Design and Implementation of Earth System
Modeling Framework Components

Nancy Collins

National Center for Atmospheric Research
Gerhard Theurich

Silicon Graphics Incorporated

Cecelia DeLuca

National Center for Atmospheric Research
Max Suarez

Goddard Space Flight Center

Atanas Trayanov

Goddard Space Flight Center

Peggy Li
Jet Propulsion Laboratory

Weiyu Yang

National Centers for Environmental Prediction
Chris Hill

Massachusetts Institute of Technology

1 Introduction

Component-based design is a natural fit for climate modeling. At its simplest, a
software component is a code that has a standard calling interface and behavior and a
coherent function. [e.g. 1, 2] Components are ideally suited for the representation of a
system comprised of a set of substantial, distinct and interacting domains, such as
atmosphere, land, sea ice and ocean. Further, since Earth system domains are often
studied and modeled as collections of processes — radiation and chemistry in an
atmosphere, for example — it is convenient to model climate applications as a hierarchy
of nested components.

Component-based software is also well-suited for the manner in which climate models
are developed and used. The multiple domains and processes in a model are usually
developed as separate codes by specialists. The creation of a viable climate application
requires the integration, testing and tuning of the pieces, a scientifically and technically
formidable task. When each piece is represented as a component with a standard
interface and behavior, that integration, at least at the technical level, is more
straightforward. Similarly, standard interfaces help to foster interoperability of
components, and the use of components in different contexts. This is a primary concern
for modelers, since they are motivated to explore and maintain alternative versions of
algorithms (such as dynamical cores), whole physical domains (such as oceans),

parameterizations (such as convection schemes), and configurations (such as
“standalone” versions of physical domains).

The Earth System Modeling Framework (ESMF) [3,4] project is a large, multi-agency
collaboration whose goal is to develop common modeling infrastructure and deploy it in
climate, weather, and data assimilation applications. It is currently in its third year of
development. The climate applications that are evaluating and adopting ESMF include
the Community Climate System Model (CCSM) [5,6], NOAA Geophysical Fluid
Dynamics Laboratory (GFDL) models [7], the new NASA Goddard Earth Observing
System (GEOS-5) model, and the MITgem. [8] The Strategic Plan for the U.S. Climate
Change Science Program (CCSP) [9] recognizes ESMF as the realization of common
modeling infrastructure for the climate community.

The ESMF software consists of an infrastructure of utilities and data structures for
building model components, and a superstructure for combining them into applications.
In this paper we concern ourselves with the superstructure, and how ESMF components
and related constructs are designed and implemented.

2 The ESMF Superstructure

The ESMF superstructure defines an architecture for assembling Earth system
applications from modeling components. A component may be defined in terms of the
physical domain or process that it represents, such as an atmosphere or sea ice model. It
may also be defined in terms of a computational or scientific function, such as an I/O or
diagnostic system. Climate models often require that such components be coupled
together to create an application. By coupling we mean the data transformations and, on
parallel computing systems, data transfers, that are necessary to allow data from one
component to be utilized by another. ESMF offers a suite of regridding methods and
other tools to simplify the organization and execution of inter-component data
exchanges.

All ESMF methods can be called from Fortran 90, and some, including those at the
component level, can be called from C++. The framework is implemented in a
combination of these languages. Since most climate modelers work in Fortran, in this
paper we will focus on Fortran bindings. ESMF currently runs only in single program
multiple datastream (SPMD) mode, though execution of components can be either
concurrent or sequential. It is supported on IBM, SGI, Compaq, Mac OS X, Cray X1, and
many Linux platforms.

The ESMF is implemented using an object-oriented design strategy. Superstructure and
infrastructure are organized as sets of classes, which are data structures with associated

methods. The main classes in the superstructure are Component, State, and Application
Driver.

Component An ESMF component has two parts, one that is supplied by the ESMF and
one that is supplied by the user. The part that is supplied by the framework is in the
form of a pre-defined Fortran derived type. ESMF provides two kinds of components:
a Gridded Component (GridComp) and a Coupler Component (CpIComp). A Gridded
Component represents a physical domain in which data is associated with one or more
grids; for example, a dynamical core. A Coupler Component arranges and executes data
transformations and transfers between one or more Gridded Components. All Gridded
Components and Coupler Components possess initialize, run, and finalize methods with
standard interfaces. These methods can be multi-phase. Components also have create
and destroy methods.

The second part of an ESMF component is the user code that will perform the
computational work. The user code must be split up so that it too contains clear
initialize, run, and finalize subroutines that match standard interfaces. The arguments
must be ESMF data structures, though these data structures need not be used in the
body of the code. Users set entry points within their code so that their initialize, run,
and finalize subroutines are callable by the framework. In practice, setting entry points
means that a special method called set services is written by the user for every
component. Within set services there are calls to ESMF set entry point methods that
associate the name of a user’s Fortran subroutine with the corresponding standard
component operation. For example, a user might create an ESMF Gridded Component
representing an ocean model known as POP by making the following calls from a driver
or parent component:

type(ESMF_GridComp) :: pop
pop = ESMF_GridCompCreate(““POP Ocean”, .. , rc)

If the Fortran subroutine names of the user’s initialize, run, and finalize methods were
poplInit, popRun, and popFinal, respectively, the set services method would contain
the following fragment:

call ESMF_GridCompSetEntryPoint(pop, ESMF_SETINIT, poplnit, .. ,rc)
call ESMF_GridCompSetEntryPoint(pop, ESMF_SETRUN, popRun, .. ,rc)
call ESMF_GridCompSetEntryPoint(pop, ESMF_SETFINAL, popFinal, .. ,rc)

These calls link the two pieces of the component: the Gridded Component derived type
provided by the framework and the model methods provided by the user. The result is
that the POP model can be dispatched by a driver or by a parent component in a very
generic way. The create and destroy operations for components are not linked to user
code; they act only on the component derived type.

The set services method (called POPSetServices here) and initialize, run, finalize
methods are invoked from the driver or parent component. They follow the
ESMF_GridCompCreate() call shown previously:

call ESMF_GridCompSetServices(pop, POPSetServices, rc)

call ESMF_GridComplnitialize(pop, .. ,rc=rc)
call ESMF_GridCompRun(pop, .. ,rc=rc)
call ESMF_GridCompFinalize(pop, .. ,rc=rc)

State ESMF components exchange information with other components only through
States. A State is a Fortran derived type that can contain other ESMF types
representing fields, bundles of fields on the same grid, and arrays. It can also contain
other States. A Gridded Component is associated with two States, an import State and
an export State. Its import State holds the data that it receives from other Gridded
Components. Its export State contains data that it can make available to other Gridded
Components.

Application Driver The Application Driver (AppDriver) is a small, generic driver
program that contains the “'main" routine for an ESMF application. It can be thought of
as the “cap” for a hierarchical application.

Infrastructure classes closely associated with the ESMF superstructure include the
Clock class and the Virtual Machine (VM) class. An ESMF Clock contains information
about the start time, stop time, and time step of a component, based on a variety of
supported calendars. The time step may be changed during component execution. The
Clock may be associated with multiple alarms that “ring” for periodic or unique events.
The VM controls computational resource allocation and is described in detail in Section
5.

A very simple ESMF coupled application might involve an AppDriver, a parent Gridded
Component, two or more child Gridded Components that require an inter-component
data exchange, and a Coupler Component. Calls cascade so that when, for example, the
initialize routine of a parent component is called, it in turn calls the initialize routines of
all its children. Figure 1 illustrates the structure of such an application.

AppDriver(“Main”)

Call Initialize I Call Run ‘ Call Finalize
Y Y Y
Initialize r Run f Finalize

ParentGridComp “Hurricane Model”

Call Initialize I Call Run ‘ Call Finalize

Y Y Y
Initialize f Run rFinaIize

Chi dGridComp“A‘;mosphere"

|l

) A A

7Initialize (Run (Finalize
ChildGridComp/‘Ocean”
v A4 vl
Initialize r Run ﬁinalize

ChildCplComp“Atm-Ocean Coupler”

Figure 1

Application example showing two ESMF Gridded Components (atmosphere and ocean) and a Coupler
Component. These are the child components of a Gridded Component that simulates hurricanes. The
entire assemblage is called by an Application Driver.

3 Application Example

The newly developed NASA GEOS-5 AGCM provides a more comprehensive example
of how ESMF is being used to structure climate and related models. GEOS-5 is the
atmospheric component of a variety of applications at the NASA Global Modeling and
Assimilation Office (GMAO). It will be used for research in satellite data utilization; as
part of the GMAO atmospheric data assimilation system; for weather, sub-seasonal, and
seasonal to interannual forecasting; for atmospheric chemistry studies; carbon cycle
research; and research on ocean-atmosphere and atmosphere-land interactions. In 2006,
GEQOS-5 will be used to produce a satellite-era reanalysis in support of the CCSP.

Figure 2 shows GEOS-5 science components connected for a standalone configuration of
the coupled atmosphere-land system. Each box in the GEOS-5 diagram is an ESMF
Gridded Component. GEOS-5 adopts the hierarchical topology that is natural under
ESMF. The main computational modules are located in the leaves of the hierarchy (finite
volume dynamical core, catchment, infrared, etc). These are connected through
composite components (radiation, dynamics, physics, etc.) which implement higher
levels of integration. A single composite component (AGCM) integrates the entire

standalone GCM. At the same level is an I/O component which handles the diagnostic
history interface. The whole system is capped by a GEOS-5 Gridded Component and an
Application Driver.

One of the advantages of the hierarchical structure is that branches of the tree can be
easily pruned and capped to form more limited stand-alone applications. For example,
the GEOS-5 single column model is constructed by simply connecting physics to a new
application “cap” and discarding the dynamics branch, but retaining history diagnostics.
Another advantage of the architecture is that standard interfaces at each level make it
technically straightforward to swap in new components; for example, a new radiation
module.

[[[|

gravity_wave_drag H fvcore ‘ ‘ surface H chemistry H moist_processes H radiation H turbulence ‘
‘ lake H land_ice ‘ ‘ data_ocean H land ‘ ‘ infrared H solar ‘
‘ vegetation H catchment ‘
Figure 2

ESMF-based architecture of the GEOS-5 atmospheric general circulation model. Each box is an ESMF
component. Component and coupling interfaces are standardized to facilitate exchanges and extensions.
The operations in each component or coupling transformation can be easily customized.

4 Component Implementation

The connection of specific subroutines to the initialize, run, and finalize entry points is
implemented using a virtual function table. The function table code is implemented in
C++ but is callable from standard Fortran 90. For each entry this table holds the name of
the entry, an enum that defines the types of arguments to be passed to the subroutine, an
array of argument pointers declared as type (void ¥*), and a pointer to the subroutine
to be called.

We can store a pointer to the subroutine to be called because Fortran 90 allows
subroutines or function names to be passed as arguments. While the Fortran 90
language does not mandate how subroutines are passed when calling into C or C++
code, all compilers we have run on pass the subroutine as a pointer to the start of the
executable code. This is stored in the virtual function table as void *func, and
dispatched as (*func)(argl, arg2, ...). The framework uses this feature to
populate the virtual function table and to dispatch subroutines from the table.
Connections are defined at run time and not compile time. In the future this will allow
components to be dynamically replaced based on the evolution of a simulation, for
example.

When a component method such as ESMF_GridCompRun() is called, control is
transferred to the framework before user code is executed. The framework determines
which execution threads should be active in the component, may optionally validate
arguments, may optionally supply default values for any missing arguments, and then
calls through the virtual function table to execute the code for the requested method.
This isolates the components from any language dependence; components written in
Fortran 90, C, or C++ can call subcomponents which are implemented in Fortran 90, C,
or C++ without change.

A pointer to the virtual function table is stored as an entry in standard ESMF component
derived types as an opaque 4- or 8-byte integer. All subroutines involving the function
table simply require that the Fortran 90 interface have the component type as one of the
arguments. The opaque entry is then passed to a C++ subroutine which uses it as the
this pointer in the virtual function table class method.

We find that ESMF components work well with the module concept in Fortran 90,
especially for controlling the scope of symbols. Module data and methods can be
private to the module. The parent component includes the child code with the Fortran
use statement. Only the set services subroutine name must be a public symbol, so it can
be referenced by the parent component. All other module methods, even those which
implement initialize, run, and finalize, can be private. Applications are linked into a
single executable which simplifies the interaction with the various batch systems
common on high end supercomputers, and requires no run time dynamic loading of
user code.

5 The ESMF Virtual Machine and Component Parallelism

Components are the building blocks of any ESMF application. We extended the
component concept to include parallelism by making ESMF components the very units
of parallel execution. In ESMF, components offer both data and task parallelism, and

provide powerful concepts that aid the computational scientist to write highly efficient
and scalable code

The management of the available computational resources maps quite naturally onto the
component hierarchy. When a component is created it obtains a set of resources from its
parent component. In turn, when the component creates children of its own, it divides
up its resources and provides them to its children. Critical in the design of the parallel
aspects of components was to guarantee that components remain self-contained and
could be written without detailed knowledge of the parent component code. This has
been achieved by running each component in a separate parallel execution context.!

In order to provide the desired transparent interface to the parallel execution
environment, ESMF components utilize the ESMF Virtual Machine (VM) class. VMs are
not new; the idea of a generic machine representation dates back to the 1960’s and has
appeared in a wide diversity of software packages and languages, including early IBM
systems [10], Java [11], and, in the high performance computing realm, Parallel Virtual
Machine (PVM) [12].

The ESMF VM’s interaction with the rest of the framework can be divided into two
parts:

1. The execution engine provides separate parallel execution contexts or VMs for
every component.

2. The communication interface offers efficient communications among elements of a
parallel execution context.

The VM abstracts away many details of the underlying execution environment. Each
VM can be viewed as a generic representation of hardware and system software
resources available to each individual ESMF component. There is exactly one VM object
associated with each component in an ESMF application. The VM handles resource
management tasks and provides a topological description of the underlying
configuration of compute resources accessible to the component. The communications
interface provided by the VM utilizes this information to offer the best possible
performance.

5.1 Using the Virtual Machine

At the beginning of every ESMF application, before making any framework calls, the
user must make a call to an ESMF_ Initial ize method; likewise at the end the user

! ESMF does allow exceptions to this rule; a very fine grained component may be run in its
parent’s context (e.g. using the same VM). The child component in this case faces restrictions
on its options for concurrency and resource use.

must call ESMF_Finalize. These calls set up and shut down the whole framework,
including the VMs. By default ESMF is based on MPI-1 [13] and as such the main
program is launched like any other SPMD MPI application. ESMF does not directly
interact with batch or queue management systems, and obtains its computational
resources through the system-dependent MPI startup facility such as mpirun, prun, poe,
etc.

During the initialization phase a default global VM is created. The user code can gain
access to this VM by either providing an optional VM argument to
ESMF_Initialize() or by calling ESMF_VMGetGlobal () anywhere in the ESMF
application. The default global VM is equivalent to MP1_COMM_WORLD and provides the
parallel execution context for the main program. Although there is no component
associated with the main program the default global VM can be seen as the parent of all
VMs of the ESMF application.

The basic elements of a VM are Persistent Execution Threads or PETs. PETs are
equivalent to POSIX threads and have a lifetime of at least that of the associated
component. By their nature PETs provide an elementary OS unit of execution, associated
with the virtual address space of the POSIX process in which the PET is running.
Furthermore, each VM contains a mapping of its PETs onto the set of unique hardware
PEs (processing elements) that were discovered during the framework initialization
phase.

The PEs in a VM correspond to the smallest processing units that are recognized by the
operating system. The VM layer keeps internal information about the topology of the
PEs by noting whether they are part of a single CPU, lie within a single system image or
are connected via an interconnection fabric. All VMs in an ESMF application share this
hardware map.

ESMF-level threading and user-level threading are two special feature of the ESMF's VM
implementation. ESMF-level threading provides coarse-grained parallelism by allowing
multiple PETs to run within the same POSIX process. A component must be completely
thread-safe to utilize this type of threading but can expect major reduction in its
communication cost between threaded PETs. The VM communication API is completely
transparent with respect to ESMF-level threading. User-level threading, on the other
hand, does not require the entire component to be thread-safe. A typical user-level
threading approach would employ OpenMP for fine-grained loop-parallelization. The
VM assists user-level threading by controlling resource management, and allowing
single PETs to be associated with multiple PEs. When during the execution of a
component a region is encountered that profits from user-level threading, the user code
can inquire how many PEs are associated with a particular PET and spawn this number
of temporary threads without risking oversubscription of the available PEs. The decision

to use ESMF-level and/or user-level threading is made on a per component basis,
allowing a component writer to choose the best approach for the particular problem.

5.2 Component-Virtual Machine Interactions

There are four distinct phases in the life cycle of an ESMF component during which it
interacts with the execution engine of the VM:

1. Component Creation: When a parent component or driver creates a child
component, by either calling ESMF_GridCompCreate() or
ESMF_CplCompCreate(), it needs to provide a reference to its own VM. It is in
the component creation call that a parent indicates which of its compute
resources it wants to give to its child. This is done by adding the optional
parameter petList to the arguments of the creation call. A petList is a list of
parent PETs that are to be given to the child. The default, when no petList
argument is provided, is to give all parent PETs to the child.

2. Component SetServices: As described in Section 2, for each component the user
writes a set services routine containing calls to set entry point methods. These
link the initialize, run, and finalize subroutines of the user’s code with the
associated ESMF component derived type. In addition to setting entry points,
during the child's set services method the child component can also set certain
properties of its VM. For example, when the call
ESMF_GridCompSetVMMaxPEs(pop, rc=rc)is executed within set services it
will associate as many PEs as possible for each child component PET. It is
important to note that the set entry point code is executed within the context of
the parent VM, not the child VM (which does not yet exist). This means that users
should not add additional operations such as data allocations to the SetServices
method because they will not be associated with the correct VM. On return from
the set services call the framework starts up the child VM and puts it on hold.

3. Call of standard component method: The child VM becomes active and executes
the initialize, run, or finalize component method. When the end of the routine is
reached the VM is placed back on hold, waiting for the next invocation, and
control is handed back to the parent VM.

4. Component Destroy: The child VM is shut down and all resources are released.

5.3 Concurrent and Sequential Execution of Components

By default ESMF components run sequentially in the order in which they are called by
their parent component or driver. ESMF also provides a very easy to use concurrent
component model. The approach is an extension of the non-blocking concept well
known from MPI's communication interface. In this model the run sequence (item 3 in
the previous list) is split into two separate phases:

10

3. (a) Non-blocking call of registered component method: The child VM becomes
active and executes the registered component routine within the child VM. When
the end of the registered routine is reached the VM is placed back on hold,
waiting for the next invocation. The parent VM does not wait until the child
method has reached the end but continues execution in its own context
immediately.

3. (b) Parent component calls wait: In order to synchronize its children the parent
component uses ESMF_GridCompWait() or ESMF_CplICompWait() to wait for
the completion of a previously invoked child component method. The wait call
will block all parent PETs until the child component's method has reached its
end and the child VM has been placed on hold.

Within ESMF's concurrent component model it is the parent's prerogative to decide if
and which child components it will run concurrently. The child component code is
unaffected by this. As with many other aspects ESMF does not ensure that it is
semantically correct to run certain components concurrently. It is up to the application
writer to decide what makes sense and what does not. The following segment shows
how phase 3 of the parent code must be split to run two Gridded Components, gcomp1
and gcomp2, concurrently:

call ESMF_GridCompRun(gcompl, .. ,blockingFlag=ESMF_NONBLOCKING, rc=rc)
call ESMF_GridCompRun(gcomp2, ... ,blockingFlag=ESMF_NONBLOCKING, rc=rc)

call ESMF_GridCompWait(gcompl, rc=rc)
call ESMF_GridCompWait(gcomp2, rc=rc)

6 Performance Overhead

At its relatively early stage of development, ESMF has just begun to perform exhaustive
performance tests and optimizations for low-level communications, regridding methods,
halo operations, and other parts of the framework. However, it has been a high priority
from the start of the ESMF project to ensure that the basic component architecture of the
framework is not associated with substantial performance overhead. In this section we
describe results of initial performance evaluations. Table 1 shows the performance
overhead associated with calling component methods through a virtual function table.
Tests were run on the Compaq SC45 at NASA Goddard Space Flight Center. The “w/o
ESMF threads” columns show the overhead for the case where ESMF threading is not
enabled (though the user may choose to implement threading using OpenMP on their
own). Timings are shown with and without a barrier synchronization upon completion
of the component call.?

% Times shown are reduced further in the special case in which a child component shares its
parent’s context.

11

Table 1 Overhead Associated with Component-level Calls

Overhead (microseconds)
w/o ESMF threads | w ESMF threads | w/o ESMF threads | w ESMF threads
PETs w barrier w barrier w/o barrier w/o barrier
1 55 55 54 55
8 65 475 46 425
80 120 675 55 450

We have also examined the impact of ESMF on the performance of a real code, albeit one
that — unlike climate models - emphasizes efficiency of initialization as well as efficiency
of run time. The NCEP Spectral Statistical Interpolation (SSI) package [14] is a three-
dimensional variational analysis of observations used by the National Weather Service
in their data assimilation system to initialize their global atmospheric model. The
physical domain of SSI is the global atmosphere from the surface to the stratopause.
Instead of physics parameterizations, the SSI is comprised of forward model elements
and their adjoints. Some major forward model elements are radiative transfer algorithms
for each satellite instrument, convective and large-scale precipitation, spectral transform,
grid interpolation, the balance equation, and the divergence tendency equation. The
analysis minimizes a combination of fits to observations, fits to model background, and
a set of dynamical constraints. The minimization is performed in spectral space.
Computation of forward models and their adjoints are required at every iteration, and
both initialization and run routines are executed at every cycle. One cycle of initialize
and run was performed for this experiment.

The version of the SSI code tested with ESMF used only the superstructure classes. It
was not coupled with any other ESMF components nor did it use any part of the ESMF
infrastructure layer.

In addition to the general component overhead, the SSI code with ESMF also had
algorithmic overhead, due to the lack of ESMF support for spectral fields at the time of
the experiment. The result was that there were three extra data conversions in the ESMF
code. The performance analysis was run on an IBM Power 3 cluster at NCAR.

The total ESMF overhead including the extra data conversion from the spectral fields
into Gaussian grids and vice versa was about 4 seconds (slightly increasing with
increasing number of processors), or 0.26% for 8 processors to 1.82% for 128 processors.
For the SSI application, this timing difference is insignificant.

12

Figure 3 ESMF Overhead in NCEP SSI

Timing Result: 55| Baseline vs SSI ESMF

1600

1400 }

—a— Baseline
1200 \ —— ESMF
1000 \
500 k
B00 \
400 \\

200

Total Run Time (5ec)

] 20 40 g0 30 100 120 140

Mumber of Processors

7 Conclusions

The ESMF hierarchical, component-based architecture is natural for the construction of
climate and related applications. ESMF components are linked to a powerful VM
construct which offers integrated parallelization and a generic representation of the high
performance computing hardware and software environment. Initial performance tests
indicate that the architecture will not impose a prohibitive performance overhead on
applications. The ESMF project will continue to evolve and optimize its software in
close collaboration with the Earth system modeling community.

1 http://www.corba.org

2 http://www.cca-forum.org

3 http://www.esmf.ucar.edu

4 Hill, C., C. DeLuca, V. Balaji, M. Suarez, and A. da Silva, “The Architecture of the
Earth System Modeling Framework,” Computing in Science and Engineering, Vol. 6, No. 1,
18-28, 2004.

5 http://www.ccsm.ucar.edu

6 Boville, B.A. and P.R. Gent, “The NCAR Climate System Model, Version One,”].
Climate, Vol. 11, 1327-1341, 1998.

13

7 http://www.gtdl.nasa.gov/~fms

8 http://www.mitgem.org

9 Strategic Plan for the U.S. Climate Change Science Program, Report by the Climate Change
Science Program and the Subcommittee on Global Change Research, July 2003.

10 Adair, R.J., R.U. Bayles, L.W. Comeau, and R.J. Creasy, “A Virtual Machine System
for the 360/40,” IBM Cambridge Scientific Center Report 320-2007, Cambridge, MA,
1966.

11 http://java.sun.com

12 Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, W. S. Sunderam, “PVM:
Parallel Virtual Machine: A Users’ Guide and Tutorial for Network Parallel
Computing,” MIT Press, 1994.

13 http://www.mpi-forum.org

14 Parrish, D.F., and J.C. Derber, “The National Meteorological Center’s Spectral
Statistical Interpolation Analysis System,” Mon. Wea. Rev., Vol. 120, 1747-1763, 1992.

14

	Introduction
	The ESMF Superstructure
	Application Example
	Component Implementation
	The ESMF Virtual Machine and Component Parallelism
	Using the Virtual Machine
	Component-Virtual Machine Interactions
	Concurrent and Sequential Execution of Components

	Performance Overhead
	The version of the SSI code tested with ESMF used only the s
	In addition to the general component overhead, the SSI code

	Conclusions

