Summary of Snavely’s work

· Performance sensitivity studies

· Why POP runs faster on Lemeuix than BH?

[image: image1.png]—_—
2511 mPoP Performance

2 OProcessor and Memory Subsystem

@ Network Bandwidth

15 o Network Latency

MHH

PWR3 Colony Casel Case2 Case3 Cased Alpha ES45
(BH) Quadrics

(Tcs)

Figure 1. Modeled Contributions to Lemeuix.s (TSC) performance improvement over Blue Horizon
on POP x1 at 16 CPUs.

· Impact of each hardware component performance on appln behavior

[image: image2.png]= =4x Processor VExecution Time
114 Iat 8&4x BW foto
—a— 144 lat
—e—dxBW
——BASE

Latency
Performance

Processor
Normalized

. Performance

Fandwidth
Performance
Normalized

for 128 cpu POP x1.

[image: image3.png]Normalized Performance (ftime)

.00

200

200

om0

Case 1(Base) Case 2 (Higher Case3(Lower Case 4 (Higher
bandwidth) latency) bandwidth &
lower latency)

Figure 2. Sensitivity study for Cobalt60 for 64 processors.

case 5
(Processor
Performance)

[image: image4.png]Normalized Performance (1ftime)

0m

Case 1 (Base) Case 2 (4x Case3(2xL1 Cased (2xL1& Case5(2xL1,
MFLOP) cache L2 cache L2, MM cache
bandwidth) bandwidth) bandwidth)

Figure 3. Cobalt60 Node Performance sensitivity study for 64 CPUs.

· Similar performance sensitivity studies on NLOM, HYCOM

· Extends the earlier discussed framework with the use of sampling and CFGs to reduce time and space resp. for memory tracing

· Earlier, a separate MetaSim trace was run against each memory hierarchy to be simulated. The memory trace of a full application was stored for subsequent reprocessing.

· MetaSim Tracer now uses DynInst API on Power4 systems to enable and disable tracing in running code and performs sampling in time and space. The behavior of the program when sampling is turned off is estimated by interpolation.

· Now the MetaSim Tracer processes the address stream against a cache simulator, in order to predict the performance of that address stream against several different architectures. The cache simulator is parallelized, so that all 26 machines to be modeled can be done at once, with only minimal additional slowdown (still ~30X for ATOM, and ~100X for PIN). Also, previously just one sample processor of a parallel run was traced, but now each individual processor’s memory access patterns in a parallel run is traced. In addition, tools based on SimPoint have been developed, for comparing each processor’s trace to see how different or similar it is to other processors’ traces.
· The duration and frequency of sampling periods (counted in CPU cycles) is under the control of the user. The user inputs two parameters: 1) SAMPLE = number of cycles to sample 2) INTERVAL = number of cycles to turn off sampling.
· The framework, applied to POP, NLOM and Cobalt60 codes with 1% sampling, predicted execution times on different numbers of processors on different machines with average 5-6.75% error.
· Sampling was tested with other approaches like basic-block trace limits (every basic block is traced a limited number of times), tracing particular basic-blocks (sampling in space), phased basic-block tracing (multiple trace runs, with a different set of basic blocks traced in each run) on synthetic NLOM code on different machines.
??? Do we make a distinction between ‘processes’ and ‘processors’? Dimemas while making this distinction, is meant to be applied even when tracing is done on a single workstation or a time-shared parallel machine thereby avoiding the need of a dedicated parallel platform to collect traces. It does not simulate time-sharing in any way and simulates contention as the maximum number of simultaneous messages in transit. Dimemas predicts performance in a dedicated machine scenario. It accomplishes this by measuring CPU time as the per-process CPU time as opposed to elapsed time. In this way, if a process suffers preemption during the instrumentation, Dimemas will not consider the preempted time and the predicted performance will approximate what would happen in a dedicated machine. Under a heavy multiprogrammed load, the processes in the instrumentation run will experience a lot of blocking by the operating system, migrations and cache pollution. Dimemas does not capture these effects in making predictions. To test inaccuracy arising out of this, Dimemas was applied to predict the execution time of 30 runs of LU with 8, 16, 32 processes on a time-shared 64-processor Origin 2000 running other scientific codes at the same time. The observation was that variations in predicted time were small in each of the three cases. For 8 processes, the predicted and elapsed times were relatively close to each other indicating that load in the system was low enough not to result in very important blocking effects. For 16 and particularly 32 processes, not only did elapsed times vary a lot across runs but there was very high variation between elapsed and predicted times.

??? Doing a curve fitting to traces requires a careful selection of predictors. The predictors are numerous like hardware parameters (processor speed, network latency, network bandwidth, cache settings etc.), number of processes, message size distribution, memory access stride etc. Along the lines of Snavely’s work, important predictors could be related to memory access pattern and message size vs latency distribution. Again, the choice of predictors will have to account for the problem size, number of processes and additionally some machine parameters if prediction is to be extended across platforms. The question that might be useful to answer is “What is the wall-clock time of this application with ‘x’ processes on machine ‘y’ for problem size ‘z’?” Here x, y and z will be user-provided values. Given the tracefile of an application run with ‘n’ processes and problem size ‘s’, Dimemas is capable of answering the question “What is the wall-clock time of this application with ‘n’ processes on machine ‘y’ for problem size ‘s’?” Here only ‘y’ will be a user provided value. The approach taken in Dimemas is simulation-based modeling. Dimemas is a network simulator and can simulate the behavior of a given application on a user-defined machine. It does not attempt to simulate the execution of an application on a number of processors different from the number of processors the trace was gathered on.

??? Snavely’s work (at least initially) traced the memory access pattern of only one process. Isn’t this based on the assumption that the parallel program is computationally well balanced and data distribution is uniform? Can one expect the tracing of one process to be representative of other processes as well?

Snavely’s work is focused on modeling the performance of an application from a hardware standpoint i.e. trying to determine the system configuration for a given workload. In other words, identifying the right machine for running a chosen application. Snavely’s framework can be applied for predicting the performance of an application, with a given problem size and number of processes, across several machines. Performance models have historically been used to improve architecture design, inform procurement, and guide application tuning. The latest paper on the framework mentions that the framework is currently unable to accurately predict I/O performance.

Jeff Hollingsworth’s work is focused on EMPS, SIGMA and Active Harmony projects. SIGMA deals with analyzing the efficiency of memory access by an application and identifying factors affecting memory performance of the application. EMPS is a framework which integrates different data gathering and simulation tools like SIGMA, MetaSim, MetaSim Convolver, Dyninst to study the memory performance of a parallel application. This framework can be seen as constituting the single-processor model in Snavely’s framework for performance modeling and prediction. Active Harmony deals with self tuning of applications. It supports runtime adaptation of a task to heterogeneous and changing environments.

Machine performance models

· Memory performance – HMM, Memory logP

· Communication performance - lognP, LogP, LogGP, LoPC, LoGPC

MetaSim Tracer generates an Application Signature for a particular machine by processing the application's address stream against the memory subsystem of a user-supplied parameterization of a (hypothetical or real) machine.
