
M×N Communication and Parallel
Interpolation in CCSM3 Using the

Model Coupling Toolkit

Robert Jacob, Jay Larson, Everest Ong

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439

Submitted to International Journal for High

Performance Computing Applications 10/26/2004
Revised 02/04/2005

Running head:
MCT parallel communication

Robert L. Jacob
(Corresponding Author)
Argonne National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439
630-252-2983
630-252-5986 (fax)
jacob@mcs.anl.gov

Jay Larson
Argonne National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439
630-252-7806
630-252-6104 (fax)
larson@mcs.anl.gov

Everest Ong
Argonne National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439
630-252-6586
630-252-6104 (fax)
eong@mcs.anl.gov

2

ABSTRACT

The Model Coupling Toolkit (MCT) is a software library for constructing par-

allel coupled models from individual parallel models. MCT was created to address

the challenges of creating a parallel coupler for the Community Climate System

Model (CCSM). Each of the submodels that make up CCSM is a separate par-

allel application with its own domain decomposition, running on its own set of

processors. This application contains multiple instances of the MxN problem, the

problem of transferring data between two parallel programs running on disjoint

sets of processors. CCSM also requires efficient data transfer to facilitate its inter-

polation algorithms. MCT was created as a generalized solution to handle these

and other common functions in parallel coupled models. Here we describe MCT’s

implementation of the data transfer infrastructure needed for a parallel coupled

model. The performance of MCT scales satisfactorily as processors are added to

the system. However, the types of decompositions used in the submodels can affect

performance. MCT’s infrastructure provides a flexible and high-performing set of

tools for enabling interoperability between parallel applications.

3

1. Introduction

A growing trend in high-performance scientific computing is the creation

of new applications for a multidisciplinary problem by combining two or

more separate applications from individual disciplines. One field that has pi-

oneered this approach is climate modeling. A climate model usually contains

multiple submodels that simulate the behavior of physical subsystems such as

the global atmosphere, the global ocean, the land surface, and sea ice. Each

model is produced by practitioners of a subdiscipline in the atmospheric and

oceanic sciences. A coupled climate model is created by combining compo-

nent1 models and allowing them to mutually provide boundary conditions

for each other.

Like other high-performance scientific applications, climate models are

implemented as parallel programs operating on physically distributed data.

Coupled climate models are a combination of individual distributed-memory

parallel programs.

Version 3 of the Community Climate System Model (CCSM) (Collins

et al., 2005) is an example of a state-of-the-art parallel coupled climate

model. CCSM is a collection of high-performance applications that simulate

the interaction of the Earth’s ocean and atmosphere, its land surface, and

sea ice. Although the components of climate models are physically three-

dimensional systems, their common interface is a two-dimensional surface.

The coupling problem amounts to representing the physical fluxes across the

1A “component” in this paper is a submodel of a coupled system and does not refer to
a component programming model.

4

two-dimensional interface in a consistent and coordinated way. CCSM’s ar-

chitecture is a “hub-and-spokes” model as shown in Figure 1. The exchange

of information across the surface and overall time integration of the system

are controlled by a fifth application called the coupler (the hub in Fig. 1). All

models send and receive data only with the coupler and not with each other.

This approach provides a convenient central point of control for dealing with

important scientific requirements in the model, such as enforcing global con-

servation of energy exchanged between the models and compensating for

different time steps in the course of simulating a day.

When creating a climate model like CCSM from separate parallel codes,

the standard approach in the community has been to combine them under a

single, ad hoc software framework. The new version of CCSM standardizes

its framework with a newly designed library called cpl6. Cpl6 marks a major

advance over previous versions of the CCSM coupler because of its modular

design and allowance for distributed-memory parallelism in the coupler itself.

Cpl6 and the design of CCSM are described further in a companion paper

(Craig et al., 2005).

For building parallel coupled models, cpl6 users a new software library

called the Model Coupling Toolkit (MCT). Although written to address the

coupling needs of an earth science model, MCT is a general-purpose library

that can be used to couple any models exchanging data represented on a

numerical grid, whether structured or unstructured. An overview of MCT is

described in another companion paper (Larson et al., 2005). Here we focus

on how MCT solves the largest problem posed by the CCSM coupler: its

5

parallel data transfer needs. Section 2 describes the parallel data transfer

characteristics of CCSM and the problems that motivated the creation of

MCT. Section 3 describes MCT’s solutions to these problems. Section 4

examines the performance of MCT’s data transfer methods. We conclude in

Section 5 with a discussion of MCT’s role in other applications.

2. Parallel Communication and CCSM’s Coupler

The component models in CCSM typically have different numerical meth-

ods for solving their respective system of partial differential equations, and

these methods may employ different types of numerical grids or grids with

different resolutions. The physical component models in recent versions of

CCSM use distributed-memory parallelism and domain decomposition to dis-

tribute grid points in the horizontal (north-south and east-west) direction.

The Message Passing Interface (MPI, version 1) (Message Passing Inter-

face Forum, 1994) is typically used to communicate data within each com-

ponent as required by their numerical methods. This intramodel communi-

cation has typically been handled by libraries or methods chosen or devel-

oped by the individual model development teams. MCT address the model-

coupler, or intermodel, parallel communication requirements of CCSM and

the intramodel communication requirements of a distributed-memory paral-

lel coupler. In addition, MCT satisfies other requirements identified for the

new coupler, such as extensibility and generalization of the model-coupler

interface. Further discussion of these requirements and how they are met by

MCT and cpl6 can be found in the companion papers (Larson et al., 2005;

Craig et al., 2005).

6

2.1. Model-Coupler Communication

In previous versions of CCSM, MPI was used to communicate data be-

tween the models and the coupler (along the spokes in Figure 1), often with

direct calls to the send and receive functions of the MPI library.

Prior to the current release, the coupler itself was not a distributed mem-

ory parallel application. It was a separate executable that used OpenMP

threading in some floating-point-intensive portions of the code but ran as a

single MPI process. Communication to the coupler was achieved by a model

first gathering data to its MPI root processor and then sending it to the cou-

pler’s single MPI process in a single message. Since the future development

path of CCSM (Community Climate System Model Science Plan (2004-2008)

www.ccsm.ucar.edu/management/sciplan2004-2008.pdf) points to increasing

horizontal resolution (currently at about 250 kilometers) and increasing the

number of physical processes simulated, this one-processor communication

point was going to become more of a bottleneck.

Since all data goes through the coupler, the coupler must maintain a rep-

resentation of each model’s numerical grid. In a parallel coupler, a decompo-

sition of that grid over the coupler’s processors is required. With each model

running on its own M processors and the coupler running on N processors,

CCSM with a parallel coupler contains multiple examples of the “MxN prob-

lem.” The MxN problem is the transfer of a distributed data object from

a module running on M processes to another running on N processes (see

http://www.cs.indiana.edu/feberta/mxn for a summary). The exact pattern

of communication will change as M and N change, as they do when load bal-

7

ancing CCSM for different problem sizes and hardware systems, and will also

be different for each model-coupler pair. A solution that was both efficient

and scalable was needed. MCT provides a general solution to this problem

by deriving a set of point-to-point communications that transfers the data

with a minimum number of messages (Section 3.2). With MCT, the new

coupler in CCSM, cpl6, is now a distributed-memory parallel application.

2.2. Intracoupler Communication

An important function of the coupler is interpolating, or mapping, data

between the numerical grids of the models as data is routed through the

coupler. In CCSM, interpolation is performed as a matrix-vector multiply

(see Section 3.3). Each two-dimensional grid (for the atmosphere, ocean,

land, or sea-ice models) is unrolled into a vector, one for the source grid and

one for the destination. The matrix of mapping weights contains a row for

each source element and a column for each destination. The two-dimensional

grids have between 104 and 105 grid points, but most of the matrix elements

are zero, so that interpolation is a sparse-matrix-vector multiply. In CCSM,

the grids are fixed and regular, and the nonzero elements are computed once

offline by using the SCRIP program (Jones, 1998) and read in at run time.

In the previous versions of the coupler, interpolation was trivial because

all the data on the source and destination grids and the matrix elements were

held in a single address space. A parallel coupler requires distributing the

matrix elements accounting for the decomposition of the two grids. Given

that the grids of the ocean and atmosphere model, for example, are decom-

posed arbitrarily in the coupler, there is no guarantee that all the atmosphere

8

data on the atmosphere grid needed to complete an interpolation onto the

ocean grid will be colocated on the same processor. Thus, although the ma-

trix elements need to be distributed only at initialization, source data, which

is updated each time-step, needs to be redistributed each time-step before

interpolation. MCT also provides methods for these parallel communication

needs.

3. Parallel Communication with MCT

The introduction of distributed-memory parallelism to the CCSM coupler

created new parallel communication needs, both for data transfer between

models and the coupler and for parallel data interpolation within the coupler.

Other software packages contain general solutions for communication

between parallel data structures, including PAWS (Beckman et al., 1998;

Keahey et al., 2001), CUMULVS (Geist et al., 1997), MetaChaos (Ran-

ganathan et al., 1996; Edjlali et al., 1997) and its successor InterComm

(Lee and Sussman, 2004). There are also domain-specific or domain-inspired

solutions such as Roccom (Jiao et al., 2003), the Distributed Data Bro-

ker (DDB) (Drummond et al., 2001), and the Flexible Modeling System

(www.gfdl.noaa.gov/fms). Others have based their solution on the Common

Object Request Broker Architecture (CORBA), such as MCEL (Bettencourt,

2002) or proposed extensions to CORBA such as GridCCM (Perez et al.,

2003) and Pardis (Keahey and Gannon, 1997). In view of the requirements

above, however, these packages were not entirely suitable as the basis for a

parallel coupler in CCSM. Some, such as CUMULVS and MCEL, did not

provide MxN data transfer at the time this project began. Others lack a

9

Fortran interface, introduce a major new package dependency such as PVM

(Geist et al., 1994), handle only certain parallel data types, or do not provide

interpolation abilities.

Part of the MCT approach was to use only languages and libraries already

present in CCSM: MPI and Fortran90. MCT is written entirely in Fortran90.

Fortran90 supports derived types and allows grouping public and private

subroutines and functions into “modules.” (This paper will occasionally refer

to the modules as “classes” and the subroutines as “methods” even though

Fortran90 is not a true object-oriented language.) Since CCSM was already

using MPI to pass data between models and the coupler (as a single, root-

to-root message), MCT provides an MPI-style double-sided message-passing

model for solving the MxN problem: MCT calls replace the single MPI calls

of the nonparallel cpl5 coupler at the same locations in each model’s code

(see Section 3.2). MPI is still used underneath MCT as the communication

layer. These choices allowed MCT to provide solutions to CCSM’s needs

without impacting the model’s portability.

3.1. Data Storage and Decomposition

To cope with the wide variety of data types in CCSM, MCT introduces a

standard data representation called the AttributeVector.2 The AttributeVector

is a Fortran90 derived type that consists of a two-dimensional array of reals

and one of integers. The first index refers to the “Attribute” corresponding

2We shall use the following typographic conventions. References to class or Fortran90
module names are indicated with classname. File names, subroutine names, and other
parts of source code are indicated as subroutine.

10

to the physical quantity being stored, such as temperature, wind, or humid-

ity. The second index refers to the value of each attribute at a physical grid

point. All the fields sent to or received from the coupler can each be contained

in an instance of the AttributeVector. In CCSM3, the AttributeVector is the

datatype exchanged between the coupler and other models, and AttributeVec-

tors are the parallel data type used within the coupler. AttributeVectors are

locally sized: they contain just enough space to hold the data local to a pro-

cessor in a model’s decomposition. Methods that operate on AttributeVector,

such as communication methods equivalent to an MPI broadcast and gather,

operate on all the attributes at once: the temperature, wind speed, and other

values in the AttributeVector are sent in one message to their destinations.

The GlobalSegmentMap or GSMap is the MCT datatype for describing a

decomposition of a numerical grid or the portion of a grid used in coupling.

The datatype is global because it contains a description of the decomposition

of the entire grid. After initialization, which is typically done collectively

with each processor describing its portion of the grid, the returned data type

is identical on all processors. Thus, each processor can inquire the processor

id of any point in the numerical grid.

The GSMap is defined by numbering all the points in the numerical grid

to be described. A very simple example of a grid with 20 numbered points

distributed over two processors is shown in Figure 2. The GSMap data type

values for this decomposition are as follows:

ngseg: 2 ! total number of segments

gsize: 20 ! total number of points

11

start: 1 , 11 ! value of starting point for each

! segment

length: 10, 10 ! length of each segment.

pe_loc: 0 , 1 ! MPI rank of processor containing

! each segment.

Using the three integer arrays start, length, and pe loc, one can describe

the decomposition of any grid, structured or unstructured, provided the grid

points can be conceptually numbered sequentially. The GSMap is efficient

at describing block decompositions because that type is used most often in

climate modeling.

Before data is sent to the coupler, values must be copied from the model’s

internal datatype into the correct location in the AttributeVector. The correct

location is determined by the implied relationship between an AttributeVec-

tor and the GSMap. The implied relationship between local memory in the

AttributeVector and the local portion of the GSMap is shown in Figure 3 for

the points on processor 1 of Figure 2. Because the data types of individ-

ual models in CCSM are varied and unknown to MCT, MCT serializes the

grid of the model. MCT then uses the implicit relationship between the

memory of the AttributeVector and the locally owned portion of the Glob-

alSegmentMap shown in Figure 3 to map data between processor-grid point

spaces. The GSMap method GlobalToLocal translates between global val-

ues of locally owned grid points and memory indices in the AttributeVector.

The MCT user has the responsibility for copying data between gridded data

stored in their model’s internal data types and the AttributeVector according

12

to the relationship in Figure 3. By generalizing the decomposition of the

grid instead of trying to generalize the model’s unknown internal parallel

data type, MCT gains great flexibility at the cost of a single data copy.

3.2. Communication Schedules and M×N Transfer

In order to send data between two models, an AttributeVector with the

same number of Attributes and related to the same numerical grid with the

same gird-point numbering scheme must exist on each side of the communi-

cation. The local size of the data may be different depending on the different

decompositions. For example, the CCSM atmosphere model may decompose

its grid over 64 processors while the coupler decomposes its representation

of the atmosphere’s grid over 16 processors. The model and coupler will

then have two different GSMaps, and the local size of the AttributeVector for

“atmosphere-to-coupler” data will be different, but MCT can still transfer

the data so long as the atmosphere grid is numbered the same way in each

model.

Given two decompositions of the same numbered numerical grid specified

in two GSMaps, one can easily build a mapping between the location of one

grid point on a processor to its location on another processor. The set of all

these mappings forms a customized MxN routing table. This table can be

used by a processor to indicate the destination or source processor for each

of its data points in the alternative decomposition. In MCT, this assembled

table is stored in another Fortran90 derived type called the Router.

Router initialization is a form of “handshaking,” where two models learn

how to exchange data with each other in parallel. The algorithm has two

13

phases. First, the models exchange their GSMaps. This is a synchronization

point between models. The received GSMap is then broadcast to each pro-

cessor of that model. At that point, each processor has the GSMap for each

side of the communication and can build its local Router in parallel with the

other processors. This is the usual method for CCSM, where the models are

each on disjoint sets of processors. MCT also provides methods to send a

GSMap asynchronously and to initialize a Router if the two GSMaps are al-

ready available. Since the grids in a climate model such as CCSM are fixed,

Router initialization is typically done once at startup.

After initialization, the Router can be read two ways: as both a list of

local memory indices of the local AttributeVector and a list of MPI processor

ranks to which they must be sent, and as a list of local memory indices to

receive data from a list of processors. The Router is a two-way map from one

decomposition to another, and therefore the same Router data can be used

for an MxN send or receive.

Figure 4 illustrates a portion of a Router for processor 0 in a system with

two components spread over six processors. On the first two processors, the

grid has been given a one-dimensional decomposition, while on the the last

four the same grid has been given a two-dimensional decomposition. The

Router allows processor 0 to know that during a send, it must send four

points to processor 2 and during a receive it will receive four points from

processor 2. Processor 0’s Router also contains information about the shared

points on processor 3 (not shown).

The Router also contains an integer ID uniquely identifying the model

14

intended to be the partner in any communication. This integer ID is used

to look up the other model’s processors and their global MPI rank using a

lookup table created as part of MCT initialization.

Once a Router has been initialized and an AttributeVector has been filled

with new data to be sent, the M×N transfer is accomplished with a matched

pair of calls analogous to MPI message passing:

MCT_Send(Model1_AttributeVector, Model1_Router)

and on the receive side:

MCT_Recv(Model2_AttributeVector, Model2_Router).

In MCT, the AttributeVector takes the place of the buffer address in MPI

communication routines. The Router, “pointing” to another model and its

decomposition of the grid, takes the place of the destination/source MPI

rank.

To avoid latency costs, MCT send packs all attribute values (temperature,

wind, etc.) into one message for a given set of grid points destined for a

processor. The MCT send blocks until the underlying MPI sends are com-

plete. MCT also provides nonblocking versions, MCT Isend and MCT Irecv,

for asynchronous MxN data transfer.

If the Router indicates a given processor must send or receive a message

from/to more than one processor, these messages are posted together through

successive calls to MPI Isend and MPI Irecv (the blocking MCT send includes

a call to MPI Waitall). Posting several nonblocking calls at once can, in

principle, be faster than explicity scheduling matching pairs of sends and

receives (Gropp et al., 1999).

15

Although two sides of a communication with a Router must reference the

same numbering scheme for a grid, the two grids may differ on the total

number of points. This flexibility is useful in CCSM where the land model

uses the same global grid as the atmosphere but allocates storage only for

land points. As long as those points have the same index in their respective

GSMaps, a Router can still be constructed and MCT can exchange gridded

data between the two models. A similar situation occurs in the ocean model,

which has a grid defined over the entire globe but allocates memory only for

the ocean points.

3.3. Communication Support for Interpolation

In previous versions of the CCSM coupler, interpolation of data was trivial

because the single-node coupler held all data points for two grids and their

interpolation weights in the same memory. The introduction of distributed-

memory parallelism to the coupler creates new requirements for parallel data

transfer within the coupler.

As discussed in Section 2.2, interpolation is performed as a sparse-matrix

vector multiply. For example, interpolating data from the atmosphere model’s

grid to ocean model’s grid is

m ocean grid points
︷ ︸︸ ︷

(o1 o2 . . . om) =

n atmosphere grid points
︷ ︸︸ ︷

(a1 a2 . . . an)

w11 w12 . . . w1m

w21 w22 . . . w2m

...
...

. . .
...

wn1 wn2 . . . wnm

.

16

The atmosphere vector A is the input, or source, while the ocean vector O is

the output, or destination. The matrix W is sparse, and in CCSM only the

nonzero elements and their locations are stored. MCT provides a datatype

called the SparseMatrix to store the weights and their row and column indices

using an AttributeVector. MCT also provides a matrix-AttributeVector mul-

tiply method that takes advantage of the storage order in the AttributeVec-

tor. All attributes for a grid point are interpolated before moving to the

next point, thereby allowing cache reuse of the attribute data (Larson et al.,

2005).

In the parallel coupler, both the source and destination vectors have a de-

composition that is set independently of any consideration for interpolation.

Some additional communication is required to get the weights, source, and

destination points all on the same processor. MCT’s tools for doing this are

based on the GSMap and AttributeVector. First, just as the GSMap defined

the decomposition of a numerical grid based on a sequential numbering of

its points, the vectors on either side of the matrix equation above are also

serializations of these numerical grids. MCT assumes these two serializations

are the same: the row-number in the matrix corresponds to the index value

of the grid numbering used in the GSMap for the source grid’s decomposi-

tion, and the column-number is the index value of the destination grid. This

relationship is crucial to MCT’s support for parallel interpolation.

3.3.1) Initialization of Parallel Interpolation

The first task is to distribute the nonzero interpolation weights from the

matrix W, which in CCSM are calculated offline by using SCRIP and read in

17

from files. CCSM does not yet use parallel I/O, and in most cases input data

is read from the root node and scattered. MCT provides methods to derive

a decomposition for the sparse-matrix elements and scatter weights into this

decomposition. The source and destination vector decompositions imply two

possible decompositions of the matrix elements: by the decomposition of

the rows (source) or by the columns (destination). Both decompositions are

equally valid, and MCT provides methods for completing the sparse matrix

multiply in each case.

In a destination-based decomposition, entire columns of nonzero weights

are scattered to the coupler processors according to the destination vector’s

decomposition, as shown in Figure 5a. MCT’s AttributeVector Scatter is used

for this operation. This scatter method takes an AttributeVector on one pro-

cessor that contains values for all the points of a grid and sends them to

locally-sized AttributeVectors on each processor according to the decompo-

sition described in the destination vector’s GSMap. This is analogous to

MPI ScatterV. In this case, however, the GSMap is used to determine the des-

tination instead of the MPI rank. This scatter is performed once at startup

in CCSM.

The additional communication required to make the interpolation data-

local in this case brings the necessary source points to each processor. The

necessary source points are the elements from A needed to calculate each

point in O local to a processor. These points can be determined from the

nonzero elements of the scattered sparse matrix. Since MCT stores the

nonzero matrix element along with its row and column number, the column-

18

scattered SparseMatrix can be examined to collect which corresponding row

points are needed on that processor as shown in Figure 5b. This informa-

tion, a set of row numbers that are also grid-point numbers and a processor

rank, is sufficient to build a second GSMap for the source grid. The MCT

routine SparseMatrixToXGlobalSegMap derives a GSMap for A (or X) from

the column-decomposed W. Constructing this GSMap is also a one-time

initialization cost in the model. Note that this derived GSMap may contain

duplicated points as shown in Figure 5b because the same physical source

point may be needed for multiple destination points that may be on different

processors. The MCT GSMap allows this situation, and MCT Routers and

transfer methods can move data between duplicated and distinct decompo-

sitions. These structures and methods allow MCT to position exactly the

points neeeded for interpolation with a minimum in both the number and

size of messages.

3.3.2) Parallel Interpolation

Before each interpolation, the data in A must be moved from its coupler-

defined default decomposition to the sparse-matrix derived decomposition.

MCT provides the Rearranger class for this kind of data transfer. Rearranger

transfers data within a group of processors between two different decom-

positions. This approach is in contrast to MCT Send and MCT Recv, which

move data between disjoint sets of processors. Rearranger takes data in one

AttributeVector with an associated GSMap and rearranges it into another

AttributeVector associated with a different GSMap all within a group of pro-

cessors.

19

In the CCSM coupler, two copies of A are necessary because the cou-

pler performs additional computations with atmosphere data where dupli-

cate points, such as those in the sparse-matrix derived decomposition, would

be problematic. If this were not the case, the atmosphere could send data

directly to the sparse-matrix derived decomposition using a Router, and the

rearrange step could be skipped.

A complete atmosphere-ocean parallel interpolation with matrix elements

scattered according to the ocean decomposition proceeds as follows. First,

the atmosphere data is sent to the coupler by using the MxN MCT Send and is

stored in an AttributeVector. A call to Rearrange rearranges the atmosphere

data into a second AttributeVector with the interpolation-ready decomposi-

tion derived from the scattered matrix elements. This AttributeVector is the

input in a call to the data-local MCT AttributeVector-SparseMatrix multiply

routine. This call interpolates data for all attributes and stores the output

in an ocean-resolution AttributeVector, which can then be used in the coupler

for additional computation or passed to the ocean model.

Using the same parts of MCT, the interpolation can be done with the ma-

trix weights distributed according to the the source vector’s decomposition.

In this case, the source data is left in place, and a portion of the interpolation

is performed on each processor. An intermediate AttributeVector and GSMap

are created to hold the output, which now may be only a portion of the final

destination point’s value. An optional argument to the Rearrange call adds

the partial sums while forming the final output AttributeVector.

20

4. Results

We investigated the performance of MCT routines involved in parallel

communication and interpolation. The platform used was a Linux cluster

called “Jazz,” located at Argonne National Laboratory. Jazz contains 350

nodes each with a single 2.4 GHz Pentium Xeon processor and either 2 GB

or 1 GB of RAM. The processors are connected via Myrinet 2000. Portland

Group Fortran was used for compilation.

For the timings below, we used a test application that exercises MCT

datatypes in the context of a real climate simulation consisting of an atmo-

sphere model, an ocean model, and a coupler. The atmosphere model uses

the same horizontal grid as CCSM3, which covers the globe with 64 latitudes

and 128 longitudes. The ocean model also uses the same grid as the CCSM3

ocean model, which contains 384 latitude and 320 longitude points covering

the globe. As in CCSM, the mapping weights were calculated offline by us-

ing SCRIP. The grid-point numbering scheme for both grids is as shown in

Figure 2; the southernmost point on the western boundary is point number

1, and subsequent points are numbered from west to east and south to north.

As in CCSM3, the atmosphere, ocean, and coupler run on distinct sets of

processors, and the coupler contains a decomposition and storage for data on

both the atmosphere and ocean grids. In most cases, the number of coupler

processors is varied from the 2 or 8 processors used in the released version of

CCSM3 to 32 processors.

21

4.1. Router Initialization

Since the Router plays such an important role in MCT parallel commu-

nications, we timed the initialization of a Router under several possible de-

compositions. The GSMap description of a decomposition can differ based on

both the number of processors and the “strategy.” A typical decomposition

in the atmosphere can be imagined by placing the grid shown in Figure 2 over

a map of the world. The decomposition shown in Figure 2 is called “latitu-

dinal” (or by-row) strategy because it divides the world into latitude bands.

With the grid numbering shown in Figure 2, latitudinal decomposition would

result in one segment per processor. The orthogonal decomposition to Fig-

ure 2 is “longitudinal” (or by-column) and, with the same grid numbering

scheme, would yield one segment per latitude per processor. A combina-

tion of those two strategies, dividing the grid into latitude-longitude squares,

is called “checkerboard” (row-column), or Cartesian (Figure 4, right-hand

side), and would yield one segment per latitude owned by a processor. A

2x2 checkerboard decomposition of the 64x128 atmosphere grid would yield

a total of 128 segments, 32 for each processor. The GSMap description of the

decomposition differs for each strategy and each processor count.

Since the Router is constructed between two GSMaps, the full performance

space is four dimensional, two for the decomposition strategy and two for

the processor count. A small portion of that space is considered in Figure 6.

Figure 6 shows time to construct a Router in the coupler between the coupler’s

decomposition (local GSMap) and the atmosphere’s decomposition (remote

GSMap) of the atmosphere grid. This Router is used by the coupler to send

22

or receive data to and from the atmosphere. The timing considers only the

calculation of the Router after the GSMaps have been exchanged. The total

time for 10 calls to the Router initialization routine was measured and the

maximum time over all processors plotted.

Figure 6 shows the combined effect of changes to the two GSMaps involved

in a Router initialization on the time to calculate the Router. For the remote

GSMap received from the atmosphere, the number of atmosphere processors

is fixed at 16, but the strategy varies between latitudinal (circle), longitudinal

(square), and checkerboard (diamond). The grid point numbering scheme is

as shown in Figure 2. For 16 atmosphere processors the total number of

segments for latitudinal is 16, for longitudinal it is 1024 (64 × 16), and for

the checkerboard decomposition it is 256. For the coupler’s local GSMap, the

strategy is fixed at latitudinal, but the number of processors, and thus the

total number of segments, varies from 1 to 32.

The Router initialization algorithm searches first over all segments in the

local GSMap looking for the ones it owns. For each segment it owns, it then

loops over all the segments of the remote map looking for a match. Scaling is

nearly linear for all decomposition combinations between 2 and 8 processors

because the local segment length decreases as processors are added. Some

superlinear scaling occurs from 8 to 16 processors for the latitudinal decom-

position because at 16 processors the coupler and atmosphere GSMaps are

exactly the same and it is easy to find matching segments. The longitudi-

nal remote GSMap is the slowest because this decomposition is completely

orthogonal to both the grid-point numbering scheme used for the grid and

23

the latitudinal decomposition used in the coupler that is building the Router.

The combination of 32 possible segments in the local decomposition and 1,024

segments in the remote decomposition leads to the longest initialization time.

This suggests that, whenever possible, one should choose a grid-point num-

bering scheme and decomposition strategy that minimizes the total number

of segments. Also, decompositions with very different strategies lead to in-

creased initialization times.

4.2. M×N Data Transfer

The performance of MCT Send in the atmosphere component of the MCT

test program is shown in Figure 7. In our test model, the atmosphere At-

tributeVector has 17 total fields to send, a typical number for a climate model

like CCSM3. The atmosphere grid contains 8,192 points. Assuming 64-

bit real number representation, roughly a megabyte of information must be

sent out of the atmosphere each coupling time step (every simulated hour

in CCSM3). The focus on the send, rather than the receive, operation is

arbitrary; similar results are obtained if the receive is measured (not shown).

As in the Router initialization, the performance space is four dimensional.

The performance of an M×N data transfer between components on disjoint

sets of processors will depend on the decomposition strategy and the number

of processors on each side of the transfer. Both the per-message size and the

number of messages can change if the decomposition or number of processors

changes. A portion of this performance space is examined in this section.

Figure 7a shows the cumulative time for 100 calls to MCT Send from an

atmosphere on 16 processors to a coupler with a varying number of receiving

24

processors. A barrier was placed before the send to decrease the effects

from load imbalance in the rest of the MCT test application. The minimum

over all processors is shown. The coupler decomposition strategy is fixed

at latitudinal, while the atmosphere uses two decompositions, latitudinal

(circles) and checkerboard (squares).

For the processor counts considered, as the number of receiving processors

increases, the total time decreases. In the latitudinal case, the decomposition

strategy is the same as in the coupler, and performance is more predictable

than if the send is from a checkerboard decomposition. As in the Router

initialization (Section 4.1), when the decompositions are very different, there

is an increased cost.

Figure 7b show the results for the same measurement except that the

atmosphere is fixed at 32 instead of 16 processors. For this case, communi-

cation time again decreases as the number of processors on the receive side

increases. When comparing the two latitudinal curves, there is a minimum

when the number of processors and the decomposition strategies match ex-

actly (16 processors for Fig. 7a and 32 for Fig. 7b). The 32-processor send

measurement is faster at all receive processor counts than is the 16 proces-

sor send, which shows that MCT can realize some performance gains when

processors are added to either side of an M×N communication.

The departure of the curves from ideal speedup is caused by accumulated

latency costs. While the size of each message decreases as the number of pro-

cessors increase, there are also more messages to send. The maximum number

of messages will equal the product of the number of processors on each side

25

of the communication. This maximum is reached when the decomposition

strategies on each side are orthogonal. The checkerboard decomposition con-

tains some orthogonality to the receiver’s latitudinal decomposition, and this

probably accounts for the different shapes of the checkerboard and latitudinal

curves in Figure 7. At the extreme case of very high numbers of processors

and very different decompositions, the number of messages could saturate

the available bandwidth. In that case, it may be necessary for the coupled

model programmer to adjust the decomposition on one side to match the

other. If the decompositions, and M and N, are identical, only one message

per processor pair is required.

The latency cost of sending a message was anticipated in the design of

MCT’s parallel transfer routines. Instead of sending one message for each

attribute in an AttributeVector, MCT Send first copies all the grid points and

fields destined for a processor from the AttributeVector into an internal buffer.

This copy cost was also measured and was between 1 and 2 orders of magni-

tude less than the transmission costs shown in Figure 7 at all configurations

tested. While the copy cost increased as the number of messages increased,

it was still an order of magnitude less than the smallest transmission time

shown on Figure 7.

4.3. Parallel Interpolation

The performance of MCT’s parallel interpolation functions is presented

in Figures 8 and 9. Section 3.3 explained how parallel interpolation is di-

vided into two phases: a rearrangement of data for the interpolation and the

matrix-multiply doing the interpolation. This section considers the cost of

26

both phases and how they vary for number of processors and decompositions.

While the previous measurements required two components, interpolation

is performed entirely in one component, in this case the coupler of the MCT

test application. As in the previous sections, the decomposition strategy is

still an important factor in performance. Figure 8 shows the performance

of the parallel interpolation routine when transforming data from the at-

mosphere to the ocean grid subject to changes in the decomposition of the

atmosphere grid and the number of processors in the coupler. The destina-

tion ocean grid decomposition is fixed at latitudinal in all cases. The solid

line shows the total cost of the compute-only part of the interpolation for 10

calls to the MCT parallel interpolation subroutine for three different decom-

positions of the source atmosphere grid. All three decompositions have the

same cost because, after rearrangement, the computation is identical. The

maximum over all processors is plotted in Figure 8 and shows some departure

from ideal scaling because the work load is distributed according to the ocean

decomposition and not according to the number of matrix weights and there-

fore there is a load imbalance. The average time over all processors, shown

for the latitudinal decomposition only in Figure 8 (other decompositions are

similar), scales linearly.

The cost of the communication of data between the atmosphere’s user

determined decomposition and the matrix-multiply derived decomposition

within the coupler is plotted by using dashed lines in Figure 8. Some of the

behavior seen in previous sections appears again for this measurement. The

latitudinal decomposition has the smallest communication cost because it

27

matches the sparse matrix-derived decomposition, which in turn was based

on the latitudinal decomposition of the destination ocean grid. Rearranging

data from a longitudinal decomposition to the sparse-matrix derived decom-

position has the highest communication costs, and the checkerboard decom-

position is close to the cost of the longitudinal. As for the send performance

(Section 4.2), the difference in communication costs is caused by the differ-

ence between the decompositions.

The cost of communication is around an order of magnitude less than

the interpolation at nearly all processor counts. The ratio of computation

to communication decreases as the processor count increases because the

amount of work remains the same while the total number of messages—and

their associated latency costs—increases. Like the Router and MCT Send, the

Rearranger keeps communication costs to a minimum by sending only the

points necessary to complete the interpolation and sending all attributes in

a single message. The Rearranger performs an in-memory copy for those

points located on the same processor in the two different decompositions so

processors can avoid sending MPI messages to themselves.

MCT allows the order of communication and computation to be reversed

(Section 3.3) so that communication can be performed on the coarser grid.

The reason for including this capability is shown in Figure 9. Figure 9 shows

the cost of the communication and computation phases of interpolating data

from the ocean to the atmosphere grid for two different orderings of com-

munication and computation. “Multiply then Rearrange” means that first

interpolation is performed by using whatever ocean points are available in

28

the user-defined latitudinal decomposition (solid line with circles) and then

partial sums are reduced to their resident process IDs on the destination

grid decomposition (dashed line with circles). The total cost of the parallel

interpolation is the sum of the two measurements. As above, the communica-

tion is an order of magnitude smaller than the computation for all processor

counts.

For the “Rearrange then Multiply” case, ocean data is first rearranged

into a sparse-matrix derived decomposition, and then the interpolation is

performed. The costs of communication and computation in this case are

comparable, and the total cost of parallel interpolation is nearly double the

“Multiply then Rearrange” case. The reason rests with the ratio of the num-

ber of points in the atmosphere and ocean grids, which is nearly a factor

of 10. In “Rearrange then Multiply” a large amount of ocean data must

be communicated between coupler processors, while in “Multiply then Rear-

range” a smaller amount of atmosphere data needs to be communicated. For

the ocean-to-atmosphere interpolation, there is a performance advantage to

performing a partial interpolation of data from the ocean to the atmosphere

grid and then rearranging and summing the partial results to form the final

atmosphere resolution data. This performance advantage was first noted in

the Parallel Climate Model (PCM) (Bettge et al., 2001), and PCM’s unique

coupler contained specially written routines to perform a similar operation

(Tony Craig, personal communication, 2002). MCT’s general routines for

parallel interpolation matches or exceeds the performance of PCM’s custom-

written routines (Ong et al., 2002).

29

5. Conclusions

MCT provides efficient, scalable datatypes and subroutines for the par-

allel communication problems found in multiphysics parallel coupled models

such as the Community Climate System Model. If data is stored in a At-

tributeVector, the numerical grid is numbered sequentially, and the decompo-

sition is described with a GlobalSegMap, MCT contains several methods to

accomplish parallel data transfers in inter- and intramodel communication.

MCT takes a different approach from other M×N communication solu-

tions by serializing the numerical grid used in the model instead of the mem-

ory space of the model’s parallel data type. The implicit relationship between

the grid’s decomposition and the AttributeVector allows MCT to handle any

decomposition of any grid at the cost of a data copy and some effort by

the programmer to determine the mapping between a model’s internal data

structures and the AttributeVector.

MCT provides several methods to scatter interpolation weights stored in

files for CCSM and read in on the root node of CCSM’s coupler. If future

versions of CCSM perform parallel I/O or calculate interpolation weights

in parallel, the results could be stored in the same SparseMatrix, and the

rest of the parallel interpolation methods would still be applicable. Because

the specific choice of interpolation method affects the scientific output of a

model, MCT currently leaves the calculation of the interpolation weights to

the application developer, but future versions will include some support for

calculating these weights from an MCT GeneralGrid.

MCT performance was measured on a Linux cluster, and good scaling

30

was observed for the tested parallel methods. Performance is better if two

decompositions of the same grid have a similar strategy. This result suggests

that the designers of a coupled system should be aware of the decompositions

used in the component models and incorporate this information in their cou-

pling strategy to maximize coupled system performance. Data transfer costs

of the parallel interpolation routines can grow if the problem size remains

fixed while the number of processors increases. This cost can be avoided if

the component performing the mapping does not need the source data for

other purposes. MCT allows communication on either side of the interpola-

tion calculation, which can lower the overall time required when interpolating

from a high- to low-resolution grid.

The overhead of MCT in CCSM is difficult to measure without examin-

ing the full performance of this complex parallel application. A performance

study of CCSM is beyond the scope of this paper. Experience with MCT

within CCSM3, however, shows that the overhead of copying in and out of

AttributeVectors is less than 1% of the total time to simulate a day of climate

interaction. This low overhead is because coupling is relatively infrequent

and the rest of the model’s activity, such as radiation calculations and fluid

dynamics, is very time consuming. Other costs of MCT do not count as

overhead because they are performing critical functions of the coupler. The

copy costs can be avoided if an application adopts AttributeVectors as their

internal datatype. The total cost of using MCT’s parallel interpolation algo-

rithms was as good as or better than hand-written versions for one coupled

model (Ong et al., 2002).

31

Besides the lack of a common datatype, the biggest barrier to constructing

more coupled systems in the earth sciences and in other fields is that can-

didate submodels are seldom developed with coupling in mind. The CCSM

architecture is a way to build coupled systems with such applications, but

the cost is multiple executables and less flexibility in integration schemes

(concurrent vs. sequential). The most significant benefit of the Earth Sys-

tem Modeling Framework (Hill et al., 2004) effort is that it is encouraging

many modeling groups to refactor their codes for coupling. These groups are

cleanly separating initialization and runtime methods and data structures.

Once this refactoring is complete, it will be straightforward to construct new

coupled models using libraries currently in operational use such as FMS,

MCEL, cpl6, and MCT.

Although MCT was created to solve the problems of a parallel coupler

for CCSM, MCT contains no earth-science-specific assumptions and could

be used to couple any two models that use a numerical grid. MCT also does

not require the use of a coupler and can be used to implement direct inter-

component coupling. An MCT Send can be called directly from an atmo-

sphere to an ocean model provided the ocean model has a decomposition and

AttributeVector for the atmosphere data. MCT’s parallel methods can also

be used for sequentially coupled systems and mixed sequential-concurrent

systems such as the Fast Ocean Atmosphere Model (Jacob et al., 2001).

Because MCT is based on MPI and follows the MPI programming model,

MCT can support Grid (Foster and Kesselman, 1998) computing by linking

to a Grid-enabled version of MPI such as MPICH-G2 (Karonis et al., 2003).

32

A Grid-enabled version of MCT was used to couple a regional-scale coupled

ocean-atmosphere system across a Grid (Dan Schaffer, personal communica-

tion, 2003).

Future versions of MCT will include some OpenMP directives for the com-

putationally intensive parts of the code such as the matrix-multiply routines

and new data transfer schemes which can account for “masking” of unneces-

sary grid points. The robustness of MCT’s data transfer routines has already

been demonstrated in a real-world application. Over 10,000 years of climate

simulation have been performed with CCSM3 (Lawrence Buja, personal co-

munication, 2004). All the data transfer between models and interpolation

in the coupler performed for these production simulations used MCT’s M×N

data transfer and parallel interpolation routines.

MCT is available at http://www.mcs.anl.gov/mct.

Acknowledgments We thank Tony Craig, Brian Kauffman, Tom Bettge,

John Michalakes, Jace Mogill, and Ian Foster for valuable discussions during

development of MCT. We also thank Jace Mogill for his improvements to the

algorithm for Router initialization. We thank Michael Tobis for providing

valuable comments on an early version of this paper. This work was sup-

ported by the Climate Change Research Division subprogram of the Office

of Biological & Environmental Research, Office of Science, U.S. Department

of Energy through the Climate Change Prediction Program (CCPP), the

Accelerated Climate Prediction Initiative (ACPI-Avant Garde), and the Sci-

entific Discovery through Advanced Computing (SciDAC) Program, under

Contract W-31-109-ENG-38. We gratefully acknowledge use of “Jazz,” a

33

350-node computing cluster operated by the Mathematics and Computer

Science Division at Argonne National Laboratory as part of its Laboratory

Computing Resource Center.

references

Beckman, P. H., P. K. Fasel, and W. F. Humphrey, 1998: Efficient Cou-

pling of Parallel Applcations Using PAWS. In Proc. 7th IEEE Interna-

tional Symposium on High Performance Distributed Computation.

Bettencourt, M. T., 2002: Distributed Model Coupling Framework. In

Proc. 11th IEEE Symposium on High Performance Distributed Com-

puting, pp. 284–290.

Bettge, T., A. Craig, R. James, V. Wayland, and G. Strand, 2001: The

DOE Parallel Climate Model (PCM): The Computational Highway

and Backroads. In V. N. Alexandrov, J. J. Dongarra,, and C. J. K.

Tan (Eds.), Proc. International Conference on Computational Science

(ICCS) 2001, Volume 2073 of Lecture Notes in Computer Science,

Berlin, pp. 148–156. Springer-Verlag.

Collins, W. D., M. Blackmon, C. Bitz, G. Bonan, C. Bretherton, J. A.

Carton, P. Chang, S. Doney, J. J. Hack, J. T. Kiehl, T. Henderson,

W. G. Large, D. McKenna, B. D. Santner, and R. D. Smith, 2005:

The Community Climate System Model: CCSM3. J. Climate,, to be

submitted.

Craig, A. P., R. L. Jacob, B. G. Kauffman, T. Bettge, J. Larson,

E. Ong, C. Ding, and H. He, 2005: Cpl6: The New Extensible

34

High-Performance Parallel Coupler for the Community Climate Sys-

tem Model. Int. J. High Perf. Comp. App.,, this issue.

Drummond, L. A., J. Demmel, C. R. Mechose, H. Robinson, K. Sklower,

and J. A. Spahr, 2001: A Data Broker for Distirbuted Computing

Environments. In V. N. Alexandrov, J. J. Dongarra,, and C. J. K. Tan

(Eds.), Proc. 2001 International Conference on Computational Science,

pp. 31–40. Springer-Verlag.

Edjlali, G., A. Sussman, and J. Saltz, 1997: Interoperability of Data-

Parallel Runtime Libraries. In International Parallel Processing Sym-

posium, Geneva, Switzerland. IEEE Computer Society Press.

Foster, I., and C. Kesselman, 1998: The GRID: Blueprint for a New Com-

puting Infrastructure. Morgan-Kaufmann.

Geist, G. A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-

deram, 1994: PVM: Parallel Virtual Machine, A User’s Guide and

Tutorial for Networked Parallel Computing. MIT Press.

Geist, G. A., J. A. Kohl, and P. M. Papadopoulos, 1997: CUMULVS:

Providing Fault Tolerance, Visualization and Steering of Parallel Ap-

plications. Int. J. High Perf. Comp. App., 11(3), 224–236.

Gropp, W., E. Lusk, and A. Skjellum, 1999: Using MPI: Portable Parallel

Programmin with the Message-Passing Interface, second edition. MIT

Press.

Hill, C., C. DeLuca, V. Balaji, M. Suarez, A. da Silva, and the ESMF

Joint Specification Team, 2004: The Architecture of the Earth System

35

Modeling Framework. Comp. in Science and Engineering, 6, 12–28.

Jacob, R., C. Schafer, I. Foster, M. Tobis, and J. Anderson, 2001: Compu-

tational Design and Performance of the Fast Ocean Atmosphere Model.

In V. N. Alexandrov, J. J. Dongarra,, and C. J. K. Tan (Eds.), Proc.

2001 International Conference on Computational Science, pp. 175–184.

Springer-Verlag.

Jiao, X., M. T. Campbell, and M. T. Heath, 2003: Roccom: An Object-

Oriented, Data Centric Software Integration Framework for Multi-

physics Simulations. In Proc. of the 17th Annual ACM International

Conference on Supercomputing.

Jones, P. W., 1998: A User’s Guide for SCRIP: A Spherical Coordinate

Remapping and Interpolation Package. , Los Alamos National Labora-

tory, Los Alamos, NM.

Karonis, N., B. Toonen, and I. Foster, 2003: MPICH-G2: A Grid-Enabled

Implementation of the Message Passing Interface. J. Parallel and Dis-

tributed Comp., 63(5), 551–563.

Keahey, K., P. Fasel, and S. Mniszewski, 2001: PAWS: Collective Inter-

actions and Data Transfers. In Proc. High Performance Distributed

Computing Conference, San Francisco, CA.

Keahey, K., and D. Gannon, 1997: PARDIS: A Parallel Approach to

CORBA. In Proc. High Performance Distributed Computing Confer-

ence, Portland, OR, pp. 31–39.

Larson, J., R. Jacob, and E. Ong, 2005: The Model Coupling Toolkit:

36

A New Fortran90 Toolkit for Building Multi-Physics Parallel Coupled

Models. Int. J. High Perf. Comp. App.,, this issue.

Lee, J., and A. Sussman, 2004: Efficient Communication between Paral-

lel Programs with InterComm. CS-TR-4557 and UMIACS-TR-2004-04,

University of Maryland, Department of Computer Science and UMI-

ACS.

Message Passing Interface Forum, 1994: MPI: Message-Passing Interface

Standard. Int. J. Supercomputer App. and High Perf. Comp., 8(3/4),

159–416.

Ong, E., J. Larson, and R. Jacob, 2002: A Real Application of the Model

Coupling Toolkit. In C. J. K. Tan, J. J. Dongarra, A. G. Hoekstra,,

and P. M. A. Sloot (Eds.), Proc. 2002 International Conference on

Computational Science, Volume 2330 of Lecture Notes in Computer

Science, Berlin, pp. 748–757. Springer-Verlag.

Perez, C., T. Priol, and A. Ribes, 2003: A Parallel COBRA Compo-

nent Model for Numerical Code Coupling. Int. J. High Perf. Comp.

App., 17(4), 417–429.

Ranganathan, M., A. Acharya, G. Edjlali, A. Sussman, and J. Saltz, 1996:

Runtime Coupling of Data-Parallel Programs. In Proc. 1996 Interna-

tional Conference on Supercomputing, Philadelphia, PA.

37

LndIce Cpl

Atm

Ocn

1

38

2 3 4 5

6 7 8 9 10

1

11 12 13 14 15

16 2017 18 19
PROC 1

PROC O

2

39

1

2

3

4

8

10

5

7

6

9

1

2

3

4

8

10

5

7

6

9

T U Q
1

2

3

4

8

10

5

6

9

7

11

12

13

14

15

16

17

19

20

18

AttributeVector

Local memory
indices

locally owned
global grid indices
constructed from the
GSMap

3

40

2 3 4 5

6 7 8 9 10

1

11 12 13 14 15

16 2017 18 19

2 3 4 5

6 7 8 9 10

1

11 12 13 14 15

16 2017 18 19

PROC 5PROC 4

PROC 1

PROC 2 PROC 3

PROC 0 Router

4

41

1o o2 o3 o4 o5

a1

a2

a3

a4

0 1

1o o2 o3 o4 o5

a1

a2

a3

a4

a) 0 1b)

1

0

5

42

1 2 4 8 16 32
Processors

0.001

0.002

0.003

0.005

0.01

0.02

0.03

0.05

0.07

Se
co

nd
s

Lat
Lon
Check

MCT Router Initialization
Different Decompositions and Number of Local Processors

Ideal

6

43

1 2 4 8 16 32
Receive Processors

0.01

0.02

0.03

0.05

0.07

0.1

0.2

0.3

Se
co

nd
s

Lat
Check

Sender on 16 processors

1 2 4 8 16 32
Receive Processors

Lat
Check

Sender on 32 processors

Ideal

Ideal

MCT_Send Timings

a b

7

44

1 2 4 8 16 32
Processors

0.10

1.00

10.00

Se
co

nd
s

Lat
Lon
Check
Lat (avg)

MCT Parallel Interpolation
Computation and Communication for Different Decompositions

Ideal

Ideal

8

45

1 2 4 8 16 32
Processors

0.010

0.100

Se
co

nd
s

Multiply then Rearrange
Rearrange then Multiply

MCT Parallel Interpolation
Ordering of Communication and Computation

Communication

Computation

High Resolution to Low Resolution

Ideal

Ideal

9

46

FIGURE CAPTIONS

Figure 1.

The “hub-and-spokes” execution model of the Community Climate Sys-
tem Model. CCSM contains 5 separate executables: an atmosphere model
(Atm), ocean model (Ocn), land model (Lnd), sea-ice model (Ice), and a
coupler (Cpl).

Figure 2.

2-rows x 1-column decomposition of a numbered grid.

Figure 3.

Relationship between local memory indices in an AttributeVector and the
grid point numbering contained in the GSMap for the points owned by pro-
cessor 1 in Fig. 2. In this example, the AVect is being used to store three
variables: temperature (T), east-west velocity (U), and specific humidity
(Q).

Figure 4.

Schematic showing how an MCT Router maps points between two decom-
positions of the same grid.

Figure 5.

Steps in determining the decompositions involved in parallel interpola-
tion.

Figure 6.

Total time for 10 calls to the MCT Router initialization routine for dif-
ferent pairs of GlobalSegMaps.

Figure 7.

Total time for 100 M×N sends of data from one model to another. The
Sender is given two different decompositions and either 16 (a) or 32 (b) pro-
cessors. The Receiver decomposition is fixed (latitudinal), but the processor
count varies from 1 to 32.

Figure 8.

Total time for 10 calls to MCT parallel interpolation routine with dif-
ferent decompositions of the source grid (see text). The destination grid
decomposition is fixed at latitudinal. Source grid resolution is lower than the

47

destination grid. Both the computation (solid) and communication (dashed)
costs associated with interpolation are shown. For computation cost, the
maximum over all processors is plotted. For the latitudinal decomposition,
the average cost is also shown (triangles). Ideal scaling curves are provided
for comparison.

Figure 9.

Total time for 10 calls to MCT parallel interpolation routine with different
ordering of communication and computation. Source grid is higher resolution
than destination grid. Both the computation (solid) and communication
(dashed) costs associated with interpolation are shown. Ideal scaling curves
are also provided for comparison.

48

The submitted manuscript has been created by

the University of Chicago as Operator of Ar-

gonne National Laboratory (”Argonne”) under

Contract No. W-31-109-ENG-38 with the U.S.

Department of Energy. The U.S. Government

retains for itself, and others acting on its behalf,

a paid-up, nonexclusive, irrevocable worldwide

license in said article to reproduce, prepare

derivative works, distribute copies to the pub-

lic, and perform publicly and display publicly,

by or on behalf of the Government.

49

