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Abstract. In a traditional Partitioned Global Address Space language
like UPC, an application programmer works with the model of a static set
of threads performing locality-aware accesses on a global address space.
On the other hand, asynchronous programming provides a simple in-
terface for expressing the concurrency in dynamic, irregular algorithms,
with the prospect of efficient portable execution from sophisticated run-
time schemes handling the exposed concurrency. In this paper, we adopt
the asynchronous style of programming to parallelize a nested, tree-based
code in UPC. To maximize performance without losing the ease of ap-
plication programming, we design Asynchronous Remote Methods as a
potential extension to the UPC standard. Our prototype implementation
of this construct in Berkeley UPC yields within 7% of ideal performance
and 20-fold improvement over the original Standard UPC solution in
some cases.

1 Introduction

In this paper, we explore the potential for asynchronous programming in a PGAS
language, UPC [1], with MADNESS, an adaptively recursive algorithm operating
on a distributed tree data structure. Our experience highlights the role of a new
language feature, asynchronous remote methods, in providing substantial pro-
grammability and performance benefits to application developers. We prototype
this feature in the Berkeley UPC implementation and report on its effectiveness.
Our interest in asynchronous programming stems from a couple of factors:
1. Hardware trends dictate that users of high-end machines generate parallel

work for progressively increasing processor counts with potentially different
functional characteristics. Asynchronous programming is a powerful means
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of exposing the kinds of parallelism crucial to achieving portable high per-
formance in this environment. Asynchronous computation is inherently ori-
ented for greater computation-communication overlap and enables smarter
runtimes performing dynamic load balancing, fault handling, and other re-
source management functions.

2. The application we are working with can be naturally written using asyn-
chronous language constructs. Asynchronous programming is a convenient
tool for developing an irregular code like ours that iterates recursively on a
dynamically adaptive tree structure.

Our choice of PGAS, and UPC in particular, was motivated by:
1. PGAS is a convenient model for parallelizing an irregular, distributed ap-

plication owing to its shared address space abstraction of the distributed
execution environment and one-sided access mechanisms. While the newer
HPCS languages are an attractive option for our application as they incor-
porate the PGAS model and are intrinsically geared towards asynchronous
computing, they haven’t yet attained full maturity [2]. More importantly, we
wished to evaluate asynchronous programming in an SPMD context. And
in early experience with MPI [3], two-sided message-passing communication
proved to be a major programmability and performance limiter in expressing
and managing the nested concurrency inherent in our application.

2. We were starting from a serial code comprising of non-trivial mathemati-
cal logic written in the C language. Going forward, we wished to avoid the
significant effort required to translate this code into a different base serial
language. As we explain later in the paper, the choice of UPC allowed us to
retain and build upon this.
The rest of the paper is organized as follows. In Sect. 2, we describe the

MADNESS application. In Sect. 3, we explain our solution in Standard UPC
and discuss how it could be improved. We implement an asynchronous remote
method extension to Berkeley UPC and discuss our modified solution in Sect. 4.
We present related work in Sect. 5. We conclude and outline plans for continuing
this work in Sect. 6.

2 The Problem
Multiresolution Analysis (MRA) is a mathematical technique for approximating
a continuous function as a hierarchy of coefficients over a set of basis functions.
MRA is characterized by dynamic adaptivity to guarantee the accuracy of ap-
proximation and being able to trade numerical accuracy for computation time.
The natural representation of MRA is as a tree structure of coefficient ten-
sors computed using recursive tree traversal algorithms. Multiresolution Adap-
tive Numerical Environment for Scientific Simulation (MADNESS) is a software
package for multiresolution numerical methods on high-end computers, with ap-
plication to numerous scientific disciplines. Its characteristics can be briefly sum-
marized as follows:

1. Multi-dimensional tree distribution
(a) The coefficient trees are unbalanced on account of the adaptive multires-

olution properties leading to different scales of information granularity
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Code 1 Serial Refinement - C

typedef struct {
size_t order;

GHashTable *tree;
} SubTree ;

typedef SubTree *subtree_t;

typedef struct {
subtree_t sumC;
/* Math data structures */

} Func;
typedef Func *func_t;

void refine(func_t f,node_t node) {
/* Math logic to calculate normf */

for (int c=0;c<children (node);c++) {

node_t child = get_child(node ,c);
if (normf > threshold)

refine (f,child);
else

insert_coeffs(f,child);

}
}

in different portions of the tree. Trees are multi-dimensional in nature
i.e. binary tree in one dimension, quadtree in two dimensions, octree in
three dimensions, and so on.

(b) The tree structure may be refined in an uncoordinated fashion – different
parts of the tree may be refined independently and the intervals of such
refinement are not preset.

(c) The tree partitioning scheme should cover the entire tree, and not just
the leaf nodes, as a complete tree is utilized in some cases.

2. Algorithmic characteristics

(a) Some algorithms traverse the tree recursively, moving data up/down the
hierarchy. The number of levels navigated varies dynamically and may
constitute a data dependence chain.

(b) Some algorithms move data laterally within the same level in the tree
i.e. between neighboring nodes.

(c) Some algorithms involve applying mathematical functions to the collec-
tion of coefficient tensors, and possibly combining individual results.

(d) Certain algorithms operate on multiple trees having different refinement
characteristics and produce a new tree.

In this paper, we focus on the adaptive refinement that constructs the tree.
Refinement proceeds in a top-down manner under the control of a threshold value
that determines the precision of the numerical approximation. The operation
starts at one node and progresses in a recursive way from parent to children
nodes until the desired accuracy is achieved. Refinement may be initiated at any
level in the tree, and may produce new nodes as the computation continues.
An important feature is the flexibility to selectively refine sections of the tree
as required. The irregularity arising from such flexible adaptive updates pose
programmability and performance concerns in parallelization. Our starting point
was a serial C version of the MRA refinement.

3 The Standard UPC Solution

We worked with two serial C codes: a one dimensional (1D) and a three dimen-
sional (3D) refinement code. The two programs operate in an identical fashion,
except that the underlying data structure is a binary tree in 1D and an oc-
tree in 3D. One other difference is that the computation is much more intensive
in 3D than in 1D. Leaving aside these variations, the serial refine method is
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Code 2 Asynchronous Refinement - UPC

typedef shared Func
*GFunc_t ;

typedef shared GFunc_t

*gfunc_t ;

gfunc_t gf=upc_all_alloc(
THREADS ,sizeof (GFunc_t ));

gf[MYTHREAD ]= upc_alloc(
sizeof(Func));

void refine(gfunc_t gf,node_t node) {

/* Math logic to calculate normf */

for (int c=0;c<children (node);c++) {

node_t child = get_child(node ,c);
if (normf > threshold)

gtaskq_launch(gtaskq ,thread_id ,rtask);
else

gtaskq_launch(gtaskq ,thread_id ,ctask);
}

}

uniformly written as appears in Code 1. func_t defines the one/three dimen-
sion MRA function, with the corresponding tree form contained in sumC. The
tree is structured as a hash table of (node_t,tensor_t) (definitions not shown)
(key,value) pairs using the GHashTable data type from the GLib [4] utility library.
node_t specifies node coordinates, while a coefficient tensor is of tensor_t type.
The insert_coeffs method adds a (node_t,tensor_t) element to the MRA func-
tion tree when the threshold degree of precision is attained. A hash table relies
on a hash function to uniquely identify its keys, in this case the node coordinates.
Due to space constraints, we do not include a discussion of the derivation of node
coordinates and the hashing technique, but mention that nodes are referenced
by positional attributes in the tree hierarchy, which the hashing technique uses
to differentiate one node from another.

3.1 Asynchronous Parallelization

The asynchronous solution creates tasks specifying logical parallelism for exe-
cution by physical UPC threads. In the refinement algorithm, operations on
individual nodes can be formulated as separate parallel tasks. Starting as a sin-
gle task to refine one node, the algorithm may recursively launch new tasks on
the node hierarchy rooted at the initial node. A task is spawned on the thread
that owns the target node; the identity of this thread is provided by a tree distri-
bution scheme. A task will create child tasks if the numerical accuracy threshold
mandates additional refinement of the tree structure beneath it, but does not
wait on the execution of any spawned child tasks. A task always runs to comple-
tion and does not return control back to its parent. This process continues until
all tasks on all threads have completed. We now discuss the various aspects of
our parallel implementation.

Global data structures UPC’s partitioned global address space offers a suit-
able mechanism to build our distributed shared data structures, see Code 2.
gfunc_t is the globally shared MRA function, with each thread allocating a
shared Func portion locally. gfunc_t is a portable global pointer that may be
freely passed between threads and used by any thread to directly reference a
remote section of the distributed MRA function.

Tree distribution A node is mapped to a UPC thread in a simple way by
applying (hash of node) modulo (thread count). This approach is charac-
terized by poor locality arising from parent and children nodes being assigned
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gtaskq_t gtaskq_init(size_t taskq_size ,
task_func_t *func_table ,size_t ftable_size);

void gtaskq_launch(gtaskq_t gtaskq,

size_t thread_id ,task_t *task);

void gtaskq_execute(gtaskq_t gtaskq);

void gtaskq_destroy(gtaskq_t gtaskq);

Fig. 1. Global task queue - UPC

to different threads, but since it drives the placement of work in our owner-
computes policy, it yields an excellent distribution of the workload.

Task queue A global task queue is at the heart of the asynchronous paralleliza-
tion. Figure 1 depicts the task queue API and its key elements. Each thread al-
locates a shared bounded FIFO task buffer locally, and these are linked together
in the global address space to constitute the global task structure task_dir. A
distributed shared tail_dir tracks the next vacant position to insert a task in
individual task buffers. Finally, a per-thread shared lock in lock_dir guards a
thread’s tail variable and task buffer from corruption in the face of concurrent
task insertion attempts by multiple threads.

All threads call gtaskq_init with the func_table of methods in the program
to run inside tasks for setting up the task queue. A thread deposits a task in
the task buffer of thread thread_id by calling gtaskq_launch. All threads invoke
gtaskq_execute to continually process tasks from their local task buffers until
global termination is reached at which point all threads would have run out of
tasks. gtaskq_destroy deallocates the different pieces of the task queue.

The task buffer is bounded by estimating the upper limit and hence we do not
guard against buffer overruns. A more dynamic memory strategy will be neces-
sary when the bounds cannot be accurately predicted. When a task executes, it
may launch additional tasks as per the algorithm. To achieve termination of this
dynamically unfolding task sequence, we applied the methodology of distributed
termination without stopping work-related task communication [5]. We lever-
aged the same task launching and execution mechanisms from above to perform
the various stages in the termination detection.

Asynchronous programming Putting together the global data structures,
tree distribution and task queue, the parallel 1D and 3D refine methods are
shown in Code 2. The refine method in Code 2 is passed the global MRA
function gf and creates asynchronous tasks to run additional methods, but oth-
erwise is identical to the refine method in Code 1. The computation begins
with thread 0 launching a task to refine a given node on its host thread, and
proceeds with all threads working collectively to execute the resulting dynamic
set of tasks.
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Fig. 2. Wall time of MADNESS in Standard UPC (a) 3D (b) 1D

3.2 Experimental Results

We ran the parallel codes at the National Center for Computational Sciences on
the Smoky machine which is an 1280 core Linux cluster with 80 nodes, each node
having four quad-core 2.0GHz AMD Opteron processors and 32 GB of memory,
interconnected by InfiniBand network. The codes were compiled with Berkeley
UPC version 2.8.0 to run on the OpenIB InfiniBand Verbs network conduit.
We ran one UPC thread on one core, and each UPC thread comprised of two
pthreads. The version of GLib for hash table support was 2.18.4.

We measured time on thread 0 from when it produces the first task to when
it returns from the task execution loop on global termination for varying UPC
thread counts. We define an ideal parallelization as the time for computing the
same set of tasks without any of the associated parallelization overheads. To un-
derstand how we fared against the ideal parallelization scenario, we first obtained
the execution time with a single thread after removing the locking/unlocking
steps from the task launch and execute operations and privatizing access to the
shared task queue. The ideal execution time for any given thread count was then
derived by dividing this time with the particular number of threads. The results
are plotted in Fig. 2. Not counting tasks that the task queue produces internally
for achieving distributed termination, the 3D and 1D programs communicate
37440 and 6568 tasks respectively.

The 3D UPC solution is seen to be scaling reasonably well over the entire
thread range, except for an increase in execution time from 8 to 16 threads, and
exhibits better scaling beyond 16 threads. In contrast, the 1D code does not scale
at all over the entire thread range. Its execution time continuously increases up
to 16 threads, and scales only relatively thereafter. Both cases are characterized
by significant loss in performance as measured by the difference between ideal
and obtained run times.

3.3 Discussion of Results

To understand the observed trends, we gathered two sets of results. We provide
the time for serial math processing inside the refine and insert_coeffs methods
in Table 1. Next, we devised a micro-benchmark test to exercise the task launch
and execute operations with a no-op method in the task. The test comprises of
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Table 1. Computing time
of MADNESS methods in
microseconds

Code refine insert coeffs

1D 3 1
3D 3099 153

Table 2. Task launch and execute times in
microseconds

Count of threads launch lock execute

No contention 81 20 0.43
2 91 25 91
4 313.99 200.33 106
8 676.43 567.86 97
16 1450.07 1336.07 97

running thread 0 as a receiver looping on its task buffer and executing incom-
ing tasks. All other threads continually launch a specified number of tasks on
thread 0. On receiving a task, thread 0 calls the no-op method, and returns to
checking for new tasks. We note that this is the worst-case scenario in the solu-
tion we devised. We obtained the average time incurred in a task launch across
the set of sending threads, as well as a breakdown of this time into its constituent
parts. We also recorded the average time taken to execute one task on thread 0.
The timings are captured in Table 2. Amongst the factors contributing to the
launch time, only the time to acquire a remote lock is of interest here since
other factors weren’t seen to be contributing or varying greatly in comparison
in different test scenarios.

The micro-benchmark reveals that even without competing threads, the time
to launch a remote task far exceeds the processing within an individual task in
1D. The 3D tasks perform substantial work in comparison. With 2 threads, one
sender and one receiver, the task execution time equals the time to launch a task.
The no-op method in the task means both the sending and receiving threads are
getting serialized on task communication. An increase in the number of sending
threads is accompanied by a direct increase in the time to acquire a remote
lock. The sending threads are all contending on the shared lock on thread 0. On
obtaining the lock a thread inserts one task, but all other threads are left waiting
on the completion of task insertions by one or more threads in the order that
locks are acquired. Thus the latency experienced by a thread grows in proportion
to its count of failed lock attempts, and the average task launch time steadily
increases. Thread 0 is seen to take roughly the same amount of time to run one
task since each successful task insertion implies one ready task for execution.

We are now in a position to interpret the graphs from Fig. 2. The overall
scaling in 3D is due to the coarse-grained nature of its tasks that effectively
mask task communication overheads. The extremely fine-grained tasks in 1D
means its execution is dominated entirely by the cost of communication. The
tree distribution scheme distributes the workload across the collection of threads,
which means for greater thread counts the same set of tasks get farmed out to
different threads, thereby reducing contention in task insertion. Consequently,
scaling improves for larger numbers of threads. Still, the necessary serialization
of task insertion is causing considerable performance degradation even in 3D as
evidenced by the deviation from the ideal parallelization curve. Our hypothesis is
we would address the performance problem if the task insertion could be spawned
remotely and asynchronously. The UPC language specification does not have
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constructs to support such asynchronous remote methods. We now implement
this feature in Berkeley UPC to optimize our solution for performance.

4 Asynchronous Remote Methods (ARM)
An alternative approach to address the issues in the earlier solution is to main-
tain distinct task insertion slots for different threads and perform asynchronous
insertions (using bupc_memput_async). Clearly, this method is not scalable, con-
sumes memory, and is a programming burden. We instead choose to spawn the
task launch contained in gtaskq_launch as an asynchronous remote method since
it incurs minimal changes to the existing tasking infrastructure.

4.1 Implementation of Asynchronous Remote Methods

We describe a näıve prototype we developed to improve the performance of our
code. It is not intended to be a proposal on how ARM could be enabled in
Berkeley UPC.

Modifications to Berkeley UPC The Berkeley UPC runtime initially regis-
ters a set of function handles required by functionality such as locks and atomic
updates with the GASNet [6] communication layer. To this list, we added several
handles corresponding to our ARM implementations. To compile the modified
Berkeley UPC source with our application, we provided dummy ARM definitions
in a header file upc_arm.h. Along with the Berkeley UPC provided header file,
this header file gets included in any UPC program. In the ARM version of the
MADNESS UPC code, we selectively disabled the dummy ARM definitions and
defined it by rewriting the task insertion from gtaskq_launch to be spawned as
an active message. We added a construct bupc_arm(arm_handler_index,thread_id
,buffer,size) to Berkeley UPC to internally invoke the GASNet active message
API with the task insertion function handle. gtaskq_launch now simply invokes
bupc_arm to perform the task insertion as an ARM. The rest of the code base is
identical to that of our earlier UPC solution.

ARM completion semantics We rely on the completion semantics provided
by GASNet for the active message layer. We did not need to change the termi-
nation logic from before (same as in [5]). Despite the message ordering semantics
of GASNet, on the single-rail InfiniBand network we used, all messages between
pairs of processes are delivered in order. Hence, our ARM termination did not
include message counters or similar logic for handling the unordered delivery of
ARM messages. On systems where message ordering cannot be guaranteed, the
termination would synchronize threads doing insertions and include information
on the total number of messages.

Solution limitations Our ARM mechanism carries the restrictions of the GAS-
Net active message API. We relied on the ordered delivery of messages and al-
lowed only a static number of ARM definitions. All these limitations are specific
to our solution.

4.2 Experimental Results and Discussion

With the same experimental setup from 3.2, we ran our MADNESS UPC pro-
gram to insert tasks via ARM mechanism from within gtaskq_launch. The per-
formance curves with this ARM execution along with the earlier results obtained

8



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1024 512 256 128 64 32 16 8 4 2 1

T
im

e
 (

se
c
o

n
d

s)

Number of UPC threads

Standard UPC
UPC with ARM

Ideal

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 512 256 128 64 32 16 8 4 2 1

T
im

e
 (

m
il

li
se

c
o

n
d

s)

Number of UPC threads

Standard UPC
UPC with ARM

Ideal

(a) (b)

Fig. 3. Wall time of MADNESS in UPC with Asynchronous Remote Methods (a) 3D
(b) 1D

using Standard UPC are shown in Fig. 3. The 3D case achieves very close to
ideal performance and we are successful in overlapping most of its task distri-
bution costs with task execution. Even 1D shows a clear performance gain, but
its scaling is fundamentally limited by the amount of available computation.
Benchmarking ARM reveals that task launching, while much less sensitive, still
suffers a small penalty with multiple concurrent threads, consequently impacting
scaling for smaller thread counts.

5 Related Work

The concept of asynchronous remote methods is not new to the HPC language
community and appears in all the HPCS languages. For example, Chapel [7]
provides statements like begin, cobegin, coforall and control over locality with an
on clause for creating asynchronous parallelism on processing units or locales;
X10 [8] has asynchronous constructs like async, future, foreach, ateach to specify
parallelism on places. Co-Array Fortran [9], UPC [1], Titanium [10] language
specifications do not explicitly support asynchronous programming, but their
implementations utilize communication libraries that expose an active message
interface. Scioto [11] offers a solution for efficient management of asynchronous
parallelism on distributed memory machines. This work is different from all of
the above since we evaluate asynchronous programming in an SPMD computa-
tion model from an application standpoint. While the dynamic load balancing
problem of an asynchronous computation using standard UPC has been ex-
plored [12], we investigate how asynchronous programming could generally be
made more effective in UPC with a new facility that allows greater asynchronic-
ity in execution. The challenges of supporting dynamic parallelism in UPC were
studied by applying UPC extended with user-level threads to dense LU factor-
ization [13]. Our work is most similar to the work on programming a distributed
spanning tree algorithm using LAPI’s active message model [14]. But for greater
ease of programming, we utilize a higher programming layer and demonstrate
how performance could be improved without sacrificing programmability in this
context via an extension built on top of GASNet’s active message interface.
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6 Conclusions and Future Work
We applied the asynchronous programming approach to parallelizing MAD-
NESS, an adaptive algorithm that iterates recursively on tree data, in UPC.
The shared view and independent remote memory access features of the PGAS
model simplified the development of this dynamic and irregular application. By
adding an asynchronous remote method construct, we achieved within 7% of
ideal performance and 20-fold improvement over the Standard UPC solution in
some cases. Though this is a problem-specific prototype, we demonstrated that
asynchronous remote methods can provide substantial programmability and per-
formance benefits to application developers. We hope that our work motivates
the inclusion of such a capability in the UPC standard. As future work, we
plan to expand the design of asynchronous remote methods to be more gen-
eral, portable, and adaptable to different UPC applications. We would like to
demonstrate its scaling on bigger machines. We intend to implement more of
the MADNESS application kernels in UPC to derive a general solution for use
in benchmarking UPC implementations and systems that are suitable for the
APGAS model.
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