Programmability of the HPCS Languages: A Case Study with a Quantum
Chemistry Kernel*

Aniruddha G. Shet, Wael R. Elwasif, Robert J. Harrison, and David E. Bernholdt

Oak Ridge National Laboratory
PO Box 2008, Oak Ridge, TN 37831 USA
{shetag,elwasifwr,harrisonrj,bernholdtde } @ornl.gov

Abstract

As high-end computer systems present users with rapidly
increasing numbers of processors, possibly also incorpo-
rating attached co-processors, programmers are increas-
ingly challenged to express the necessary levels of con-
currency with the dominant parallel programming model,
Fortran+ MPI+OpenMP (or minor variations). In this pa-
per, we examine the languages developed under the DARPA
High-Productivity Computing Systems (HPCS) program
(Chapel, Fortress, and X10) as representatives of a different
parallel programming model which might be more effective
on emerging high-performance systems. The application
used in this study is the Hartree-Fock method from quan-
tum chemistry, which combines access to distributed data
with a task-parallel algorithm and is characterized by sig-
nificant irregularity in the computational tasks. We present
several different implementation strategies for load balanc-
ing of the task-parallel computation, as well as distributed
array operations, in each of the three languages. We con-
clude that the HPCS languages provide a wide variety of
mechanisms for expressing parallelism, which can be com-
bined at multiple levels, making them quite expressive for
this problem.

1 Introduction

As trends in high-performance computing hardware
move rapidly towards very large numbers of processor
cores, the developers of software for such systems face in-
creasing challenges in producing applications that can ef-

*This work has been supported by the Advanced Research and De-
velopment Agency, the Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory (ORNL), and the ORNL Post-
masters Research Participation Program which is sponsored by ORNL and
administered jointly by ORNL and by the Oak Ridge Institute for Science
and Education (ORISE). ORNL is managed by UT-Battelle, LLC for the
U. S. Department of Energy under Contract No. DE-AC05-000R22725.
ORISE is managed by Oak Ridge Associated Universities for the U. S. De-
partment of Energy under Contract No. DE-AC05-000R22750.

fectively use the highest-end resources available. The dom-
inant parallel programming model in current use involves
a sequential language (such as Fortran), combined with a
two-sided message passing library (such as MPI), and pos-
sibly a threading library (such as OpenMP). The continuing
viability of this approach in the face of hardware trends is
increasingly the subject of debate within the computational
science community, with one recent report concluding that
“it is virtually certain that MPI will not be able to provide
all of the required concurrency” [21].

Among the many efforts to develop new and improved
parallel programming models and languages, the High-
Productivity Computing Systems (HPCS) program, spon-
sored by the U.S. Defense Advanced Research Projects
Agency (DARPA), deserves particular note. The three
new programming languages developed under the DARPA
HPCS program (Chapel [1, 12], Fortress [4, 9], and X10
[6, 14]) represent perhaps the largest concerted investment
in the development of new environments for parallel pro-
gramming in several decades. These “HPCS languages” in-
corporate the results of past research in parallel program-
ming models with novel ideas and approaches relevant to
emerging hardware architectures to produce high-level lan-
guages with support for object oriented and generic pro-
gramming, a broad range of constructs for expressing both
task and data parallelism at multiple levels, and a global
view of data. We (the authors of this paper) believe that
these languages are at least representative of a new gener-
ation of parallel programming environments which are ap-
propriate for widespread use in high-end scientific and tech-
nical computing, and therefore worthy of deeper examina-
tion.

Our overall methodology is to distill key aspects of var-
ious scientific applications into model computations that
can be expressed in the HPCS languages. Our focus is on
programmability, i.e. the mechanisms these languages pro-
vide to express the model computations, and comparisons
with the traditional message-passing model and other ap-
proaches. At present, the language implementations are not

sufficiently mature to allow a meaningful examination of
performance issues. We expect to place more emphasis on
the interactions between programmability and performance
in future work as the languages progress. The goal of our
work is to better understand the capabilities and features of
the HPCS languages from the standpoint of computational
scientists who may soon need to move towards languages of
this type in order to continue using the large-scale computer
systems available in an effective manner.

In this paper, we consider a kernel from the Hartree-Fock
self-consistent field method [15], widely used in quantum
chemical simulations, which combines access to distributed
data with a task-parallel algorithm and which exhibits irreg-
ularity in both data distribution and parallel tasks. Scalable
implementation of this algorithm is, at best, extremely chal-
lenging in a traditional message-passing model, and was a
significant motivation for the development of the Global Ar-
rays Toolkit (GA) [22], which shares some of the core fea-
tures of the HPCS languages. Key features of the algorithm
which will be examined in this paper include dynamic load
balancing, and high-level operations on distributed arrays.

The remainder of this paper is organized as follows. In
Section 2 we describe the Hartree-Fock problem and a scal-
able algorithm for it in more detail. In Section 3 we give
a brief overview of the HPCS languages, focusing on the
features relevant to the Hartree-Fock problem. In Section
4 we explore the concepts the various languages provide to
express the load balancing and array operations required by
the algorithm. Finally, in Section 5 we summarize our find-
ings and describe our plans for future work with the HPCS
languages.

2 The Problem

We have chosen Hartree-Fock method of quantum chem-
istry [15] as an exemplar of applications combining dis-
tributed data, task parallelism, and significant task irregu-
larity.

The most computationally intensive step in the Hartree-
Fock method is construction of the Fock matrix,

Flw — Dxo{2(uv|Ao) — (uAlvo)} (1

where the indices pu, v, A, o denote the basis functions, and
D is the density matrix. (ur|\o) is a rank-4 tensor repre-
senting the two-electron repulsion integrals. Formation of
the Fock matrix is an O(N*) operation for N basis func-
tions.

The basis functions are grouped into electronic shells,
and then into atomic centers, based on characteristics of the
molecule and basis. The two-electron repulsion integrals
are evaluated in blocks based on the shell structure of the
basis. The resulting “shell blocks” of the integral tensor
vary in size from 1 to more than 10,000 elements. Sep-
arately, the computational costs of the integrals also vary

over several orders of magnitude and they are not readily
predicted in advance.

A scalable parallel implementation of the algorithm re-
quires that both the data (Fock and density matrices) and
the computation (integral block evaluation and their contri-
butions to the Fock matrix) be fully distributed. The first
such implementation of the Hartree-Fock method was done
by Furlani and King [17] using MPI two-sided messaging,
but they concluded that the dynamic load balancing required
to achieve scalability was too hard to express in MPI, even
for small processor counts (at that time, O(10)) [16].

Furlani and King’s approach was a major motivation for
the development of the Global Arrays Toolkit (GA) [22], a
library-based parallel programming environment providing
a global view of memory with one-sided access, and a few
basic parallel programming constructs, such as locks and
atomic read-and-increment counters. Use of the GA library
enabled the first scalable fully distributed Hartree-Fock im-
plementation [15, 18,24]. The essence of the algorithm can
be summarized as follows:

1. D and the two constituents of F' known as the
Coulomb (J) and exchange (K') matrices (correspond-
ing to the two terms in Eq. 1) are created as two-
dimensional N x N distributed arrays.

2. Construction of the J and K matrices, per Eq. 1, takes
place in a four-fold loop nest over the basis function
indices. Due to permutational symmetries among the
indices of the two-electron integrals, restrictions are
imposed on loop bounds, yielding a triangular itera-
tion space of roughly %N 4 elements, one eighth the
size of the full space. The four-fold loop is typically
stripmined, with a granularity chosen as a compromise
between the reuse of D, J, and K and load balance. In
this work we assume, without loss of generality, that
the loop nest is stripmined at the atomic level. Since
the tasks are highly irregular in cost, dynamic load
balancing is required. (In the GA implementation, an
atomic read-and-increment counter is used to allocate
tasks to processes as they become available.)

3. In each task, an atomic quartet of integrals is evaluated
on the fly. Once computed, an integral is contracted
with six different D values and contributes to six dif-
ferent J and K values. The appropriate D, J, and K
blocks are cached and reused wherever possible to re-
duce network traffic. All tasks are independent, except
for the updates to the J and K matrices.

4. Finally, the J and K matrices must be symmetrized
and combined to form F', which can be done in a data-
parallel fashion. (The GA library provides basic linear
algebra operations on the distributed arrays, including
transposition.)

3 Overview of Languages

At a high level, the three languages have many similar-
ities, though in detail there are significant differences. All
three languages emphasize the expression of parallelism at
a high level by the programmer and relying on the com-
piler/runtime/library infrastructure to produce an optimized
implementation for the underlying parallel architecture.

In all three, program execution starts with a single con-
ceptual thread of control, which then generates more par-
allelism through the use of language constructs (i.e. not
strictly SPMD). Parallelism is mapped onto a multi-level
conceptual model that is roughly approximated by the “pro-
cesses” and “threads” of the traditional MPI-based pro-
gramming model, for which each language has different ter-
minology. Memory in all three is globally addressable, and
data is global and can be distributed. Locality control per-
mits computation and data to be assigned to specific system
resources for performance reasons. The base languages are
object-oriented and provide generic programming capabili-
ties.

3.1 Chapel

Chapel is being designed by Cray Inc. to support gen-
eral parallel programming while narrowing the gap between
mainstream and HPC languages. Chapel’s design builds on
concepts from ZPL [8, 13], High-Performance Fortran [19],
and Cray’s multithreaded extensions to C and Fortran, while
adopting a variety of other useful features from mainstream
and academic languages.

A locale in Chapel symbolizes a unit of architectural lo-
cality on the target machine, containing processing and stor-
age capabilities. A locale’s memory is uniformly accessi-
ble to computations running on it. Each locale supports a
dynamic set of tasks that are created using begin, cobegin,
and coforall statements. Tasks are synchronized using syn-
chronization (sync) variables that have full/empty seman-
tics, and atomic sections that provide transactional memory
capabilities. Data and tasks can be mapped to machine re-
sources (locales) using on clauses. The mapping may be
explicitly specified, or data driven. Chapel supports data
parallelism via domains, a first-class language concept rep-
resenting an index set. Domains can be iterated over in par-
allel using forall and coforall loops, and are used to declare,
resize, and slice arrays. Domains and their arrays may be
partitioned across a set of locales using distributions, which
map from the global view of an aggregate to its implemen-
tation on distinct locales.

3.2 Fortress

Fortress, being developed by Sun Microsystems, Inc., is
designed to be an open, growable language. Consequently,
it is designed with a small set of core language features, and
the majority of concepts are coded in libraries.

Fortress programs are multithreaded; a user may explic-
itly spawn threads, or call implicitly parallel constructs that
create threads managed by the Fortress language implemen-
tation. Afomic sections enable synchronization of threads.
Fortress regions abstractly describe the underlying machine
structure and can have an arbitrary hierarchical structure.
Thread affinity to particular regions may be specified with
at expressions, and distributions allow management of data
locality. Parallelism can be programmed inside libraries as
distributions and generators.

Fortress also provides a variety of novel features target-
ing the HPCS program’s productivity goals, including built-
in constructs for managing components and interfaces, ex-
pressing tests and contracts, and methods for rendering the
code that look like typeset mathematics.

3.3 X10

X10, which is being developed by IBM Corp., is de-
signed to leverage the extensive software ecosystem around
the Java language. X10 is defined as a serial subset of Java,
extended with additional concurrency, distribution, and lo-
cality features.

In X10, a place corresponds to a data-coherent pro-
cessing element, with each place supporting a dynamic set
of lightweight activities. Activities specify logical paral-
lelism and may be composed in arbitrarily nested ways
using async, future, foreach, and ateach constructs, and
are translated by the X10 compiler/runtime into running
threads. An activity executes to completion on the place
where it is created, but can launch activities on other places,
and detect termination of all such activities via the finish
statement. Clocks enable synchronization of dynamically
created activities across places. Activities within a place
uniformly and coherently access its memory using atomic
statements; weaker ordering semantics exist for inter-place
data accesses. Similar to Chapel, X10 provides a ZPL-like
“array language” to express high-level operations on dis-
tributed arrays.

3.4 Language Versions and Limitations

Versions of the languages used in this paper are shown
in Table 1. The Fortress and Chapel implementations have
thus far focused on the multi-threading capabilities of the
languages, and neither supports explicitly multi-processor
code at this time. Where these issues prevent us from actu-
ally implementing certain approaches, we may, for the sake
of completeness, discuss proposed implementations based
on the language specifications.

4 Programming Examples and Discussion

With their rich parallel semantics, the HPCS languages
offer a variety of ways to implement algorithms like Fock
matrix construction. In this section, we present and discuss
examples from various strategies we have developed in the
three languages.

Table 1. Language Versions

Language Specification Implementation
Chapel v(0.750 [2] v0.5.375 compiler
Fortress v1.0alpha [9] vO0.1 alpha interpreter
X10 vl.1[7] v1.5 compiler

Code 1 Static, Program Managed Load Balancing - X10

I place placeNo = place.FIRST PLACE;
> finish for (point [iat] [1:natom])
3 for (point [jat, kat] [1:iat, 1:iat])
for (point [lat]
[1: (kat==iat?jat:kat)]) {
async (placeNo)
buildjk_atom4 (new blockIndices(...));
placeNo = placeNo.next () ;

}

o - VIS

Sections 4.1- 4.4 present different load-balancing strate-
gies for the four-fold loop in the Fock matrix construction
(step 2 in the description in Section 2). In Section 4.5 we
examine how the languages support various kinds of oper-
ations on distributed global-view arrays required in steps 1,
3, and 4 of the Fock matrix construction.

Except where limited by the current implementations of
the languages (see Section 3.4), we have implementations
of the strategies presented here for each of the three lan-
guages, however due to space limitations, we show code
fragments for only one of the implementations of each strat-
egy. A more complete presentation is available in a techni-
cal report [23], and the complete set of codes can be ob-
tained from the authors.

4.1 Static, Program Managed Load Bal-
ancing

We begin with a statically distributed non-scalable im-
plementation to illustrate how the HPCS languages differ
from more familiar SPMD environments in creating paral-
lelism. By “program managed” we mean the programmer
controls the allocation of work to processors.

41.1 X10

Code 1 shows the X10 implementation of a simple
round-robin workload distribution to processors. An X10
program starts as a single root activity, on the first place,
and iterates through the four-fold loop (lines 2-5). Note
that the loop indices are of type point, which is associated
with the specified index space, rather than simple integers,
as they would be in a traditional programming environment,
thus providing a higher degree of type-safety.

In each iteration of the four-fold loop, the root activ-
ity launches an activity to asynchronously evaluate the task
(in all presented code segments, blockIndices is a class
whose member arguments specify the work to be performed
in one task) on the remote place specified by placeNo
(lines 6-7). Then placeNo is updated to the next value

Code 2 Dynamic, Language Managed Load Balancing -
Fortress

1 for iat<-l#natom, jat<-1l#iat, kat<-1l#iat,

2 lat<-1#(if (kat=iat) then jat

3 else kat end) do
4 buildjk_atom4 blockIndices(...)

5 end

in the cyclically ordered set of places (line 8), and the root
activity continues with the next iteration.

The £inish construct placed at the outermost level of
the loop nest (line 2) forces the root activity to await the ter-
mination of async activities launched within its scope (in
this case the four-fold loop). This ensures that all parallel
tasks are completed before proceeding.

4.1.2 Chapel

Chapel allows users to specify iterators that produce a
set of points in an index space with a specified distribu-
tion across locales. In our proposed multi-locale code, the
iterator would involve the four-fold loop with an “on lo-
cale yield block” statement to return the iterator’s results,
where block represents the quartet of indices. The on con-
struct would result in the iterator yielding different blocks
for different locales. A forall loop driven by this itera-
tor would process each point on the locale where they were
yielded by the iterator.

4.1.3 Fortress

Our proposed multi-region Fortress implementation
would be very similar to the Chapel approach, using the
generator concept. The generator would feed a parallel for
construct performing its iterations according to the place-
ment of indices from the generator.

4.2 Dynamic, Language Managed Load
Balancing

The simplest possible scalable implementation would be
if the language runtime could be relied upon to take care of
the load balancing without the programmer even needing to
express it in code. It is important to note that such capabil-
ities are current research topics for the languages. There-
fore, we present this approach to illustrate the potential for
extreme simplicity, but with the caveat that it is still quite
speculative.

4.2.1 Fortress

The Fortress for construct (Code 2, line 1) is parallel
by default and, driven by the loop’s generator, would (con-
ceptually) spawn a new thread for each point in the itera-
tion space (line 4). The Fortress specification anticipates
that the runtime will be able to load balance computations
that expose substantially more parallelism than the avail-
able processors. Fortress has a fairly powerful generator
concept that allows the entire four-fold loop to be expressed
in a single statement. (Loops and generators with explicit
sequential semantics are possible t0o.)

4.2.2 Chapel

Chapel provides distributions as a mechanism for dis-
tributing an index space (domain) across locales. Distribu-
tions may be written to dynamically divide indices among
locales. A forall looping on such a distributed domain
would be a way of achieving dynamic load balancing. The
feasibility of building this feature into Chapel and its ap-
plication to the Fock algorithm is an open research issue at
present.

4.2.3 X10

The X10 specification requires that data and activities
remain in the place they were created or spawned for their
lifetime. However, X10 places are virtual, so that many
places might be mapped to each physical processor, and
conceivably migrated among them by the runtime for load
balancing and other resource management purposes, simi-
lar to Cilk’s work stealing [3, 11] within an SMP node or
CHARM++ [5,20] in the distributed context. Given a run-
time with such a capability, the simplest X10 implementa-
tion would be nearly identical to Code 1, but with many
more places than processors, so that one or a few atom
blocks were allocated to each place.

4.3 Dynamic, Program Managed Load
Balancing Using a Shared Counter

A dynamically load balanced computation involves all
participating processors (conceptually) sharing a single list
of tasks, and whenever a processor is free, it takes another
task from the list. One common approach, and the one we
use here, to implementing the shared task list is to have all
processors locally generate tasks in the same sequence, and
use a globally shared counter (typically implemented with
an atomic read-and-increment operation) to track how many
tasks have been taken by processors.

43.1 X10

In Code 3, the root activity creates the globally shared
counter G on the first place (line 1). Then it uses the ateach
construct (line 2) to launch a copy of the Fock-build al-
gorithm (lines 4-20) on each place. The £inish (line 2)
causes the root activity to block until the rest of the algo-
rithm completes on every place.

Each place iterates over the same sequence of tasks (the
four-fold loop, lines 8—11), using L to count the tasks. When
L matches the next task assigned to the place (myG), it eval-
uates that integral block. Assignments (myG) are obtained
from a remote atomic read-and-increment operation on the
globally shared counter G on the first place (lines 5-7, 13—
14 and 16). When every place has completed the four-fold
loop, all tasks will be evaluated.

X10 requires that remote references to mutable data (in
this case the shared counter G) be done asynchronously,
hence the use of the future construct at lines 5 and 13.

Code 3 Shared counter for dynamic load balancing - X10

1 int G = 0;

> finish ateach (point [p]

3 dist.factory.unique (place.places))
4 int myG, L = 0;

5 future<int> F = future (place.FIRST PLACE)
6 {read and increment G()};
7 myG = F.force();

8

for (point [iat] [1:natom])
9 for (point [jat, katl] [1:1iat, 1:iat])
10 for (point [lat]
1" [1: (kat==iat?jat:kat)]) {
12 if (L == myG) {
13 F = future (place.FIRST PLACE)
14 {read and increment G()};
15 buildjk_atom4 (new blockIndices(...));
16 myG = F.force();
17 }
18 ++L;

Code 4 Atomic read-and-increment - X10

| private int read and increment G() ({
2 int myG;

3 atomic myG = G++;

4 return myG;

5}

Separation between spawning the future and forcing it (as
in lines 13 and 16) allows computation and communication
to be overlapped.

Code 4 shows how the atomic read-and-increment op-
eration is straightforwardly implemented with an atomic
section.

4.3.2 Chapel

Our Chapel implementation employs the coforall
statement to create distinct concurrent computations for all
the locales. (The Chapel forall construct only specifies
that the iterations may run concurrently, while coforall
requires a separate computation for each iteration.)

The shared counter G is defined as a synchronization
variable using the sync type, which provides “full/empty”
semantics. Once written, such a variable cannot be re-
written until it is emptied. Likewise, an empty variable can-
not be re-read until it is written. Computations attempting
to write to a full sync variable or read from an empty one
will block until another computation changes the variable’s
state. Taking advantage of these semantics to atomically
update the counter, every computation first does a read fol-
lowed immediately by a write of G to fetch the next task.
The processing of a newly assigned task is overlapped with
the fetch of the next task using a cobegin statement.

4.3.3 Fortress

In the Fortress version, the for expression spawns a
thread for each region. An implicitly parallel ruple expres-

Code 5 Task pool of integral blocks - Chapel

Code 8 Fock index space iterator - Chapel

class taskpool {
const poolSize;
var taskarr : [0..poolSize-1]
sync blockIndices;
sync int = 0;

blockIndices) ({

1
2
3
4
5 var head, tail
6 def add(blk :
;
8

const pos = tail;

tail = (pos+1l)%poolSize;
9 taskarr (pos) = blk;
0o}
11 def remove() {
12 const pos = head;
13 head = (pos+1l) %$poolSize;
14 return taskarr (pos) ;

5}

Code 6 Top-level driver for task pool - Chapel

config const numConsumers = 10,
poolSize = numConsumers;
const t = taskpool (poolSize) ;

cobegin {
coforall cons in 1..numConsumers do
consumer () ;
producer () ;

}

L e Y I SR SR

sion runs a new task concurrently with updates to the shared
counter G. The read_and_ increment G function is im-
plemented as an atomic method in Fortress.

4.4 Dynamic, Program Managed Load
Balancing Using a Task Pool

The task pool model of dynamic load balancing uses
common work area, or “pool” into which producers sub-
mit tasks, and consumers remove and execute them. This
is a general pattern of synchronization applicable to a wide
variety of problems.

4.4.1 Chapel

In Chapel, the pool of integral block tasks is built around
an array of sync variables taskarr (Code 5, lines 3-4).
Methods are defined for producers to add tasks to the pool
(lines 6-10) and for consumers to remove them (lines 11—
15).

The main application (Code 6) begins as a single compu-
tation and sets up a task pool on the first locale. For simplic-
ity of presentation, we have arbitrarily fixed both the num-
ber of consumers (numConsumers) and the size of the task
pool (poolSize), but config const allows these to be

Code 7 Producer of integral blocks - Chapel

def producer()
forall blk in genBlocks() do
t.add (blk) ;

S

1 def genBlocks() {

2 forall iat in 1..natom do

3 forall (jat, kat) im [1..iat, 1..iat] {

4 const lattop = if (kat==iat) then jat

5 else kat;
6 forall lat in 1..lattop do

7 yield blockIndices(...);

8 1

9 forall cons in 1..numConsumers do

10 yield nil;

o}

Code 9 Consumer of integral blocks - Chapel

1 def consumer ()

2 var blk = t.remove();

3 while (blk != nil) {

4 const copyofblk = blk;

5 cobegin {

6 buildjk_atom4 (copyofblk) ;
7 blk = t.remove() ;

8 }

o}

0}

specified at the time of running the application. In practice
these would be derived from other variables like the count
of locales and cores, and the granularity of tasks (assumed
here to be 1). The cobegin (line 4) runs the producer (line
7) and consumer (lines 5—6) computations in parallel. The
coforall construct (line 5) guarantees that the loop itera-
tions run concurrently.

The producer (Code 7) simply adds atomic quartets
to the task pool. The atomic quartets come from the
genBlocks iterator (Code 8), which steps through the four-
fold loop (lines 2—6) and then generates sentinel values
(lines 9—10) to signal the consumers that there are no more
tasks.

Consumers (Code 9) take tasks from the pool and evalu-
ate them until the sentinel value described above is encoun-
tered. The cobegin construct (line 5) allows the integral
evaluation task to be overlapped with obtaining the next
atomic quartet.

442 X10

The X10 implementation is very similar to the Chapel
version. The root activity instantiates the task pool on the
first place, spawns consumer activities on all places, and
then runs the producer activity. The X10 task pool imple-
mentation uses conditional atomic sections to coordinate
the interacting activities.

4.4.3 Fortress

Our proposed implementation in Fortress would use fea-
tures like for and also do to enable producer and consumer
threads to run together. The producer would be driven

Figure 1. Array Functionality

Code 11 Symmetrization of J and K - Fortress

Operations Language constructs used t (jmat2T, kmat2T) = (jmat2.t(), kmat2.t())
2 jmat2 := 2(jmat2+jmat2T)
Chapel Fortress X10 3 kmat2 := kmat2+kmat2T
Mixed cdata and task | cobegin (task) | tuple (task) + finish async
: +forall loop | for loop (data) (task) + ——
parallelism (data) ateach (date) Code 12 Symmetrization of J and K - X10
Global- | initialization array function array | finish {
view array initializaltion expressions initializgtion 5 async ateach(point[i,j] : D)
. expressions functions . C oo A
operahons - - - 3 Jjmat2T [i, J] = future (D [j ,11)
arithmetic array fortress library array class 4 {jmat21[g,i]}.force() ;
promotions of operators methods 5 async ateach(point[i,j] : D)
scalar (+,juxtaposition) | (add,scale) 6 kmat2T[i,j] = future (D[j,1i])
operators (+,) 7 {kmat2[j,1i]}.force() ;
sub-array slicing array factory restriction 8}
function 9 jmat2 = jmat2.add(jmat2T) .scale(2);
(subarray) 10 kmat2 = kmat2.add(kmat2T) ;
Code 10 Symmetrization of J and K - Chapel . . .
2 and 3, the Fortress library operators + and juxtaposition
cobegin { (multiplication) are applied to arrays.
[(i,3) in D] jmat2T(i,j) = jmat2(j,i);
[(i,) in D] kmat2T(i,j) = kmat2(j,i); 453 X10

jmat2 = 2% (jmat2+jmat2T) ;

1
2
3
4}
5
6 kmat2 += kmat2T;

by a generator. The task pool implementation would use
abortable atomic expressions, which allow atomic sections
to validate conditions and rollback on violations.

4.5 Multi-Dimensional Array Functional-
ity

All three languages provide a rich set of global array
functionality including physical distribution, initialization,
one-sided put and get accesses, and data parallel algebraic
operations. The array functionality used in our Fock build
codes is captured in figure 1. We delve into details of
the formation of the final Fock matrix from the computed
Coulomb (J) and exchange (K) matrices to illustrate how
each language expresses some of these operations.

4.5.1 Chapel

In Chapel, forall expressions are used to transpose the
two matrices (Code 10, lines 2-3). Both the arrays and their
transposes are defined over the domain (index space) D (def-
initions not shown). The loop indices i and j are drawn
from the index space D, and as with a normal forall they
may be done in parallel. The cobegin (line 1) allows the
two transpositions to be carried out in parallel as well. Lines
5-6 illustrate how Chapel promotes scalar operators to ap-
ply to arrays.

4.5.2 Fortress

The tuple expression in Code 11 line 1 spawns sepa-
rate threads to evaluate its elements. t () is an array factory
method that computes an array transpose by iterating over
the array indices in an implicitly parallel for loop. In lines

Code 12 shows a naive transposition in X10. This im-
plementation launches a separate asynchronous activity for
each element of the matrix (points in the distribution D)
(lines 2 and 5). Futures are launched on the place holding
the [§,1i] element of the index space to retrieve the remote
value. The surrounding £inish (line 1) ensures completion
of the two transpositions before continuing. add and scale
(lines 9-10) are array class methods.

Note that the transposition can be expressed much more
efficiently in X10 (fewer activities, better locality, aggre-
gated data movement) [10], though not as succinctly.

5 Conclusions and Future Work

We have presented several possible implementations for
load balancing of a computation involving tasks of widely
varying cost in each of the HPCS languages, as well as op-
erations on distributed arrays. Though the languages dif-
fer in their detailed syntax and semantics, at a higher level,
they provide similar capabilities, which generally go well
beyond those of the traditional message-passing model, and
even the Global Arrays programming model that was used
for the first truly scalable, fully-distributed implementation
of the Hartree-Fock method. The examples illustrate the
wide range of constructs provided for the expression of par-
allelism, and how they can be combined to expose the max-
imum possible parallelism to the language. This will be
an important aspect of future programming environments as
the number of CPUs and processor cores continues to grow
rapidly.

Future work includes examination of the performance
considerations associated with different implementations,
which we plan to undertake once the language implemen-
tations have reached an appropriate level of maturity. We

also plan to extend these studies to other scientific applica-
tions, in order to illustrate other aspects of the languages.

Acknowledgements

We wish to thank all three of the language development
teams for their support and discussions through this work.
We would also like to thank Brad Chamberlain for assis-
tance in improving the display of the listed codes.

References

(1]
(2]
(3]
(4]
(5]

(6]
(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

Chapel home page.
washington.edu/.
Chapel language specification. http://chapel.cs.
washington.edu/spec-0.750.pdf.

Cilk home page. http://supertech.csail.mit.
edu/cilk/.

Fortress home page. http://fortress.sunsource.
net/.

Parallel objects: CHARM++. http://charm.cs.
uiuc.edu/research/charm/.

X10 home page. http://x10.sf.net/.

X10 language specification. http://x10.cvs.
sourceforge.net/x10/x10.man/v1.0/x10.
pdf?view=1log.

ZPL home page. http://www.cs.washington.
edu/research/zpl/.

E. Allan, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen,
S. Ryu, G. L. Steele, and S. Tobin-Hochstadt. = The
fortress language specification version 1.0alpha. Septem-
ber 2006. http://research.sun.com/projects/
plrg/Publications/fortressl.Oalpha.pdf.
G. Bikshandi, J. Castanos, S. Kodali, S. Krishnamoorthy,
V. K. Nandivada, 1. Peshanshy, V. Sachdeva, V. Saraswat,
M. Stephenson, S. Sur, P. Varma, and T. Wen. HPC
challenge submission for X10 (sc 2007). http:
//x10.sourceforge.net/applications/
benchmark/HPCC/x10-hpcc07-v3.pdf, 2007.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 207-216, Santa Barbara, California,
July 1995.

B. L. Chamberlain, D. Callahan, and H. P. Zima. Paral-
lel Programmability and the Chapel Language. Interna-
tional Journal of High Performance Computing Applica-
tions, 21(3):291-312, August 2007.

B. L. Chamberlain, S.-E. Choi, S. J. Deitz, and L. Snyder.
The high-level parallel language ZPL improves productiv-
ity and performance. In Proceedings of the IEEE Interna-
tional Workshop on Productivity and Performance in High-
End Computing (PPHEC), 2004.

P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kiel-
stra, C. von Praun, V. Saraswat, and V. Sarkar. X10: An
Object-Oriented Approach to Non-Uniform Cluster Com-
puting. In Proceedings of Object-Oriented Programming,
Systems, Languages, and Applications(OOPSLA), October
2005.

http://chapel.cs.

[15]

(16]
(7]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

L. T. Foster, J. L. Tilson, A. F. Wagner, R. L. Shepard, R. J.
Harrison, R. A. Kendall, and R. J. Littlefield. Toward High-
Performance Computational Chemistry: I. Scalable Fock
Matrix Construction Algorithms. Journal of Computational
Chemistry, 17(1):109-123, 1996.

T. R. Furlani. private communication, 1995.

T. R. Furlani and H. F. King. Implementation of a parallel
direct SCF algorithm on distributed memory computers. J.
Computat. Chem., 16(1):91-104, 1995.

R. J. Harrison, M. F. Guest, R. A. Kendall, D. E. Bern-
holdt, A. T. Wong, M. Stave, J. L. Anchell, A. C. Hess, R. J.
Littlefield, G. L. Fann, J. Nieplocha, G. S. Thomas, D. El-
wood, J. L. Tilson, R. L. Shepard, A. F. Wagner, 1. T. Foster,
E. Lusk, and R. Stevens. Toward High-Performance Com-
putational Chemistry: II. A Scalable Self-Consistent Field
Program. Journal of Computational Chemistry, 17(1):124—
132, 1996.

High Performance Fortran Forum. High performance fortran
language specification, version 2.0. Technical report, Rice
University, 1997.

L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and
G. Zheng. Programming petascale applications with
Charm++ and AMPI. In D. A. Bader, editor, Petascale Com-
puting: Algorithms and Applications, volume 1 of Chap-
man & Hall/CRC Computational Science. Chapman & Hal-
1/CRC, 2007.

R. C. Murphy. Workshop on programming languages
for high performance computing (HPCWPL) final report.
Technical Report SAND2007-2047, Sandia National
Laboratories, 2007. http://www.cs.sandia.gov/
CSRI/Workshops/2006/HPC_WPL workshop/
HPCWPL_FinalReport.pdf.

J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan,
H. Trease, and E. Apra. Advances, Applications and Perfor-
mance of the Global Arrays Shared Memory Programming
Toolkit. International Journal of High Performance Com-
puting Applications, 20(2):203-231, 2006.

A. G. Shet, W. R. Elwasif, R. J. Harrison, and D. E.
Bernholdt. Programmability of the HPCS languages: A
case study with a quantum chemistry kernel (extended ver-

sion). Technical report ORNL/TM-2008/011, Oak Ridge
National Laboratory, 2008. See http://www.ornl.
gov/info/reports/.

J. L. Tilson, M. Minkoff, A. F. Wagner, R. Shepard, P. Sut-
ton, R. J. Harrison, R. A. Kendall, and A. T. Wong. High-
Performance Computational Chemistry: Hartree-Fock Elec-
tronic Structure Calculations on Massively Parallel Proces-
sors. International Journal of High Performance Computing
Applications, 13(4):291-302, 1999.

