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Summary

Described here are the extensive efforts of the authors to rewrite the Community Land

Model (CLM) so that it provides good vector performance on the Earth Simulator in Japan

and the Cray X1 at Oak Ridge National Laboratory. Presented are the technical details of

the old and new internal data structures, the required code reorganization, and the resulting

performance improvements. Performance and scaling of the final Community Land Model

Version 3.0 (CLM3.0) on the IBM Power4, the Earth Simulator, and the Cray X1 are de-

scribed and compared. At 64 processors, the performance of the model is similar on the IBM

Power4, the Earth Simulator, and the Cray X1. However, the Cray X1 offers the best perfor-

mance of all three platforms tested from 4 to 64 processors when OpenMP is used. Moreover,

at low processor counts (16 or fewer), the model performs significantly better on the Cray

X1 than on the other platforms. The vectorized version of CLM was publicly released by

the National Center for Atmospheric Research (NCAR) as the standalone Community Land

Model Version 3.0 (CLM3.0), as a part of the new Community Atmosphere Model Version

3.0 (CAM3.0), and as a component of the Community Climate System Model Version 3.0

(CCSM3.0) on 23 June 2004.
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1 Introduction

1.1 The Model

The Community Land Model (CLM) is a single column (snow-soil-vegetation) biogeo-

physical model of the land surface. Written in Fortran 90, CLM can be run offline (i.e.,

run in isolation using stored atmospheric forcing data), coupled to an atmospheric model

(e.g., the Community Atmosphere Model), or coupled to a climate system model (e.g., the

Community Climate System Model) through a flux coupler (e.g., Coupler 6). When coupled,

CLM exchanges fluxes of energy, water, and momentum with the atmosphere.

Originally developed as the standalone Common Land Model (Dai et al., 2003), the

code was significantly modified for integration with the Community Atmosphere Model

(CAM) (Bonan et al., 2002) and the Community Climate System Model (CCSM) (Kiehl

and Gent, 2004) in 2001 and 2002. This prior development work targeted cache-based scalar

multi-processor computer platforms. The availability of the Earth Simulator in Japan and

the Cray X1 at Oak Ridge National Laboratory spawned renewed interest in running Earth

systems models—including CLM—on vector architectures. However, the prior development

of CLM for multi-processor architectures had inadvertently resulted in code which would not

vectorize. This led to the need to rewrite the model to provide good performance on both

vector and scalar architectures in 2003.

After the substantial development and testing described below, the vectorized version of

the model was publicly released by the National Center for Atmospheric Research (NCAR)

as the standalone Community Land Model Version 3.0 (CLM3.0), as a part of the new Com-

munity Atmosphere Model Version 3.0 (CAM3.0), and as a component of the Community
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Climate System Model Version 3.0 (CCSM3.0) on 23 June 2004. The Community Land

Model Version 3.0 (CLM3.0) Developer’s Guide (Hoffman et al., 2004), the Community

Land Model Version 3.0 (CLM3.0) User’s Guide (Vertenstein et al., 2004), the Technical

Description of the Community Land Model (CLM) (Oleson et al., 2004), and the Commu-

nity Land Model’s Dynamic Global Vegetation Model (CLM-DGVM): Technical Description

and User’s Guide (Levis et al., 2004) provide the developer, user, or researcher with details

of implementation, instructions for using the model, a scientific description of the model,

and a scientific description of the Dynamic Global Vegetation Model (DGVM) integrated

with CLM respectively.

Several multi-decadal simulations have been carried out with CCSM3.0, and the system

will be a major contributor to the Fourth Assessment Report of the Ingergovernmental

Panel on Climate Change (IPCC). Simulation output is available from the Earth System

Grid at http://www.earthsystemgrid.org/. An analysis of the results of these simulations

emphasizing the contribution of CLM3.0 will appear with related papers in a special issue

of J. Climate (Dickinson et al., 2005).

1.2 Model Grid Hierarchy

The horizontal land surface heterogeneity in CLM is represented by a nested subgrid

hierarchy composed of gridcells, landunits, columns, and plant functional types (PFTs) as

shown in Figure 1. Each gridcell can have a different number of landunits, each landunit

can have a different number of columns, and each column can have multiple PFTs. Gridcells

represent the computational grid which is shared with the atmospheric physics.
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Plant functional types:
Vegetation state variables.
PFTs may compete for
column−level resources.

Gridcells:
Computational grid shared
with the atmosphere model.

Geomorphologically distinct
land cover types (glacier,

Landunits:

lake, crop, urban, etc.).

Columns:
Water, snow, and soil state
variables.

L1 L2 L3 L4

C1 C2 C3 C4

P1 P2 P3 P1 P2

gridcell

Figure 1: The CLM subgrid hierarchy

The landunit, the first subgrid level, is intended to capture the broadest spatial pattern

of subgrid heterogeneity. It serves primarily to distinguish physical soil properties. Specific

landunits include glacier, lake, wetland, urban, and vegetated. The column captures vari-

ability in soil and snow state variables within a landunit. Water and energy states and fluxes

are tracked at the column level. The PFT, the third subgrid level, captures the characteris-

tic biophysical and biogeochemical functions of broad categories of vegetation and bare soil.

Up to four out of 15 possible PFTs differing in physiology and structure may be contained

within a single column.

Biophysical processes are simulated for each subgrid unit independently, and prognostic

variables are maintained for each subgrid unit. Processes related to soil and snow require

PFT-level properties to be aggregated up to the column level. Aggregation is usually ac-

complished by computing a weighted sum for each quantity over all PFTs within a column.
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Similarly, different PFTs compete for the resources tracked at the column level. A com-

plete description of the biophysical processes simulated by CLM is available in the Technical

Description of the Community Land Model (CLM) (Oleson et al., 2004).

2 Model Vectorization

The primary obstacles to vectorization were the layout of the internal data structures and

the organization of the processing loops in CLM2.1. The hierarchical subgrid organization

is reflected in the data structures used in the model code. In CLM2.1, the hierarchy was

implemented as arrays of pointers to derived data types at each subgrid level. The flux and

state variables were implemented as scalars in every instance of a derived data type. While

this object-oriented layout is reasonable for cache-based scalar platforms, it is not conducive

to vector processing since it results in large, unpredictable strides among variable elements.

In addition, the model had many high level loops over various grid and subgrid units. In each

loop, science subroutines were called separately and repeatedly for each grid or subgrid unit

member. The loops within the science subroutines were all short and contained negligible

work.

Early vectorization experiments carried out separately by co-authors Kitabata at CRIEPI

on the Earth Simulator and White at ORNL on the Cray X1 demonstrated significant perfor-

mance improvement by eliminating the hierarchy of derived data types in favor of traditional

Fortran arrays and by moving long grid and subgrid unit loops “down” into science subrou-

tines where they were then typically interchanged with short loops (White, 2003). The Earth

Simulator has no cache but has very long vector pipelines (eight 2304-element pipelines per
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arithmetic processor); the Cray X1 has a cache and shorter vector pipelines (four 256-element

pipelines per MSP). As a result, memory contiguity and long vector lengths are more im-

portant on the Earth Simulator than on the Cray X1.

While these experiments were being carried out, a strategy for rewriting the CLM code

was being developed to meet the requirements put forth by the research community. Re-

searchers required a single CLM source code that would run well on both vector and scalar

architectures while maintaining the hierarchical nature of the internal data structures. The

use of conditionally compiled code blocks (using #ifdef preprocessor macros) was to be

minimized, and the code modifications could not reduce the performance on the existing

scalar platforms.

2.1 Data Structures

After considerable discussion and experimentation on the Cray X1, a new data structure

organization was developed which would retain the subgrid hierarchy while allowing for

loop vectorization. New data structures were prototyped in the model by adding them in as

vector versions of individual code branches were added to the code. A testing methodology—

developed by White as a part of his vectorization experiments—was adopted for validating

simulation results at every time step. During developmental test runs, new data structures

were initialized from old data structures, the original subroutine was called to update the

old data structures, the new vector-friendly subroutine was called to update the new data

structures, and the results in the two sets of data structures were then compared to ensure

only round-off differences resulted from the new code branch. The old data structures and

subroutines were removed from the code as vector development neared completion.
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To begin, a vectorized version of the most costly code branch, the Biogeophysics1()

routine which calls the computationally intensive CanopyFluxes() subroutine, was added to

the code. In this experiment, data were copied from the original data structures into the new

data structures, and then the original Biogeophysics1() subroutine was called, followed by

the vectorized version of the subroutine which used the new data structures. For each time

step in the model run, after the non-vector and vector subroutines were called, the results

contained in the old and new data structures were compared to ensure that only round-off

differences existed between the two sets of results.

Timing utilities included in the CLM code were used to measure performance differences

between the original and the new vector versions of the code branch. Using the proposed

hierarchical data structures, the performance improvement matched that of prior vector-

ization experiments (White, 2003). The strategy for further vectorization was to use the

same testing methodology for each code branch in turn to ensure that model results were

equivalent at each time step and to monitor performance improvement. As vectorization

progressed, the code was tested by Kitabata on the Earth Simulator and by others on NEC

platforms to ensure similar performance gains on these systems. The new data structures

and vectorization strategy were subsequently presented to and approved by the CCSM Land

Model Working Group and NCAR researchers in the summer of 2003.

The new data structures now in CLM3.0 consist of derived data types for each subgrid

unit as shown in Figure 2. Each grid and subgrid unit data type in the hierarchy contains

a number of physical and chemical state and flux data types. These data types typically

contain real arrays for the state and flux variables which were previously represented as
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p pft_type

column
landunit
gridcell
itype
area
wtcol
wtlunit
wtgcell
. . .

c column_type

pfti
pftf
npfts
landunit
gridcell
itype
area
wtlunit
wtgcell
. . .

l landunit_type

coli
colf
ncolumns
pfti
pftf
npfts
gridcell
itype
area
wtgcell
. . .

g gridcell_type

luni
lunf
nlandunits
coli
colf
ncolumns
pfti
pftf
npfts
itype
area
wtglob
. . .

ngridcells
area
. . .

clm3 model_type

Additional state and
flux data types are
contained at every
level in the hierarchy.

Listed here are
integer arrays which
index subgrid units
up or down the
hierarchy, counts of
lower subgrid units,
gridcell types, and
real(r8) areas and
weights.

Figure 2: The new CLM3.0 data structure hierarchy

scalars in multiple instances of data types.

Vertical heterogeneity is represented by a single vegetation layer, 10 layers for soil, and

up to five layers for snow, depending on the snow depth. Multi-layer quantities are stored

as two-dimensional real arrays. Using real arrays at every level in the hierarchy maximizes

opportunities for contiguous memory access, thereby providing significantly better perfor-

mance on vector architectures. All arrays contained in derived data types are implemented

as Fortran 90 pointers. Memory for these arrays is allocated dynamically during model

initialization.

Each of these grid and subgrid data types also contains arrays of integers which serve as

array indices to the higher subgrid levels or as initial and final bounds on the lower subgrid

levels. For example, as shown in Figure 2, the column-level data type contains landunit

and gridcell integer arrays which refer to the appropriate landunit and gridcell for a given
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column. The column-level data type also contains integer arrays named pfti, pftf, and

npfts which refer to the first and last PFTs and the total number of PFTs, respectively, for

a given column. Each subgrid data type also contains real arrays for surface areas and area

weights at all higher grid levels.

2.1.1 Clumps for Decomposition

CLM uses MPI (the Message Passing Interface) for distributed memory parallelism

and uses OpenMP for shared memory parallelism. On the Cray X1, the model can also

stream across processing units (called Single Streaming Processors, or SSPs) within a Multi-

Streaming Processor (MSP) based on Cray Streaming Directives (CSDs) included in the

new code. In order to provide performance portability across a wide range of current and

future computer architectures, a decomposition strategy partially implemented in CLM2.1

was fully developed in CLM3.0.

When compiled for distributed memory parallelism (with the preprocessor macro SPMD

defined), each MPI process will create an instance of the data structures shown in Figure 2

containing only the subset of data assigned to that process. A cache-friendly blocking struc-

ture is superimposed on the data structure hierarchy for improved computational efficiency.

This blocking structure implicitly controls the vector length of most computations. Grid-

cells are grouped into blocks (called “clumps”) of nearly equal computational cost, and these

clumps are subsequently assigned to MPI processes.

The computational cost of a gridcell is approximately proportional to the number of PFTs

contained within it. However, since computational cost for some PFTs is higher than for

others and since similar PFTs tend to cluster geographically, balancing the workload across
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MPI processes requires a more complex scheme than simply assigning contiguous blocks of

gridcells to clumps. To minimize the potential for load imbalance, gridcells are assigned in

cyclic (or round robin) fashion to a pre-determined number of clumps. The clumps are then

assigned in cyclic fashion to available MPI processes. This scheme has proved to sufficiently

distribute gridcells of various computational costs among MPI processes, yielding very good

parallel load balancing characteristics for most process counts and surface datasets. A small

penalty is incurred during history output since the data in memory must be remapped to

the standard south-to-north ordering for output.

Clumps not only define the workload for an MPI process, they also serve to block data

for shared memory parallelism when using OpenMP or streaming on the Cray X1. The

number of clumps per MPI process is determined by the parallel configuration of the model

at run time, but it may be set explicitly by setting the clump pproc namelist variable to the

desired number of clumps per process. When run serially or with MPI-only parallelism, one

clump per process is used. When OpenMP is enabled, the number of clumps per process is

set to the maximum number of OpenMP threads available. On the Cray X1 when OpenMP

is disabled, CSDs are interpreted by the compiler in place of OpenMP directives, and the

number of clumps per process is set to four to take maximum advantage of the four SSP

units on an MSP.

2.1.2 Filters for Vector Performance

In addition to clumps, another set of structures, called “filters,” was added to better

support vectorized processing of columns and PFTs. Filters group like columns or PFTs

based on their process-specific categorization and are used for indirect addressing into the
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main data structure hierarchy. Filters are created for snow, non-snow, lake, non-lake, and

bare soil columns and PFTs for each clump of gridcells. Many filters are initialized once, but

the snow and non-snow filters must be reconstructed as snowfall and melting occur, and the

vegetated PFT filter must be reconstructed in DGVM as die-off and establishment occur.

2.2 Code Reorganization

Loops over columns and PFTs previously located in the top level driver routine were

moved down into science subroutines to provide opportunities for vectorization. In CLM3.0,

the highest level loops in the driver routine run over clumps for each MPI process and

provide for OpenMP or Cray Streaming parallelism. Science subroutines, called within

these loops, are passed local clump bounds for gridcells, landunits, columns, and PFTs as

needed. Relevant filters, in the form of counts and vectors of array indices, are also passed

as needed to science subroutines.

Figure 3 shows a portion of a high level loop from the driver routine. First, the number

of clumps assigned to the process is obtained and stored in nclumps. The subsequent loop

over all clumps is wrapped with OpenMP and Cray Streaming directives to support shared

memory parallelism. Within the loop, the bounds for gridcells, landunits, columns, and PFTs

are obtained for the clump being processed by calling get clump bounds(). Then a science

subroutine, Hydrology1(), is called and passed the column and PFT bounds as well as the

non-lake filters for columns and PFTs for the clump being processed. Additional science

subroutines are subsequently called within the same loop. The driver routine consists

primarily of two such high level loops which call most of the science subroutines used by the

model.
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nclumps = get_proc_clumps()

!$OMP PARALLEL DO PRIVATE (nc,begg,endg,begl,endl,begc,endc,begp,endp)

!CSD$ PARALLEL DO PRIVATE (nc,begg,endg,begl,endl,begc,endc,begp,endp)

do nc = 1,nclumps

call get_clump_bounds(nc, begg, endg, begl, endl, begc, endc, begp, endp)

.

.

.

call Hydrology1(begc, endc, begp, endp, &

filter(nc)%num_nolakec, filter(nc)%nolakec, &

filter(nc)%num_nolakep, filter(nc)%nolakep)

.

.

.

end do

!$OMP END PARALLEL DO

!CSD$ END PARALLEL DO

Figure 3: Example high level loop in the driver routine

Within science subroutines, vector loops run over grid or subgrid units. Other short

loops run over snow and soil levels within a column or PFT. In most cases, the vector loops

were inserted into the short loops for vectorization. Many loops were split into multiple

loops and temporary local arrays (vectors) were used to “carry” data between them. Many

of the vector loops use filters for indirect addressing of relevant columns and PFTs. Since

arrays in data structures are implemented as pointers, compilers can not determine if vector

dependencies exist. As a result, compiler directives are required in order to obtain loop

vectorization in most cases on both the Cray X1 and the Earth Simulator.

Figure 4 shows an example of a filter loop within a science subroutine. First, local

pointers are created to shorten the notation used in equations. The subsequent loop over

all non-lake columns is preceded by Cray X1 and Earth Simulator compiler directives. The
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! Assign local pointers to derived type members (landunit-level)

clandunit => clm3%g%l%c%landunit

itype => clm3%g%l%itype

! Assign local pointers to derived type members (column-level)

cgridcell => clm3%g%l%c%gridcell

t_grnd => clm3%g%l%c%ces%t_grnd

h2osno => clm3%g%l%c%cws%h2osno

snowdp => clm3%g%l%c%cps%snowdp

snowage => clm3%g%l%c%cps%snowage

!dir$ concurrent

!cdir nodep

do f = 1, num_nolakec

c = filter_nolakec(f)

l = clandunit(c)

g = cgridcell(c)

.

.

.

if (itype(l) == istwet .and. t_grnd(c) > tfrz) then

h2osno(c) = 0._r8

snowdp(c) = 0._r8

snowage(c) = 0._r8

end if

.

.

.

end do

Figure 4: Example filter loop in a science subroutine
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first directive tells the Cray X1 compiler that the loop is concurrent, meaning it may be

streamed and vectorized. The second directive tells the Earth Simulator compiler that no

vector dependencies exist in the loop. Within the loop, the column index is obtained from the

non-lake column filter vector, the appropriate landunit index is obtained from the column’s

landunit vector, and the appropriate gridcell index is obtained from the column’s gridcell

vector. Next, the landunit type and the ground temperature of the column are checked. If

the landunit contains water and the ground temperature is above freezing, three variables

are initialized to zero. Other computations are usually performed within such loops.

3 Vector Performance

Preliminary vectorization of CLM was completed in October 2003. The new vectorized

model has a smaller memory footprint than CLM2.1. The new data structures simplify his-

tory updates and reduce the complexity and number of MPI gathers and scatters. The new

vectorized model runs 25.8 times faster than the CLM2.1 code on the Cray X1 and even runs

1.8 times faster on the IBM Power4 in standalone mode. To gauge overall performance of the

new CLM3.0 and determine optimum run-time configurations, timing tests were performed

on the IBM Power4, the Earth Simulator, and the Cray X1. The timing tests consisted of

a series of 30-day offline runs at T85 resolution (approximately 1.5 degrees) varying both

processor counts (with and without OpenMP) and the clumps-per-process tuning parame-

ter. The source code used for the tests was that tagged clm2 deva 51 in the NCAR code

repository.
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CLM3.0 may be built with a variety of options depending on the computer architecture

and processor configuration to be used. Both MPI and OpenMP may be independently

enabled or disabled. With both MPI and OpenMP disabled, the model can run serially on

a single processor. With MPI enabled and OpenMP disabled, the model runs in distributed

memory mode across a number of nodes. With MPI disabled and OpenMP enabled, the

model can run on a single shared memory symmetric multi-processor (SMP) node. With

both MPI and OpenMP enabled (hybrid mode), CLM3.0 runs in hybrid distributed/shared

memory mode across a number of SMP nodes. The optimum configuration for performance

depends on the computer architecture. In general, a hybrid mode configuration provides the

best performance on parallel systems with shared memory processors.

3.1 Cray X1

On the Cray X1, CLM3.0 can be built with CSDs enabled; however, most CSDs are used

only around loops which also use OpenMP directives. As a result, OpenMP can be enabled

only when CSDs are not. When compiling with OpenMP (ignoring CSDs), the compiler

will still multi-stream concurrent loops in science subroutines where possible. Calls to these

science subroutines are typically contained within the high level loops in the driver routine

where the OpenMP directives and CSDs are located. Slight modification of these loops

makes possible simultaneous use of OpenMP and CSDs. The performance impacts of CSDs

versus OpenMP on the Cray X1 are described below.

For the Cray X1 with OpenMP disabled, the number of MPI processes is equal to the

number of MSPs used. Four threads were used for all tests with OpenMP enabled on the

Cray X1. The curves in the performance graphs presented here are all colored by the total
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CLM3 Total Run Time on Cray X1 (30 Day T85 Offline Run with I/O)
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Figure 5: Curves show total run times for CLM3.0 on the Cray X1 with OpenMP and CSDs
both disabled for 1 to 128 MSPs.

number of processors used in the run. For the Cray X1, a processor refers to one MSP. The

clumps-per-process tuning parameter was varied between 1 and 32 for all performance tests.

Figure 5 shows total run times for CLM3.0 on the Cray X1 with both OpenMP and

CSDs disabled for 1 to 128 MSPs. The number of MPI processes is equal to the number of

MSPs, except that MPI was disabled for the 1 MSP case. For this test, streaming across

SSPs occurs only in concurrent loops within science subroutines. The best performance is

obtained when clumps per process is set to one, since this setting maximizes the vector

length. Scaling beyond 16 MSPs is poor, but run time continues to drop through 64 MSPs.

Performance for 128 MSPs is no better than for 64 MSPs.

Figure 6 shows total run times for CLM3.0 on the Cray X1 with OpenMP disabled and

CSDs enabled for 1 to 128 MSPs. The number of MPI processes is equal to the number of
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CLM3 Total Run Time on Cray X1 (30 Day T85 Offline Run with I/O)
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Figure 6: Curves show total run times for CLM3.0 on the Cray X1 using Cray Streaming
Directives around high level loops in the driver routine for 1 to 128 MSPs.

MSPs, except that MPI was disabled for the 1 MSP case. For this test, streaming across

SSPs occurs at the high level loops in the driver routine. The best performance is obtained

when clumps per process is set to four since this setting maximizes the vector length for each

of the four SSPs. Scaling beyond 32 MSPs is poor, but run time continues to drop through

64 MSPs. Performance for 128 MSPs is just slightly worse than for 64 MSPs.

Figure 7 shows total run times for CLM3.0 on the Cray X1 with OpenMP enabled and

CSDs disabled for 4 to 256 MSPs. Four threads were used per MPI process, and the number

of MSPs shown is equal to the product of the number of MPI processes and the number of

threads. MPI was disabled for the 4 MSP case. For this test, streaming across SSPs occurs

only in concurrent loops within science subroutines. The best performance is obtained when

clumps per process is set to four, since this setting maximizes the vector length for each of
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CLM3 Total Run Time on Cray X1 (30 Day T85 Offline Run with I/O)
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Figure 7: Curves show total run times for CLM3.0 on the Cray X1 using OpenMP directives
around high level loops in the driver routine for 4 to 256 MSPs. Four threads were used
per MPI process, so the number of processors shown is equal to the product of the number
of MPI processes and the number of threads.

the four shared memory MSPs. Scaling beyond 64 MSPs is poor, but run time continues to

drop through 128 MSPs.

In all three cases, the best performance is obtained when vector lengths are maximized.

On average, performance is improved by 20% using clumping and enabling CSDs around

high level loops to explicitly utilize the four SSPs on each MSP. However, better scaling is

obtained by using OpenMP instead of CSDs for the same high level loops in the driver

routine. MPI performance and problem size limit distributed memory scaling to 64 MSPs,

but adding shared memory processors via OpenMP improves scaling to 128 MSPs (i.e., 32

MPI processes and 4 OpenMP threads). It appears that the compiler does a good job of

multi-streaming loops in science subroutines (thereby keeping the SSPs sufficiently busy).
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!$OMP PARALLEL DO PRIVATE (gnc,nc_beg,nc_end,nc,begg,endg,begl,endl, &

!$OMP & begc,endc,begp,endp)

do gnc = 1,nclumps/4

nc_beg = (gnc - 1) * 4 + 1

nc_end = min(nc_beg+3,nclumps)

!CSD$ PARALLEL DO PRIVATE (nc,begg,endg,begl,endl,begc,endc,begp,endp)

do nc=nc_beg,nc_end

call get_clump_bounds(nc, begg, endg, begl, endl, begc, endc, &

begp, endp)

.

.

call Hydrology1(begc, endc, begp, endp, &

filter(nc)%num_nolakec, filter(nc)%nolakec, &

filter(nc)%num_nolakep, filter(nc)%nolakep)

.

.

end do

!CSD$ END PARALLEL DO

end do

!$OMP END PARALLEL DO

Figure 8: Modified clump loop from driver providing both OpenMP and Cray Streaming
directives

This fact, combined with the reduced MPI communications, explains why using OpenMP to

parallelize high level loops results in better performance beyond 8 MSPs.

In an effort to achieve additional performance on the Cray X1, the high level loops in the

driver routine were slightly modified so that OpenMP and Cray Streaming could be used

simultaneously. The code modification is shown in the listing in Figure 8. For this case, the

optimum number of clumps per process is 16: four for the four OpenMP threads times four

for the four SSPs.

As shown in Figure 9, this change slightly improves the performance of the OpenMP-only

case up through 64 MSPs. Beyond 64 MSPs, the addition of CSD loops within OpenMP

loops does not further improve model performance. The overall performance improvement
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CLM3 Total Run Time on Cray X1 (30 Day T85 Offline Run with I/O)
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Figure 9: CLM3.0 total run time on the Cray X1 using CSD loops (dashed), OpenMP loops
(solid), and OpenMP with CSDs simultaneously (dotted).

from using OpenMP and CSDs simultaneously was smaller than expected because the vector

lengths become too short (i.e., the problem size is too small) and the overhead of MPI

communications limits further scaling. More importantly, this result is seen as confirmation

that the automatic streaming of concurrent loops within science subroutines is very good.

The SSPs are kept busy most of the time.

Profiling experiments were performed to further investigate performance characteristics

of CLM3.0 on the Cray X1. The most time-consuming routines are gettimeofday (which is

used by the timing utilities), an internal vector memory copy routine, and canopyfluxes.

This routine is known to represent the majority of the calculations in the present version

of CLM, and it has been extensively optimized. Additional routines near the top of the

profile listing are the updateinput, areaovr point, mkmxovr, and areaave routines which
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provide data exchange and interpolation functionality for the River Transport Model (RTM).

The data exchange and interpolation functions, which have not been vectorized, are used

repeatedly when running CLM3.0 in offline mode; however, they are called only during

initialization when run in fully coupled CCSM mode, so effort has not been spent optimizing

these routines.

When run using 2 MSPs with CSDs enabled, MPI is used for communication, and

MPI Gatherv and MPI Bcast show up at the 7th and 8th positions in the profiling report.

A small portion of this time is attributable to synchronization (i.e., waiting for processes

to catch up to the point in the program where the communication occurs); however, it is

likely that MPI performance of the Cray X1 could be improved. CLM3.0 has very good load

balancing, so synchronization should take very little time. MPI Gatherv is used each time

step to generate a temperature diagnostic, and it is used to accumulate data for monthly

history output. MPI Bcast is used to distribute atmospheric forcing data read from disk by

the master process to all processes on a monthly basis.

When run on 32 MSPs, MPI Bcast and MPI Gatherv are the second and third most

expensive routines. Only gettimeofday represents more time samples. MPI Allgatherv,

used after each run of RTM, appears at number 10. With 32 MPI processes, MPI routines

and interpolation for RTM dominate run time. While some additional time may be lost

to a slightly larger load imbalance than when using two processes, at 32 MPI processes

communication time appears to exceed calculation time.

Because of the inefficiency of gettimeofday on the Cray X1, it was replaced by calls to

the real time clock routine (rtc) in later versions of the timing utilities used by CLM3.0.
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CLM3 Total Run Time on Earth Simulator (30 Day T85 Offline Run with I/O)
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Figure 10: Curves show total run times for CLM3.0 on the Earth Simulator using OpenMP
directives around high level loops in the driver routine for 4 to 64 processors. Four threads
were used per MPI process, so the number of processors shown is equal to the product of
the number of MPI processes and the number of threads.

Nevertheless, disabling model timers on the Cray X1 results in a 10–15% performance im-

provement in overall runtime. Since they are not necessary, it is recommended that the

timers be disabled for normal production runs.

3.2 Earth Simulator

Similar timing experiments were carried out on the Earth Simulator (ES). Since the ES

machine does not use multi-streaming processors, only OpenMP configurations were tested.

One set of tests used four OpenMP threads, while the other used eight OpenMP threads.

Like the timing tests on the Cray X1, the clumps-per-process parameter was varied from 1

to 32. The results from these timing tests are shown in Figures 10 and 11. The number of

processors shown is equal to the product of the number of MPI processes and the number

of threads.
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CLM3 Total Run Time on Earth Simulator (30 Day T85 Offline Run with I/O)
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Figure 11: Curves show total run times for CLM3.0 on the Earth Simulator using OpenMP
directives around high level loops in the driver routine for 8 to 64 processors. Eight threads
were used per MPI process, so the number of processors shown is equal to the product of
the number of MPI processes and the number of threads.

As expected, choosing four clumps per process provides the best performance for the

four threads case while eight clumps per process provides the best performance for the eight

threads case. These choices maximize vector lengths for each configuration. On the Earth

Simulator, as on the Cray X1, the model scales only to about 64 processors. Using eight

OpenMP threads yields slightly better performance than using four threads.

3.3 Performance Comparison

Figure 12 shows a comparison of the best CLM3.0 total run times for the IBM Power4

using four OpenMP threads; the Earth Simulator using both four and eight OpenMP threads;

and the Cray X1 using CSDs, OpenMP, and both CSDs and OpenMP simultaneously. The

curve for the IBM Power4 shows very good scaling to 32 processors (within a single node) and

reasonable scaling to 64 processors. The IBM matches the best Earth Simulator performance
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CLM3 Total Run Time (30 Day T85 Offline Run with I/O)
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Figure 12: Curves show performance of the Community Land Model (CLM3.0) run in offline
mode on the IBM Power4, the Earth Simulator, and the Cray X1.

and out performs the Cray X1 when using only CSDs at 64 processors.

The shapes of the Earth Simulator and Cray X1 curves are similar, so the model appears

to scale in a similar fashion on both machines. However, the Cray X1 performance numbers

are usually better than those from the Earth Simulator. When using only CSDs around the

driver loops, the Cray X1 out performs the Earth Simulator out to 32 processors. At 64

processors, the Earth Simulator does slightly better. On the other hand, when OpenMP is

used on the Cray X1 (with or without CSDs), it always out performs the Earth Simulator on

a per processor basis. Moreover, at low processor counts (16 or fewer), the model performs

significantly better on the Cray X1 than on the other two platforms.
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4 Conclusions

Vectorizing the Community Land Model required significant changes to the internal data

structures and every science subroutine in the model. The process of rewriting the code took

about six months (or one man-year) to complete, and the planning and related development

activities impacted model developers for an entire year. However, the resulting model code

performs better on both vector and scalar architectures. These performance improvements

will result in more and better research into land surface processes and feedbacks as access

to vector platforms widens.

The vectorized version of CLM was publicly released by the National Center for Atmo-

spheric Research (NCAR) as the standalone Community Land Model Version 3.0 (CLM3.0),

as a part of the new Community Atmosphere Model Version 3.0 (CAM3.0), and as a com-

ponent of the Community Climate System Model Version 3.0 (CCSM3.0) on 23 June 2004.

Model development has continued since the release with frequent testing on the Cray X1

platform.

In general, vectorization should be considered during all model development to ensure

performance portability across myriad computer platforms. As demonstrated here, internal

data structures can often be designed to meet the goals of researchers while still providing

acceptable good performance on both vector and scalar architectures. Writing loops so

that they will vectorize is worth the up-front effort since it assures good performance on

a wide variety of systems. Even today’s personal computers have small vector units which

can be harnessed for high performance computational science. Guidelines for writing vector-

efficient code can be found in various software development manuals including Cray’s manual
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for optimizing applications (Cray Inc., 2004).

As development continues on CLM, vectorization should remain a goal. Dynamic land

use capabilities recently added to an experimental version of the model required that history

buffers be updated every time step instead of whenever history output is written (usually

monthly). This model change exposed some accumulation routines which were only partially

vectorized. Since these routines were not previously called every time step, effort had not

been invested in vectorizing them. Model run time on the Cray X1 more than doubled.

Vectorizing these routines reclaimed almost the entire factor of two in performance. Frequent

performance testing on vector platforms, in addition to the standard numerical testing,

should help guard against frequent use or introduction of non-vectorizable code in the model.

The vector performance of the CLM3.0 is reasonable even when run in offline mode.

When coupled to the Community Atmosphere Model and the Community Climate System

Model, better performance is realized since atmospheric data are passed directly to the land

model instead of being read from disk and broadcast to all MPI processes. At 64 processors,

the performance of the model is similar on the IBM Power4, the Earth Simulator, and the

Cray X1. However, the Cray X1 offers the best performance of all three platforms tested

from 4 to 64 processors when OpenMP is used. Moreover, at low processor counts (16 or

fewer), the model performs significantly better on the Cray X1 than on the other platforms.
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