
Overview of the Software Design of the CCSM

John B. Drake
Oak Ridge National Laboratory

P.O. Box 2008, MS 6016
Oak Ridge, TN 37831-6016

 Philip W. Jones
Theoretical Division

T-3, MS B216
Los Alamos National Laboratory

P.O. Box 1663
Los Alamos, NM 87545-1663

George R. Carr, Jr
National Center for Atmospheric Research

P. O. Box 3000
Boulder, CO 80307-3000

USA
303-497-1764

gcarr@ucar.edu

Proposed running head: Overview of the CCSM
Corresponding author:

John B. Drake
Oak Ridge National Laboratory

One Bethel Valley Rd.
P.O. Box 2008, MS 6016

Oak Ridge, TN 37831-6016
USA

865-574-8670
865-576-5491(fax)
drakejb@ornl.gov

This work was prepared under the auspices of the Oak Ridge National Laboratory managed by UT-
Battelle for the Department of Energy under contract DE-AC05-00OR22725, and by Los Alamos National
Laboratory managed by the University of California under W-7405-ENG-36 and by the National Center
for Atmospheric Research sponsored by the National Science Foundation.

Abstract
The Community Climate System Model (CCSM) is a computer model for simulating the Earth’s climate.
The CCSM is built from four individual component models for the atmosphere, ocean, land surface and
sea ice. The notion of a physical/dynamical component of the climate system translates directly to the
software component structure. Software design of the CCSM is focused on the goals of modularity,
extensibility, and performance portability. These goals are met at both the component level and within the
individual component models. Performance portability is the ability of a code to achieve good
performance across a variety of computer architectures while maintaining a single source code. As a
community model, the CCSM must run on a variety of machine architectures and must perform well on all
these architectures for computationally intensive climate simulations.

 1. Introduction: The Community Climate System Model
The Community Climate System Model (CCSM) is a computer model for simulating the Earth’s climate.
It is supported primarily by the United States National Science Foundation (NSF) and the United States
Department of Energy (DOE) and is freely available to the climate community for use in climate research,
climate prediction and assessment of climate change scenarios. The CCSM, like other coupled climate
models, is built from four individual component models for the atmosphere, ocean, land surface and sea
ice. The notion of a physical/dynamical component of the climate system translates directly to the
software component structure. The physical basis for coupling the models has been worked out through
the development of a flux coupler component which takes into account the different natural time scales for
each component as well as the need to conserve physical quantities such as mass, energy and momentum
in the coupled system [Collins et al., 2005b]. All codes are fully documented and detailed descriptions are
available (http://www.ccsm.ucar.edu/models/ccsm3.0).

The atmospheric component of CCSM3 is the Community Atmosphere Model (CAM) and is a descendant
of the NCAR atmospheric climate models [Washington, 1982, Williamson, 1983]. Standard resolutions
are T85 for 1.4 degree(128x256x26), T42 for 2.8 degree(64x128x26), and T31 for 3.75 degree
(48x96x26). The 26 level vertical grid uses a hybrid pressure coordinate system. CAM solves the three-
dimensional fluid dynamics using a spectral horizontal discretization and fast transform techniques.
Physical process models, including radiation transport, convection, moist cloud processes, precipitation,
are largely computed using detailed physical parameterizations [Collins et al., 2004]. Time integration is
with a centered, three level (leapfrog) scheme and the semi-implicit system for fast gravity waves solved
in the transform domain.

The ocean model is based on the Parallel Ocean Program (POP), version 1.4.3 [Smith and Gent, 2002]. It
is an ocean circulation model developed at Los Alamos National Laboratory and belongs to a class of
ocean models that use depth as the vertical coordinate. POP solves the primitive fluid equations on a
sphere using second-order differencing for the spatial derivatives on a staggered mesh. For climate
simulations as part of the CCSM, POP uses a displaced-pole grid [Smith and Kortas, 1995] with the
logical North Pole displaced into the Greenland land mass. Such a grid permits simulations of the Arctic
regions without the polar singularity. Horizontal resolutions are variable with enhanced resolutions near
the equator and in the North Atlantic due to the displaced pole, but typical resolutions are on average one
degree (320x384x40) and three degree (100x116x25). The 40-level vertical grid has variable spacing,
starting with 10m near the surface to better resolve surface and mixed-layer processes and expanding to
250m in the deep ocean. Solutions are integrated forward in time using a leapfrog time step for the three-
dimensional solution and an implicit preconditioned conjugate gradient solver for the fast barotropic wave
modes [Dukowicz and Smith, 1994]. Various physical parameterizations, subgrid models and other
features are available [Smith and Gent, 2002].

The land component is the Community Land Model (CLM3). The land model uses a nested subgrid
hierarchy of scales representing land units, soil or snow columns, and plant functional types [Bonan et al.,
2001, Oleson et al., 2004]. The land component operates on the same grid resolution as the atmospheric
component.

The sea ice model CSIM5 is based on the Los Alamos CICE model with an elastic-viscous-plastic ice
dynamics [Hunke and Dukowicz, 1997, 2002] and the Bitz and Lipscomb thermodynamics [Bitz and
Lipscomb, 1999] with multiple ice thickness categories. An incremental remapping scheme [Lipscomb
and Hunke, 2004] is used for the transport of ice. The ice model uses the same displaced-pole grid and
same resolution as the ocean component [Briegleb, 2004].

The precise details of which parameterizations and options are used in the models is described in [Collins
et al., 2005b].

2. Software design and software engineering
Software engineering is typically defined as a formal process used to design and implement software [SEI,
1995]. Little is written on software engineering for codes that develop and evolve over the span of many
generations of computer architectures [Drake and Foster, 1995]. In the evolution of scientific community
codes, such a process must also include collaborative software development and the use of software
frameworks. With this broad scope, software engineering and design underlies much of the effort of the
CCSM project. Software design of the CCSM is focused on the goals of modularity, extensibility, and
portability. These goals must be met at both the component level and within the individual component
models.

2.1 Modularity and extensibility
A community research code like the CCSM must be modular and extensible to enable rapid adoption of
new capabilities and new physical parameterizations. Modularity also permits users to choose between
many model configurations and customize the model for specific applications. At the lowest level, the
ability to swap, add or choose between physical parameterizations is necessary and was already a part of
most CCSM component models. Use of Fortran modules and other software techniques for encapsulation
greatly helps maintain modularity at this level. Component models are also modular at the level of major
model subcomponents. For example, the CAM and other atmosphere models treat atmospheric dynamics
and physics as self-contained subcomponents and are thus able to integrate new dynamical cores and their
interactions with the same model physics.

At the model coupling level, it must be possible for alternative component models to be substituted or
added. One use of this capability is to provide simplified models for individual components. For example,
the CCSM supplies “data” or “dead” models that can be used to mimic components by supplying observed
fields or constant fields when a fully-interacting component is not necessary. The data-cycling models
(data models) are small, simple models that read existing datasets from observations, reanalysis products
or even previous control simulations. These data-cycling components are very inexpensive and are used
for both test runs and certain types of model simulations that do not require feedbacks from another
component. The dead models are simple codes that facilitate system testing. They generate realistic
forcing data internally, require no input data and can be run on multiple processors to simulate the
software behavior of the fully active system.

Swapping components can be used to investigate sensitivity to model formulations. In the third IPCC
assessment [Houghton et al, 2001], a coupled climate model with an isopycnal ocean component (density
as vertical coordinate) resulted in a different North Atlantic overturning circulation from many of the
coupled models with z-coordinate ocean components. The CCSM is currently being used to investigate

this issue by comparing a control run using the POP z-coordinate ocean component with an identical run
using the isopycnal MICOM [Bleck, 1998] model. At the coupling level, new framework efforts like
Earth System Modeling Framework(ESMF) [Hill et al., 2004] and the Common Component Architecture
(CCA) [Armstrong et al., 1999, Bernholdt et al., 2005] are providing more generic component interfaces
to the climate and scientific community and should further simplify and enable component interaction.

An important new capability for the CCSM and other climate models is the addition of chemical and
biogeochemical interactions. Dynamic vegetation and ecosystem models are being added to the land and
ocean components and will interact with atmospheric chemistry models. A design for chemical coupling
with the physics modules is partially implemented and is an important test of the CCSM goal of
extensibility.

A new dynamical core [Lin and Rood, 1997, Lin, 2004] is being introduced for the atmosphere that is
based on a finite volume discretization with a Lagrangian vertical coordinate. This formulation is
particularly advantageous for conservative transport of chemical tracers and is receiving much attention.
Standard resolutions for the finite volume version of the CAM are 2x2.5 degree and 1x1.25 degree each
with 26 vertical levels. The use of the finite volume dynamical core may result in a 2D data and
computational decomposition that yields scaling beyond that of the current Eulerian spectral dynamical
core [Mirin and Sawyer, 2005].

2.2 Performance portability

Portability is the ability of a code to compile and run successfully across all platforms. This is largely
achieved through adherence to language standards and widely used libraries such as MPI. By performance
portability, we mean the ability of a code to achieve good performance across a variety of computer
architectures while maintaining a single source code. As a community model, the CCSM must run on a
variety of machine architectures available to the climate community and must perform well on all these
architectures for computationally intensive climate simulations. The target machines are most often
clusters of commodity cache-based microprocessors. These include Linux clusters, the IBM SP3 and IBM
p690. More recently, vector computers, including the NEC SX6 and Cray X1, have become available to
the climate community and have added a significant new challenge for performance portability of the
CCSM.

There are cases where portability is not possible within a single source code. In these cases, it is the
practice to isolate non-portable code into modules or libraries that can be selected at compile time or at
run time. Generic interfaces or wrappers can be defined so that the calling code can remain portable. An
example of such a structure is the support of different communications paradigms. Often communication-
related routines can be isolated in a small set of routines and called using an interface that is identical
whether the underlying code is implemented in MPI, SHMEM, Co-array Fortran or copies to a memory
buffer. We have avoided use of preprocessor directives (e.g. the C preprocessor ifdef) as a primary means
of achieving portability; directives often can proliferate and adversely affect code readability as well as
complicate testing procedures. Selective use of directives is permitted in cases where code is hidden from
the user and well encapsulated.

Climate codes are often limited in performance by memory bandwidth so a key aspect of performance
portability is the need to adjust the size and shape of data structures to optimize performance on machines
with different cache sizes or with vector processors. Tunable parameters are provided for adjusting data
structure size and loop lengths to optimize codes based on problem size, system architecture, and
processor configuration. Automated, runtime adjustment of these parameters is a long-term goal,
particularly when used to achieve dynamic load balancing. In the short term, compile time parameters are
sufficiently easy for scientists to optimize for high processor performance without detailed knowledge of

memory bandwidth properties of a particular architecture. This will be described more fully in a later
performance section and is the subject of several papers in this special issue [Worley and Drake, 2005,
Kerbyson and Jones, 2005, Hoffman et al., 2005].

A key decision made to achieve performance portability was the adoption of a hybrid parallel
programming paradigm with independent parallel data decompositions for each component. By not
enforcing a single decomposition/communication style, the component developers are free to use the
methods that give the best performance. For the atmospheric model, the specification of parallel
granularity for both distributed memory structures with parallel MPI communication and shared memory
structures with OpenMP parallel task specification are configurable at run time. The most advantageous
settings may vary from machine to machine often with factors of 2 or 3 difference in simulation
throughput. The consequence of this design decision is that large amounts of data may be exchanged
between components in the course of a simulation. This ‘data transpose’ is localized in a small number of
utility routines so that optimization is straightforward, but interconnection bandwidth, latencies and copy
times are limiting factors for scalability and simulation throughput.

2.3 Software engineering process

A formal software engineering process involves a cycle of defining requirements, designing the software,
implementing the design and testing the software [SEI, 1995]. Documentation and reviews at each stage
are important to catch bugs early and to avoid costly rewriting when designs do not satisfy current or
future requirements. The design documents produced for the CCSM started with descriptions of new
scientific requirements of the model. Computational requirements and description of the software
architecture led to interface and data structure specification and implementation. Testing was performed
at several levels. Unit testing of individual subroutines and modules verified modules work as designed;
integrated testing of entire models was used to validate physical fidelity of the model and ensure that all
components of a model interact with each other without unintended side effects. Frequent regression tests
were required to catch problems generated due to changes in computational environment or bugs
introduced during minor maintenance.

Three basic practices support the software engineering process [Hunt and Thomas, 1999]: version control,
unit testing and automation. Because the CCSM effort includes a large body of legacy code, the process
was adapted to fit the current software. Adopting the entire process was a goal for all new code
developed. For existing code, the goal focused primarily on testing and validation. Unit tests and
automated testing scripts were developed and used as criteria for acceptance of code changes. The
automated test scripts proved very useful to remote developers because they enforced code correctness
standards uniformly. A level of confidence on check-in that the simulation capability was not degraded
was important for the many ongoing users of the code. The coordination of check-ins was managed by a
Change Review Board (CRB) for the atmospheric model and gatekeepers for the ocean, land and sea ice
components. Using the CVS version control system with remote access allowed precise organization and
access control of development branches, but also offered risk mitigation when bugs and inefficiencies
were inadvertently introduced.

To ease acceptance of new changes and make the process easier for developers, coding standards and
testing infrastructure have been created for the community. Coding standards help to encourage
encapsulation and modern software practices and also help to maintain a consistent look and feel that
users and other developers can understand. A testing infrastructure lowers the burden for developers and
encourages good software quality assurance. Information recorded with each check-in included: bit-for-
bit reproducibility (implying only structural or performance changes), a list of tests run on which
platforms, impact on timing and memory usage, changes to the build system required. Changes producing
more than round-off differences in the results were not permitted by a single developer. The CRB

required much longer simulations, broader discussions and scientific review when new modules were
introduced which changed the model climate.

This last point should be elaborated and emphasized as it distinguishes scientific software development
from business software and there are profound implications for the software engineering process
appropriate to computational science. Due to the mathematical non-linearity inherent in climate system
models, it is not possible to anticipate what effect changes in one component will have on the results of
other components. Care must be taken to maintain a delicate balance of physical (and biological and
chemical) processes within the model in order to guarantee a state of the art, quality simulation product.
Changes need to be sequenced, one at a time, so that the relative effects can be tracked and understood.
This process of model development and code modification is closely linked with scientific discovery in
computational science. Thus software engineering for climate modeling must involve climate scientists at
each step of the process – the specification of requirements, software design, implementation and testing.

2.4 Collaborative development

The CCSM is an evolving project with over 300 researchers attending the annual CCSM Workshop.
While only a subset of these researchers actively contribute to the model, the development team involves a
large number of geographically distributed researchers. Tools and processes are required for managing
code changes and conflicts. Such tools include common software repositories, version control systems,
test requirements, and procedures for introducing code into the repositories. Researchers who choose to
invest their efforts in the code framework must be guaranteed the ability to publish their results before
code is made available to the wider community. An open source model is therefore not appropriate and
repository access has been controlled.

Day-to-day management of the software, repositories and development schedules is the role of the CCSM
Software Engineering Group (CSEG) at NCAR and component model Change Review Boards (CRB).
Wider input from the community on software issues comes through the Software Engineering Working
Group (SEWG). Setting priorities for new scientific capabilities remains in the individual component
model working groups, the application working groups and ultimately with the Scientific Steering
Committee (SSC). Such a management structure provides for community input and development while
maintaining reasonable control of the software quality and routine activities.

Community development will also become easier as the community moves toward componentization and
shared utility infrastructure. Important frameworks and utilities that are actively being developed include
the Earth System Modeling Framework (ESMF)[Collins et al., 2005a], the Model Coupling Toolkit
(MCT)[Larson et al., 2005], the Multi Processor Handshaking library (MPH)[He and Ding, 2005], and the
Common Component Architecture (CCA)[Armstrong et al., 1999].

3. Performance
The production performance of the CCSM3 is most often expressed as production throughput in number
of simulated years per wall clock day for a specified number of processors (or years per day). A century
long simulation takes 25 days for a computer delivering 4 years per day. Scaling efficiency is expressed
as simulated years per wall clock day per CPU (or years per day per CPU). Table!1 shows the
performance on each computing platform of the standard IPCC (T85, 1degree ocean) model configuration.
The number of processors used for a production run is a choice based on load balance of the components,
batch queue constraints, and a measure of time required to generate the results. The time required in
weeks can be large where a thousand years or more of simulation are generated.

Platform IBM SP3 IBM p690 ES(NEC SX6) Cray X1

Num Procs 208 192 184 208
Years/day 1.57 3.43 16.2 13.6
Years/day/cpu 0.0075 0.0179 0.0880 0.0654

Table 1: Computational Performance of CCSM3.0 for IPCC Production

3.1 Load balancing

A primary computational challenge in the CCSM and other climate models is the load imbalance
generated by the non-homogeneous structure of a multi-physics, multi-component model. A striking
example of the structure of the load imbalance appears in the calculation of the short wave radiation
balance. This computation need only be done where the sun is shining, i.e. on half the computational
domain. This region changes for each time step. Load imbalances within a component are typically
resolved using data decomposition schemes such as those discussed in the next section.

Load imbalance is also generated from the concurrent component execution model used by CCSM.
CCSM launches five individual binaries that run concurrently on separate processor sets. Each of the four
climate components communicates with each other via the coupler component at prescribed stages of
processing. Choosing a “correct” number of processors for each component is at best a compromise. The
goal for a specified number of processors is to provide a number of processors for each component such
that processing delays are minimized, idle processor time is minimized, and the maximum simulation
years per day is achieved. This is complicated as each component has different scaling attributes and
different data decomposition restrictions. Some component processing is dependent on other component
processing and may stall if processor assignments are poorly chosen. As an example, one stage of the sea
ice processing is on the critical path to the atmosphere component. The sea ice model must therefore be
allocated enough processors to avoid excessive waiting by other components.

Typically, for a fully active T85x1 configuration, 2/3’s of the total processor count is assigned to the
atmospheric component. The balance of the processors is assigned in part to assure that the atmospheric
processors are kept busy. Balance experiments at T31x3 are shown in Figures 1 and 2 for a variety of
computer platforms and processor counts.

T31x3 Load Balance Experiments

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140
Number of CPUs

S
im

u
la

te
d

 Y
e
a
rs

 p
e
r

D
a
y

Cray X1
SGI Altix
IBM Power4
Xeon/GigE
Xeon/Myrinet
IBM Power3

Figure 1 Simulation throughput in years per day for a number of machines and configurations using the
T31x3 resolution. [The numbers plotted are from the initial validation baseline for the Cray and SGI and
do not reflect work in progress]

T31x3 Load Balance Experiments

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140
Number of CPUs

S
im

u
la

te
d

 Y
e
a
rs

 p
e
r

D
a
y
 p

e
r

C
P

U

Cray X1
SGI Altix
IBM Power4
Xeon/GigE
Xeon/Myrinet
IBM Power3

Figure 2 Efficiency in years per day per CPU for a number of machines and configurations using the
T31x3 resolution. Perfect scaling would appear as a horizontal set of points. [The numbers plotted are
from the initial validation baseline for the Cray and SGI and do not reflect work in progress]

3.2 Flexible data decomposition

To achieve performance portability, flexible data structures and data decompositions have been introduced
in each component model. The ocean and atmosphere models have adopted schemes that rely on chunks
or blocks of data that can be tuned for a particular architecture. The chunks or blocks can be sized for
either cache or vector machines, providing either cache blocking or long vectors. The chunks or blocks
are then distributed in a (currently static) load-balanced manner, depending on estimated work per block.
The blocks or chunks can also be oversubscribed to compute nodes to provide a hybrid shared-
memory/messaging-passing programming style. The details of these data structures are presented in
[Worley and Drake, 2005, Kerbyson and Jones, 2005, Hoffman et al., 2005]. Similar data structures are
currently being introduced to the ice model (Lipscomb, private communication). For ocean and sea ice
models, such a blocking also provides the capability to remove land or ice-free blocks from the
computation, saving computational costs. The land component also utilizes a “clump” scheme to achieve
similar results [Hoffman et al., 2005].

3.3 Vectorization

Vector computers have once again become available to the climate community with access to both the
Cray X1 and the Japanese Earth Simulator (through a collaboration with the Central Research Institute for
Electric Power Industry, CRIEPI). The ocean model ported easily to vector architectures as it uses array
syntax over horizontal domains, an easily vectorizable construct. However, there were a few routines
written for improved cache performance that had to be revised for vector architectures. The atmosphere
model evolved from code that had once been vectorized, but required extensive restructuring in the
radiation routines (performed by Dave Parks and John Snyder of NEC) and the insertion of many compiler
directives for both NEC and Cray machines (performed by Matt Cordery of Cray). Local loop
rearrangements in the spectral dynamical core exposed more vectorization to the compilers.

The sea ice and land models were both new models developed with structures and design that were well-
suited to the science and performed well on cache-based architectures, but prevented vectorization. In the
sea ice model thermodynamics, horizontal loops were at a high level with subroutine calls and branching
within the loops. In collaboration with CRIEPI (through Clifford Chen of Fujitsu), the ice
thermodynamics was restructured, pushing the horizontal loops into subroutines and replacing
conditionals within loops with a pre-gather construct. The resulting code vectorizes well and also
performs well on cache-based architectures.

Vectorization of the land model required a fundamental rework of the data structures of the CLM
[Hoffman et al., 2005]

3.4 Communication

Communication affects performance at all levels in the CCSM. Between components, information was
initially passed only between master tasks of each component, requiring a gather/scatter process. This has
now been replaced by more general all-to-all communication capabilities [Jacob et al., 2005].
Communications between the atmospheric model dynamics and physics sub-components has also been
improved and various options can be chosen at run time to maximize performance for a particular
architecture or configuration [Worley and Drake, 2005, Hoffman et al., 2005].

Within components, use of alternative messaging paradigms is also supported using communication
modules and wrappers. This can be particularly useful for improving the scaling of the ocean model’s
barotropic solver and the halo updates of the finite volume dynamical core for the atmosphere.
Performance and scaling of the barotropic solver (a conjugate gradient solver) depends strongly on
message latency, so low latency messaging alternatives can result in large performance improvements in

the model. On machines with shared memory, the MPI-2 one-sided protocol is advantageous, providing
message passing at the cost of a (remote) memory copy.

4. Future software challenges for CCSM
The future scientific direction of the CCSM is largely in the hands of climate researchers who will extend
the model to answer specific research questions. The CCSM Science Plan [Kiehl et al., 2004b], calls for
extension of capabilities to understand the interaction of aerosols and atmospheric chemistry on climate.
The effect of fine scale ocean eddies on the climate balance and the sources of climate variability are also
identified. At the same time, there is a need to improve basic physical aspects of the models that deal with
clouds and radiant energy exchanges.

The next few years will see the addition of approximately 100 chemical species to the “transport list” in
the atmospheric model along with a consequent increase of computational cost to compute the reactions
among these species. Early experiments indicate that the cost per grid point of the atmospheric
calculation will go up by a factor of eight. Similar increases will occur in the ocean due to the addition of
ocean biogeochemistry.

Increased resolution to provide regional detail and to resolve significant events like hurricanes and
typhoons and to provide better coastal interactions in the ocean model are also generally needed. In an
attempt to project the needed computational capabilities, the CCSM Business Plan [Kiehl et al., 2004a]
suggests that “a 144-fold increase in computational resources relative to what is currently available” is
required to build a “comprehensive system model with appropriate resolution”. Over the next 10 years we
expect the available computers to increase in power from several teraflops to many petaflops. The
additional capability will open many fruitful avenues of scientific investigation with coupled earth system
models as a key tool for research. Recent projections for CCSM [Keyes, 2004] covering the next 10 years
place the computational growth factor at 109 to 1012 in order to address the scientific questions of climate
science.

The role of dynamic vegetation [Levis et al., 2004] in the carbon cycle and the feedbacks with climate
change relate to a complex set of biological and chemical processes that must be modeled and simulated
to quantify their interactions. New observational capabilities from satellites are allowing the construction
of detailed land use and ecological characterizations. These provide a challenge to modelers to use as
driving boundary conditions for historical simulations of climate and to develop process models that
duplicate observed behaviors.

Application of the model to global climate change studies and to evaluate future emission scenarios also
challenges the computational capabilities of present centers and available supercomputers. As a case
study, the simulations supporting the US contribution to the Intergovernmental Panel on Climate Change
(IPCC) 2007 report [Watson et al., 2001] have produced approximately 10,000 years of climate
simulations with over 100 Tbytes of simulation output. The resource required using the present model for
these computations is 27.5¥106 cpu-hours of an IBM SP3 (NHII). The production simulation phase of the
project ended in late 2004 and used resources provided by NCAR (IBM p690), ORNL (IBM p690),
NERSC (IBM SP3) and the Japanese Earth Simulator (NEC SX6). Each future scenario involved an
ensemble of 1-5 computational experiments in order to characterize the dynamic uncertainties and
confidence intervals of the model forecast.

To effectively utilize the high-end computing capabilities of modern supercomputers, developers of
coupled climate models face two continuing challenges: scalability and load imbalance. As longer
simulations are required, the spatial resolution must be lowered. Because most scalable parallel
algorithms are based on a domain decomposition technique that splits the data (and processing) across the

nodes of the machine, there is a limited amount of parallelism due to low resolution. Compounding this
effect is the limitation on time step size imposed by a stability criteria based on the minimum mesh
spacing. As the resolution is increased the number of time steps to complete a simulation also increases
which, in turn, increases the computational cost of the simulation. Since the costs associated with time
stepping are inherently sequential, the NRC report Improving the Effectiveness of US Climate Modeling
[Sarachik, 2001] notes that Ahmdal’s law applies. With serial portions of the algorithm at 0.1%,
Amdahl’s law implies the maximum (asymptotic) speedup is 1000. The speed of the computer on this
serial portion of the code is highly relevant for climate simulation throughput.

The cost of memory access and communication in a distributed memory parallel algorithm is also critical
for scalability of the climate codes during a given time step. Ordering of the indices and distribution of
the data structures for effective memory access in one phase of the calculation (eg. FFT’s) may be
different from another phase, thus requiring a data transposition and introducing a dependency on the
interconnect bandwidth and latency. This effect is clearly evident when comparing the performance of the
CCSM on machines with fast interconnects. The memory access pattern for significant portions of the
atmospheric physics code shows ratios of the number of floating point operations to memory access in the
range of 1 or 2. These portions show good performance on vector processors like the NEC SX6 or the
Cray X1, and must be fit into cache for good performance on scalar processors. Because of the sensitivity
of the data transpose operations to memory bandwidth, the nearest neighbor halo updates to latency, the
physics calculations to memory and processor speed, it is evident that balanced machine architectures
offer an advantage for climate simulation codes.

Several papers in this issue describe steps taken to reduce the load imbalance and to address the issues of
scalability. In the coupled system, one "bad component" can overshadow the good performance of all the
other components, so it is important to hold component development to a high standard and not allow the
simulation capabilities to be degraded. This can be accomplished by continued attention to the software
engineering process and the design of the code for an open community of developers.

Acknowledgments
We gratefully acknowledge support from the Department of Energy Office of Biological and
Environmental Research as well as the National Science Foundation. Special thanks to Dr. Robert
Malone, who started this endeavor, Dr. William Collins, the Chief Scientist for the CCSM project, and to
Dr. Warren Washington who manages the Climate Change Research Section at NCAR. The coordination
of the CCSM activity has greatly benefited from the efforts of Tony Craig, Tom Henderson and Mariana
Vertenstein. This work was prepared under the auspices of the Oak Ridge National Laboratory managed
by UT-Battelle for the Department of Energy under contract DE-AC05-00OR22725, and by Los Alamos
National Laboratory managed by the University of California under W-7405-ENG-36 and by the National
Center for Atmospheric Research sponsored by the National Science Foundation.

References

Armstrong, R., D. Gannon and A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker and B. Smolinski,
1999.! Toward a Common Component Architecture for High-Performance Scientific Computing.!
Proceedings of the The Eighth IEEE International Symposium on High Performance Distributed
Computing.

Bernholdt, D.E., B. Allan, Robert Armstrong, F. Bertrand, K. Chiu, T. Dahlgren, K. Damevski, W.
Elwasif, T. Epperly, M. Govindaraju, D. Katz, J. Kohl, M. Krishnan, G. Kumfert, J. Larson, S.
Lefantzi, M. Lewis, A. Malony, L. McInnes, J. Nieplocha, B. Norris, S. Parker, J. Ray, S. Shende, T.

Windus, and S. Zhou , 2005. A Component Architecture for High-Performance Scientific Computing.
Intl. J. High-Perf. Computing Appl., in press.

Bleck. R., 1998. Ocean modeling in isopycnic coordinates. Ocean Modeling and Parameterization, E. P.
Chassignet and J. Verron, Eds., NATO Science Series, Kluwer, Dordrecht, 423 - 448.

Bitz, C. M. and W.H. Lipscomb, 1999. An energy-conserving thermodynamics model of sea ice., J.
Geophys. Res., 104, 15669-15677.

Bonan, G. B.,S. Levis, L. Kergoat, and K. W. Oleson, 2001. Landscapes as patches of plant functional
types: An integrating approach for climate and ecosystem models. Glob. Biogeochem. Cycles, 16, 5.1-
5.23.

Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E.
Moritz, 2004. Scientific description of the sea ice component in the Community Climate System
Model, Version Three. NCAR Tech. Note NCAR/TN-463+STR, 70 pp

Collins, N., G. Theurich, C. DeLuca, A. Trayaonv, P. Li, W. Yang, C. Hill, 2005a. Design and
Implementation of Earth System Modeling Framework Components, this issue

Collins, W.D, C. M. Bitz, M. L. Blackmon, G. B . Bonan, C. S. Bretherton, J. A. Carton, P. Chang, S. C.
Doney, J. J. Hack, T. B. Henderson, J. T. Kiehl, W. G. Large, D. S. McKenna, B. D. Santer, and R. D.
Smith, 2005b. The Community Climate System Model: CCSM3 to be published in the CCSM Special
Issue, J. Climate, 11(6), to appear

Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, B.
Briegleb, C. Bitz, *S.-J. Lin, M. Zhang, and Y. Dai, 2004. Description of the NCAR Community
Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, p. 226

Drake, J, and I. Foster, 1995. Special Issue on Climate and Weather Modeling, 1995. Parallel Computing,
21(10)

Dukowicz, J.K. and R.D. Smith 1994. Implicit free-surface method for the Bryan-Cox-Semtner ocean
model. J. Geophys. Res. 99, 7991–8014.

He, Y, C. Ding, 2005. Coupling multi-component models by MPH on distributed memory computer
architectures, this issue

Hill, C., C. DeLuca, V. Balaji, M. Suarez, A. DaSilva and ESMF Joint Specification Team, 2004. The
Architecture of the Earth System Modeling Framework, Computing in Science and Engineering, 6,
21-28.

Hoffman, F., M. Vertenstein, H. Kitabata, T. White, 2005. Vectorizing the Community Land Model
(CLM), this issue

Houghton, J. Y. Ding, D. Griggs, M. Noguer, P.van der Linden, D. Xiacsu, 2001. Contribution of
Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC), Cambridge University Press, UK. .p 944.

Hunke, E.C. and J.K. Dukowicz, 1997. An elastic-viscous-plastic model for sea ice dynamics. J. Phys.
Oceanogr., 27, 1849-1867.

Hunke, E.C. and J.K. Dukowicz, 2002. The elastic-viscous-plastic sea ice dynamics model in general
orthogonal curvilinear coordinates on a sphere- incorporation of metric terms. Mon. Wea. Rev. 130,
1848-1865.

Hunt, A. and D. Thomas, 1999. The Pragmatic Programmer: From Journeyman to Master, Addison-
Wesley

Jacob, R., J. Larson and E. Ong, 2005. MxN Communication and Parallel Interpolation in CCSM3 using
the Model Coupling Toolkit, this issue.

Kerbyson, D.J. and P.W. Jones, 2005. A Performance Model of the Parallel Ocean Program, this issue.
Keyes, D., 2004. A Science-Based Case for Large-Scale Simulation, Volume 2, Office of Science, US

Department of Energy, Available from http://www.siam.org/siamnews/09-03/SCaLeS.htm, p.74
Kiehl, J., J. Hack, P. Gent, W. Large, M. Blackmon, C. Bretherton, P. Chang, C. Bitz, S. Doney, D.

McKenna, 2004a. The CCSM Business Plan for 2004-2008, Available from http:
//www.ccsm.ucar.edu.

Kiehl, J., C. Bretherton, P. Chang, J. Jack, W. Large, M. Blackmon, C. Bitz, D. McKenna, S. Doney, J.
Fein, S. Ried, D. Bader, P. Merilees (ed), 2004b. The CCSM Science Plan for 2004-2008, Available
from http: //www.ccsm.ucar.edu.

Larson, J., R. Jacob and E. Ong, 2005. The Model Coupling Toolkit: A New Fortran90 Toolkit for
Building Multiphysics Parallel Coupled Models, this issue.

Levis, S., G. B. Bonan, M. Vertenstein, and K. W. Oleson, 2004. The Community Land Model's Dynamic
Global Vegetation Model (CLM-DGVM): Technical description and user's guide. NCAR Tech. Note
NCAR/TN-459+IA, p. 50

Lin, S.J. and R. Rood, 1997. An explicit flux-form semi-Lagrangian shallow-water model on the sphere,
Q.J. Roy. Meteor. Soc., 123, 2477-2498.

Lin, SJ., 2004. A vertically Lagrangian finite-volume dynamical core for global models, Mon. Wea. Rev.,
132(10), 2293-2307

Lipscomb, W. and E.C. Hunke, 2004. Modeling sea ice transport using incremental remapping. Mon.
Wea. Rev., 132, 1341-1354.

Mirin, A and W. Sawyer, 2005. A Scalable Implementation of a Finite-Volume Dynamical Core in the
Community Atmosphere Model, this issue

Oleson, K. W., Y. Dai, G. Bonan, M. Bosilovich, R. Dickinson, P. Dirmeyer, F. Hoffman, P. Houser, S.
Levis, G.-Y. Niu, P. Thornton, M. Vertenstein, Z.-L. Yang, and X. Zeng, 2004. Technical description
of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 174 pp

Sarachik, E., 2001. Improving the Effectiveness of U.S. Climate Modeling, National Academies Press
Smith, R.D. and P. Gent, 2002. Reference manual for the Parallel Ocean Program (POP). Los Alamos

Unclassified Report LA-UR-02-2484.
Smith, R.D. and S. Kortas, 1995. Curvilinear coordinates for global ocean models. Los Alamos

Unclassified Report LA-UR-95-1146.
Software Engineering Institute (SEI) at Carnegie Mellon University, 1995. The Capability Maturity

Model: Guidelines for Improving the Software Process, Addison Wesley
Washington, W.M., 1982. Documentation for the Community Climate Model (CCM) Version 0. NCAR

report, Boulder Colorado, NTIS No. PB82 194192
Watson, R. T. and Core Writing Team, 2001. IPCC Third Assessment Report: Climate Change 2001,

Geneva: IPCC.
Williamson, D.L., 1983. Description of the NCAR Community Climate Model (CCM0B). NCAR

Technical Note NCAR/TN-210+STR, Boulder Colorado, NTIS No. PB83 231068
Worley, P.H. and J.B. Drake, 2005. Performance Portability in the Physical Parameterizations of the

Community Atmospheric Model, this issue.

