and

building the Router table is MCT’s handshaking between two parallel models.

MCT provides a two-sided message-passing model patterned after MPI.

Instead of simple arrays and MPI processes ranks, the main arguments are

AttrVects and Routers. These routines, called MCT Send and MCT Recv,

transmit field data from the appropriate points of all of the data in the sup-

plied AttrVect to the processors listed in the Router. In order to lower latency

20



costs, all the data for a given processor is sent/received in a single message.

MCT also provides nonblocking versions of its M×N communication routines.

The Router and MCT Send()/MCT Recv() routines are for transferring

data between models on disjoint sets of processors. The problem of redis-

tributing data within a single pool of processors can in principle require each

processor in the pool to both send and receive data. An example of this type

of operation is the redistribution of data required for parallel data interpola-

tion (see Section ??). MCT solves this problem by providing the Rearranger

class to encapsulate the communications schedule for such operations, and

the Rearrange() method for performing the redistribution.

3.4. Data Transformation

In Section ??, we identified the data transformation problem as consist-

ing mostly of interpolation between different resolution grids or averaging

in time to compensate for different time steps. Other transformations in-

clude spatially averaging outputs from two or more models to form the input

for another—merging—and forming the global integral of a quantity. MCT

provides classes and methods for all of these needs.

3.4.1) Interpolation

A vital function in parallel coupling is transformation of data from one

spatial mesh to another. Often a field value at a given location on a target

grid is computed via a transformation that is a linear combination of field

values on the source mesh using interpolation weights. When combined with

MCT’s linearization of multidimensional grid-spaces, these transformations

21



may be implemented as matrix-vector multiplication, and a field x residing

on the source component’s mesh is transformed to a field y on the target

component’s mesh by using an interpolation matrix T:

y = Tx. (1)

This approach appears in climate system model coupling software, most no-

tably in CCSM (?; ?), the Ocean Atmosphere Sea Ice Soil (OASIS) model’s

flux coupler (?), and the Spherical Coordinate Regridding and Interpolation

Package (SCRIP) (?). When one considers the typical stencil for these inter-

polation schemes, the result is an extremely sparse matrix-vector multiply,

and this is the approach supported by MCT. MCT provides two types of

infrastructure to aid this process: a basic data object for storage of inter-

polation matrix elements, and an object that encapsulates the complete set

of computation and communication operations inherent in parallel sparse

matrix-vector multiplication.

In MCT, elements of an interpolation matrix are stored by using the

SparseMatrix class, which provides storage of nonzero matrix elements in co-

ordinate (COO) format. Vector platforms are supported by an alternate in-

ternal storage scheme within the SparseMatrix that supports both compressed

sparse row (CSR) and compressed sparse column (CSC) formats.

Methods for this class provide support for loading and unloading of ma-

trix elements, counting of nonzero elements and determining sparsity, and

sorting elements based on row and column indices. This element-sorting

functionality is provided to improve performance of the matrix-vector mul-

22



tiply operation on commodity microprocessor-based platforms that rely on

cache optimization.

For global address spaces (uniprocessor or shared-memory parallel), stor-

age of matrix elements is sufficient to encapsulate the matrix-vector multipli-

cation process. If one wishes to perform distributed-memory parallel matrix-

vector multiplication, however, one must consider communication.

Three message-passing parallel strategies exist for computing (??). The

first two decompose the problem according to the domain decomposition of

y or x and are described by ?). The third method employs a user-defined

decomposition of the elements of T, which can be used to correct load im-

balances in the compute part of the calculation, for example, decomposition

of (??) using graph partitioning. In this scheme, the decomposition of the

elements of T determines two intermediate distributed vectors x′ and y′,

which allow an embarrassingly parallel calculation y′ = Tx′. Communica-

tions occur first to assemble x′ from x and, after the computation, to reduce

the partial sums in y′ to the final result y.

The entire parallel matrix-vector multiplication process is encapsulated

in MCT’s SparseMatrixPlus class, which contains both storage of distributed

nonzero matrix elements in SparseMatrix format and instances of Rearranger

communications schedulers needed to complete the parallel multiplication

process (Figure ??).

The matrix-vector multiplication routines in MCT implement the solution

of (??) by representing T in either SparseMatrix or SparseMatrixPlus form

and the vectors x and y in AttrVect form, allowing pointwise interpolation of

23



multiple data fields and automatic matching of attributes stored in y with

their corresponding attributes in x. Vector platforms are supported by an

additional matrix-vector multiplication function tuned to work with the CSC

and CSR element tables stored in the SparseMatrix.

3.4.2) Spatial Integrals and Averages

Conserving fluxes and maintaining constancy of spatial integrals and av-

erages across the overlap domain are often desired in parallel coupled models.

Interpolation between two different spatial discretizations of the overlap do-

main can, in principle, alter these results. MCT has routines to compute

spatial integrals and averages. These functions allow the user to compute

with ease global integrals and averages to test for and enforce conservation,

as well as global diagnostics.

In MCT, the discrete versions of the spatial integral I and average Φ̄ of

a field Φ(x) over domain Ωij are implemented as

I =
N∑

n=1

Φn∆Ωn (2)

and

Φ̄ =

∑N
n=1 Φn∆Ωn∑N

n=1 ∆Ωn

, (3)

where N is the number of physical locations, Φn is the value of the field Φ at

location xn, and ∆Ωn is the spatial weight (length element, cross-sectional

area element, volume element, etc.) at location xn. MCT functions for com-

puting these integrals take field data packaged in AttrVect form and thus are

24



capable of computing the same spatial integral for numerous fields simulta-

neously.

MCT functions for spatial integration and averaging also support masked

integrals and averages. MCT recognizes both integer and real masks, and

allows multiple masks to be used simultaneously. An integer mask M is a

vector of integers (one corresponding to each physical location) with each

element having value either zero or one. Integer masks are used to include or

exclude data from averages or integrals. Masked integrals and averages are

represented in the MCT by

I =
N∑

n=1

J∏
j=1

M j
n

K∏
k=1

F k
nΦn∆Ωn (4)

and

Φ̄ =

∑N
n=1

(∏J
j=1 M j

n

)(∏K
k=1 F k

n

)
Φn∆Ωn∑N

i=1

(∏J
j=1 M j

n

)(∏K
k=1 F k

n

)
∆Ωn

. (5)

In (??) and (??), there are J (K) integer (real) masks, with M j
n (F k

n ) repre-

senting the value of the jth integer (kth real) mask at grid location xn.

MCT also provides paired integral and paired average facilities that allow

simultaneous computation of the quantities defined in (??) and (??) on both

the source and target discretizations to minimize global sum latency costs.

3.4.3) Time Synchronization of Data

In addition to the spatial interpolation of field data, coupled models of-

ten also require temporal transformation of data between source and target

25



components’ time meshes. Strategies for temporal transformation use either

instantaneous or accumulated field values. If the time part of the parallel

coupling problem is solved by exchanging instantaneous values, one or more

instantiations of MCT’s AttrVect class are sufficient to construct a solution.

Coupling that uses accumulated data for time transformation requires ac-

cumulation registers for time summation or averaging of field data and the

means to accumulate instantaneous field data values into these registers.

MCT provides accumulation registers in its Accumulator class and routines

for time accumulation of AttrVect field data into these registers.

The Accumulator stores real and integer field attributes internally in At-

trVect form and inherits its query, access, and manipulation methods (Figure

??). In addition to accumulated field data, the Accumulator stores the length

of the accumulation cycle, which is defined in terms of the number of time

steps over which accumulation occurs, the number of time steps completed in

the accumulation process, and the specific accumulation action. Currently,

two options exist: time averaging and time summation. MCT provides a

library routine accumulate(), which takes an AttrVect and accumulates any

of its attributes that match the attributes of the Accumulator. This process

is handled automatically by MCT’s attribute cross-indexing facility. Cur-

rently, the Accumulator is designed to work with fixed timestep sizes, but

this restriction still allows it to support many applications.

3.4.4) Merging Data from Multiple Components

The need to merge field data from multiple components arises when a

component’s overlap domains with two or more other components intersect

26



and the source components are providing one or more identical fields on the

intersection domain. The merge occurs once the shared fields are interpolated

onto the same discretization of the intersection domain. The merge is a

weighted average of the field values at each mesh point on this domain.

MCT offers a Merge facility in the form of library routines that allow

merging of data from up to four components for use by a fifth component.

These routines work on the assumption that data is represented in AttrVect

form and that each of these input arguments and the resulting merged At-

trVect share the same domain decomposition, making the Merge operation

embarrassingly parallel. Attributes of the input AttrVects are cross-indexed

with those of the merge result AttrVect and are merged automatically.

MCT supports use of integer and real masks to weight data for the merge

operation. To see this, consider the example of a merge of one field from two

components for use by a third. Let the vectors a and b represent this field

from components A and B that have been interpolated onto the physical

grid of another component C. The merge operation combines the data from

A and B, resulting in a vector c, which represents the merged data on the

grid of component C. This merge process is an element-by-element masked

weighted average:

ci =

∏J
j=1M

j
i

∏K
k=1F

k
i ai +

∏P
p=1N

p
i

∏Q
q=1G

q
i bi∏J

j=1M
j
i

∏K
k=1F

k
i +

∏P
p=1N

p
i

∏Q
q=1G

q
i

. (6)

In (??), data from component A has J integer masks (Mj, j = 1, . . . , J) and

K real masks (Fk, k = 1, . . . , K), while data from component B has P integer

masks (Nj, p = 1, . . . , P ) and Q real masks (Gk, q = 1, . . . , Q). These masks

27



are optional and can be provided to the merge facility either in array form

or as attributes in an MCT GeneralGrid.

4. Programming Model

The MCT programming model is based on its Fortran API and has three

elements: access to MCT datatypes and routines through Fortran module

use, declaration of variables of the class datatypes defined in Section ??,

and invocation of MCT library routines to accomplish parallel data transfer

and transformation. In this approach, the user writes the top-level control

program(s) for the application, and any individual subroutines that are used

to implement the components of the parallel coupled model. In this section,

we provide examples of how some of the class datatypes and routines defined

Section ?? are used.

Initialization of an MCT-based parallel coupled model occurs in two

stages. The first stage is the initialization of MPI and the subsequent parti-

tioning of MPI COMM WORLD into the set of communicators for each dis-

tinct processor pool. This communicator partitioning can be performed ei-

ther through user-supplied calls to MPI COMM SPLIT() or through use of

a communicator partitioning tool such as the Multi-Program Handshaking

(MPH) utility (?). The next stage is the establishment of which component

IDs are bound to the various processor pools. Examples of the various types

of parallel coupling configurations MCT supports can be found in Figure ??.

MCTWorld init() is called to create the MCTWorld component registry.

call MCTWorld_init(nComponents, WorldComm, MyComm, CompID)

28



The supplied arguments are the total number of components in the paral-

lel coupled model (nComponents), the global communicator for the overall

model (WorldComm), the communicator for the pool on which a given pro-

cessor resides (MyComm), and the component ID number(s) that execute on

a given processor (CompID). For the configurations shown in Figures ??(b)

and ??(c), and processors on comm1 in Figure ??(d), there is one component

per processor pool and the value of CompID is a scalar. The sequential config-

urations shown in Figure ??(a) and on comm2 in Figure ??(d) have multiple

components executing on a given processor, and the value of CompID is an

array.

After the MCTWorld has been initialized, the user can create parallel

coupling connections between components. Data exchanged in coupling is

described by declaring variables of MCT’s descriptor datatypes—the Glob-

alSegMap, GeneralGrid, and AttrVect. For example, consider the case of a

model that has one incoming and one outgoing data connection, with data

supplied on the same physical grid and decompositions, but with different

field storage data structures.

type(GlobalSegMap) :: MyDecomp

type(GeneralGrid) :: MyGrid

type(AttrVect) :: InputAV, OutputAV

The user must describe the discretization of the overlap domain and its

domain decomposition. MCT’s linearized view of data and domain decom-

position requires the user to create an element-numbering scheme for mul-

tidimensional arrays describing grid and field data. This numbering scheme

29



maps multiple indices to a single global ID index for each point in the domain.

The scheme is then used to relate data in a multidimensional field array to

a one-dimensional array suitable for description as an AttrVect and to map

points from the corresponding multidimensional spatial grid to a GeneralGrid.

Domain decomposition is then a set of segments of runs of consecutive global

ID numbers. Each segment has a global starting index, a length, and the

processor ID where it resides. These segment data are used to create the

GlobalSegMap.

call GlobalSegMap_init(MyDecomp, starts, lengths, root, &

MyComm, MyCompID)

In this call, MyDecomp is the GlobalSegMap created, starts and lengths

are arrays containing local segment start and length values, root is the root

for the communicator MyComm on which the decomposition exists, and My-

CompID is the MCT component ID for this model. The call is a collective

operation, and the result is a domain decomposition descriptor containing

all the information needed to locate a given element and to perform global-

to-local and local-to-global index translation.

Physical meshes are described by supplying the dimensionality of the

mesh, coordinate names, gridpoint coordinate values, and associated weights

such as length elements, cell cross-sectional areas, and cell volumes. For

example, a GeneralGrid capable of describing Euclidean 3-space can be created

as follows.

30



call GeneralGrid_init(MyGrid, ’x:y:z’, &

WeightChars=’dx:dy:dz:Axy:Axz:Ayz:V’, &

LocalLength)

In this call, the tokens referencing individual coordinates x, y, and z are

supplied in the second argument as a list, and the cell length, area, and

volume elements are referenced by tokens given as a list in the third argu-

ment. The number of grid points residing on the local processor is defined

by the argument LocalLength. This call creates a GeneralGrid—the argument

MyGrid—that has three dimensions, and will allocate sufficient space to store

gridpoint coordinates and grid cell weights. The coordinate and weight in-

formation is then loaded into MyGrid by the user.

Field data are stored as attributes in an AttrVect whose length is the same

as the argument LocalLength supplied above in the creation of MyGrid. For

example, suppose we wish to store two integer fields and three real fields in

the AttrVect OutputAV.

call AttrVect_init(OutputAV, ’if1:if2’, ’rf1:rf2:rf3’, &

LocalLength)

In this call, the second and third arguments are lists of tokens used to

identify integer and real attributes, respectively. The result of this operation

is the AttrVect OutputAV, which is capable of storing two integer and three

real attributes for LocalLength points. The actual field data is then moved

into OutputAV by the user.

Once all the data description structures are initialized, one can perform

parallel data transfer and transformation.

31



Parallel data transfer between concurrently executing components is de-

scribed by using the Router data type. A Router is created by a call by each

of the communicating components to Router init().

call Router_init(RemoteCompID, MyDecomp, MyComm, Route)

The first argument in this call is the MCT ID for the remote component

participating in the data transfer. MyDecomp is a GlobalSegMap describing

the local domain decomposition across the communicator MyComm, and the

result is the Router object Route. Each of the pair of communicating compo-

nents creates its own Router used to schedule the send (receive) operations

for the transfer.

Once a Router has been constructed by each of the two components par-

ticipating in an M×N transfer, data is exchanged through calls to MCT’s

parallel intercomponent communications routines as shown below. For the

source component residing on M processors, MCT Send() is called.

call MCT_Send(Model1_AttributeVector, Model1_Router)

The target component residing on N processors calls MCT Recv().

call MCT_Recv(Model2_AttributeVector, Model2_Router)

In each of these calls, the first argument is the AttrVect in which field data

to be sent or received is stored, and the second argument is a Router that

schedules the send or receive operations and the points on the domain for

which data is being communicated.

32



5. Performance

The performance-sensitive parts of the parallel coupling process are data

transfer and transformation. Parallel data transfer is a message-passing par-

allel process in which communications are the dominant cost. Data transfor-

mation algorithms by contrast have varying sensitivities to communications

costs. MCT’s Accumulate and Merge operations are embarrassingly parallel,

and their performance is sensitive only to load imbalances resulting from

disparities in the number of gridpoints assigned to each processor and to

single-processor performance issues such as cache usage. The spatial inte-

gral and average routines have the same sensitivity to load balance as the

accumulation and merge operations and are sensitive to the performance of

the implementation of the MPI AllReduce() used to perform the global sum.

MCT’s parallel interpolation routines are a combination of computation and

communication and, as such, are the most interesting from a performance

viewpoint.

A thorough analysis of the performance of MCT’s Router initialization,

parallel data transfer, and parallel interpolation facilities can be found in

?). This analysis has shown that MCT’s parallel communication and inter-

polation routines scale well up to processor pool sizes likely to be used by

parallel coupled models. ?) provide information on the performance of the

MCT-based parallel data transfer and interpolation schemes in CCSM3.

Here, we present results for two other measures of MCT’s performance

as parallel coupling infrastructure—scaling of MCT’s parallel interpolation

facility to larger processor pools for a very large problem size, and overall

33



model throughput for CCSM at a typical resolution.

Performance results presented in this section were obtained with four dif-

ferent platforms: an IBM p690 (Bluesky) located at the National Center for

Atmospheric Research, an HP Alpha Cluster (Lemieux) located at the Pitts-

burgh Supercomputing Center, a Linux cluster (Jazz) located at Argonne

National Laboratory, and the Earth Simulator. Bluesky is an IBM p690 with

1,600 processors and an IBM Colony switch. Processors on Bluesky are 1.3

GHz Power4 processors, each of which has 2 GB of memory. Processors are

grouped into shared-memory nodes, which can have either 8 or 32 processors,

called 8-way and 32-way, respectively. Lemieux is an HP Alpha Cluster with

750 HP/Compaq Alphaserver ES45 nodes that are connected by a Quadrics

switch. Each node has four 1 GHz processors and 4 GB of shared memory.

Jazz is a Linux cluster comprising 350 nodes connected by a Myrinet 2000

switch. Each node has one 2.4 GHz Intel Pentium Xeon processor and either

1 GB or 2 GB of memory. The Earth Simulator is a cluster of 640 nodes

connected by a full crossbar switch. Each node has eight 500 MHz NEC SX-6

vector processors and 16 GB of shared memory. For all performance studies,

we used the vendor Fortan compiler and MPI implementation. On Jazz, we

used the Intel Fortran compiler and MPICH.

Figure ?? shows performance for a very high-resolution version of the

MCT atmosphere-to-ocean interpolation benchmark. We present only this

benchmark because it is representative of the data motion costs involved in

both atmosphere-to-ocean and ocean-to-atmosphere interpolation. A more

detailed discussion of differences between these benchmarks is presented in

34



?). The atmosphere data for this case reside on the CAM gaussian T340 grid,

and the ocean grid is the POP 0.1◦ grid. This combination of resolutions may

be used in future climate models. A set of 12 fields is interpolated hourly for

ten model days (240 calls to the MCT interpolation routine).

Across all platforms tested, this benchmark shows good scaling to a pro-

cessor pool size larger than what would normally be used for a centralized

coupler in a climate model.

To application scientists and engineers, the ideal metric for assessing over-

head imposed by a coupling mechanism is the amount of time components

are forced to be idle while awaiting data from the coupler. In a concurrently

scheduled model such as CCSM, it is difficult to measure this quantity or dis-

tinguish it from idling of a given component due to a sequential data depen-

dency with another non-coupler component. Performance studies of CCSM

indicate that the MCT-based CPL6 does not impose measurable overhead of

this type. A possible explanation for this can be found by comparing scala-

bility of the components’ throughput—the amount of simulation achieved per

unit of wall-clock time. Figure ?? shows throughput expressed in model years

per wall-clock day on the Earth Simulator for set of component models either

identical or similar to those in CCSM 3.0. The atmosphere model results are

for CAM 2.02 with T85 horizontal resolution with 26 vertical layers. The

ocean results are for POP 1.4.3 with a displaced pole grid with resolution

of 1◦ in the longitudinal direction and finer variable latitude resolution that

is approximately 0.3◦ at the equator. The land model is version 2.1 of the

Community Land Model with T85 resolution. The sea ice model is version

35



3.1 the Los Alamos CICE model (as opposed to CCSM’s CSIM sea ice model)

and uses the same horizontal grid as POP for these measurements. Note that

the system’s MCT-based CPL6 coupler has throughput that scales dramat-

ically better than the system’s other component models, demonstrating the

efficiency of MCT’s services in this overall coupling mechanism.

6. Conclusions and Future Work

Parallel coupled models are now the state of the art in computational

science and engineering. These models present numerous software engineer-

ing and algorithmic challenges, and the advent of distributed-memory paral-

lelism has created a new challenge—the parallel coupling problem. We have

described many facets of this problem and the requirements they impose on

parallel-coupled-model developers.

We have described a new software package that aids coupled model de-

velopment, the Model Coupling Toolkit, version 2.0. MCT offers a Fortran-

based object model and a collection of library routines that dramatically

reduce the effort required to couple separately developed message-passing-

parallel component models into a single parallel coupled model. The MCT

object model offers conceptual ease of use in creating coupling code. MCT’s

library routines automate the most complex parts of the coupling process.

This combination allows parallel coupled model developers to concentrate at-

tention on the high-level issues in coupled model development, namely, what

to couple, when to couple it, and what scientific issues to consider. We have

demonstrated how MCT may be employed to accomplish fairly complex cou-

pling operations with relatively little effort, with a reduced level of additional

36



introduced source code, and with great flexibility, while still ensuring high

performance.

MCT is currently used in production by two major applications to couple

geophysical codes: the CCSM flux coupler and the WRF coupling API. The

CCSM coupler has been described extensively in a companion paper (?), and

is part of version 3.0 of CCSM. An MCT-based version of the WRF coupling

API exists and can be downloaded from the MCT Web site. This API has

been used to create a wide variety of parallel couplings that support sequen-

tial and concurrent scheduling, multiple executables, and computational grid

paradigms (Dan Schaffer, personal communication).

The version of MCT described in this paper reflects our goal of addressing

the specific requirements of CCSM with the resources we had at our disposal.

Future development of MCT will address its current limitations: a Fortran-

based interface, a one-dimensional data model, and a purely distributed-

memory parallelism paradigm.

Work is under way to export MCT’s capabilities to other programming

languages. We are using the Babel language (?) interoperability tool to

create a limited set of prototype bindings for the C++ and Python program-

ming languages. This work will be extended to provide access to MCT’s

classes and a core set of coupling services that will eventually be available to

these and other programming languages.

The one-dimensional data model has great advantages in terms of uni-

versality but does impose on MCT users some effort in defining linearization

schemes to describe multidimensional data in an MCT context. To address

37



this issue, we will first offer facilities to map multidimensional data onto

MCT’s linear model and will then include additional classes for domain de-

composition, data storage, and data transfer to offer users an easier-to-use

data model.

The parallelism paradigm used in MCT will be expanded to support hy-

brid parallelism, specifically a combination of MPI for distributed-memory

parallelism with OpenMP for shared-memory parallelism. This will have

a direct effect on improving memory copies into and out of AttrVects and

the compute-intensive services in MCT, specifically, the data transformation

operations of interpolation, time averaging and accumulation, and MCT’s

Merge facility. The enhancement will improve MCT’s scalability for data

transformation operations and will provide users greater flexibility for plac-

ing MCT transformation operations in the coupled system and using all

available computational resources.

Acknowledgements

We thank the many people who have offered advice throughout the design

and development stages of MCT, specifically Anthony Craig, Brian Kauff-

man, Maria Vertenstein, Tom Bettge, and John Michalakes of the National

Center for Atmospheric Research, and Ian Foster of Argonne National Labo-

ratory. We gratefully acknowledge source code contributions from Jing Guo

of the NASA Global Modeling and Assimilation office, who designed MPEU

and the original version of the AttrVect class; and Jace Mogill and Celeste

Cory of Cray Incorporated, who improved dramatically the performance of

MCT’s parallel data transfer handshaking facility. MCT’s port to the Earth

38



Simulator and prototype vectorized interpolation facility were developed by

Clifford Chen of Fujitsu America, Yoshi Yoshikatsu of Japan’s Central Re-

search Institute of Electrical Power Industry (CRIEPI), and Junichiro Ueno,

Hidemi Komatsu, and Shin-ichi Ichikawa of the Computational Science and

Engineering Center of Fujitsu, Limited, Japan. We thank Yoshi Yoshikatsu

for MCT timings and CCSM throughput measurments on the Earth Sim-

ulator. We thank two anonymous referees whose helpful suggestions have

improved this paper.

This work was supported by the US Department of Energy under the Ac-

celerated Climate Prediction Initiative Avant Garde project and the Climate

Change Prediction Program, which is part of the DOE Scientific Discovery

through Advanced Computing (SciDAC) initiative under contract number

W-31-109-ENG-38.

39



Figure 1: Basic types of communicator and component layouts for paral-
lel coupled models: (a) sequential coupling, (b) concurrent coupling with
a single executable, (c) concurrent coupling with multiple executables, (d)
combination of concurrent and sequential coupling. The horizontal axis cor-
responds to system resources (e.g., MPI processes), the vertical axis time,
and directed arrows denote caller/callee relationships.

40



F
ig

u
re

2:
M

C
T

cl
as

s
h
ie

ra
rc

h
y.

D
ow

n
w

ar
d

d
ir
ec

te
d

ar
ro

w
s

p
oi

n
t

fr
om

ch
il
d

to
p
ar

en
t

cl
as

s.

41



Figure 3: Timings of the MCT atmosphere-to-ocean interpolation benchmark
on a variety of platforms.

42



Figure 4: Throughput of CCSM on the Earth Simulator.

43


